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Abstract

Bayesian models are established as one of the main successful paradigms for
complex problems in machine learning. To handle intractable inference, research
in this area has developed new approximation methods that are fast and effective.
However, theoretical analysis of the performance of such approximations is not
well developed. The paper furthers such analysis by providing bounds on the excess
risk of variational inference algorithms and related regularized loss minimization
algorithms for a large class of latent variable models with Gaussian latent variables.
We strengthen previous results for variational algorithms by showing that they
are competitive with any point-estimate predictor. Unlike previous work, we
provide bounds on the risk of the Bayesian predictor and not just the risk of the
Gibbs predictor for the same approximate posterior. The bounds are applied in
complex models including sparse Gaussian processes and correlated topic models.
Theoretical results are complemented by identifying novel approximations to
the Bayesian objective that attempt to minimize the risk directly. An empirical
evaluation compares the variational and new algorithms shedding further light on
their performance.

1 Introduction

Bayesian models are established as one of the main successful paradigms for complex problems
in machine learning. Since inference in complex models is intractable, research in this area is
devoted to developing new approximation methods that are fast and effective (Laplace/Taylor
approximation, variational approximation, expectation propagation, MCMC, etc.), i.e., these can
be seen as algorithmic contributions. Much less is known about theoretical guarantees on the
loss incurred by such approximations, either when the Bayesian model is correct or under model
misspecification.

Several authors provide risk bounds for the Bayesian predictor (that aggregates predictions over its
posterior and then predicts), e.g., see [15 |6, [12]. However, the analysis is specialized to certain
classification or regression settings, and the results have not been shown to be applicable to complex
Bayesian models and algorithms like the ones studied in this paper.

In recent work, [7] and [1]] identified strong connections between variational inference [10] and
PAC-Bayes bounds [14]] and have provided oracle inequalities for variational inference. As we show
in Section[3] similar results that are stronger in some aspects can be obtained by viewing variational
inference as performing regularized loss minimization. These results are an exciting first step, but
they are limited in two aspects. First, they hold for the Gibbs predictor (that samples a hypothesis
and uses it to predict) and not the Bayesian predictor and, second, they are only meaningful against
“weak” competitors. For example, the bounds go to infinity if the competitor is a point estimate
with zero variance. In addition, these results do not explicitly address hierarchical Bayesian models
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where further development is needed to distinguish among different variational approximations in
the literature. Another important result by [11] provides relative loss bounds for generalized linear
models (GLM). These bounds can be translated to risk bounds and they hold against point estimates.
However, they are limited to the prediction of the true Bayesian posterior which is hard to compute.

In this paper we strengthen these theoretical results and, motivated by these, make additional
algorithmic and empirical contributions. In particular, we focus on latent Gaussian models (LGM)
whose latent variables are normally distributed. We extend the technique of [[L1] to derive agnostic
bounds for the excess risk of an approximate Bayesian predictor against any point estimate competitor.
We then apply these results to several models with two levels of latent variables, including generalized
linear models (GLM), sparse Gaussian processes (sGP) [[17, 26]] and correlated topic models (CTM)
[3]] providing high probability bounds for risk. For CTM our results apply precisely to the variational
algorithm and for GLM and sGP they apply for a variant with a smoothed loss function.

Our results improve over [7, 1] by strengthening the bounds, showing that they can be applied directly
to the variational algorithm, and showing that they apply to the Bayesian predictor. On the other hand
they improve over [[L1] in analyzing the approximate inference algorithms and in showing how to
apply the bounds to a larger class of models.

Finally, viewing approximate inference as regularized loss minimization, our exploration of the
hierarchical models shows that there is a mismatch between the objective being optimized by
algorithms such as variational inference and the loss that defines our performance criterion. We
identify three possible objectives corresponding respectively to a “simple variational approximation”,
the “collapsed variational approximation”, and to a new algorithm performing direct regularized loss
minimization instead of optimizing the variational objective. We explore these ideas empirically in
CTM. Experimental results confirm that each variant is the “best" for optimizing its own implicit
objective, and therefore direct loss minimization, for which we do not yet have a theoretical analysis,
might be the algorithm of choice. However, they also show that the collapsed approximation comes
close to direct loss minimization. The concluding section of the paper further discusses the results.

2 Preliminaries

2.1 Learning Model, Hypotheses and Risk

We consider the standard PAC setting where n samples are drawn i.i.d. according to an unknown joint
distribution D over the sample space z. This captures the supervised case where z = (z,y) and the
goal is to predict y|z. In the unsupervised case, z = y and we are simply modeling the distribution.
To treat both cases together we always include z in the notation but fix it to a dummy value in the
unsupervised case.

A learning algorithm outputs a hypothesis h which induces a distribution py(y|z). One would
normally use this predictive distribution and an application-specific loss to pick the prediction.
Following previous work, we primarily focus on log loss, i.e., the loss of h on example (z., yx)
is £(h, (z+,y+)) = —logpn(y«|z«). In cases where this loss is not bounded, a smoothed and
bounded variant of the log loss can be defined as £(h, (ys,z.)) = —log ((1 — a)pa(ylz) + ),
where 0 < o < 1. We state our results w.r.t. log loss, and demonstrate, by example, how the
smoothed log loss can be used. Later, we briefly discuss how our results hold more generally for
losses that are convex in p.

We start by considering one-level (IL) latent variable models given by p(w)p(y|w,x) where
pylw,z) = T[,p(yilw,z;). For example, in Bayesian logistic regression, w is the hidden
weight vector, the prior p(w) is given by a Normal distribution A (w|u,Y) and the likelihood
term is p(y|w,z) = o(yw?x) where o() is the sigmoid function. A hypothesis A represents a
distribution ¢(w) over w, where point estimates for w are modeled as delta functions. Regardless
of how h is computed, the Bayesian predictor calculates a predictive distribution pp(y|z) =
Eq(w)[p(y|w, z)] and accordingly its risk is defined as 7ay(q(w)) = E(4 y)~p[—logpn(y|z)] =

E(w,y)wD [7 log Eq(w) [p(y‘wa :L’)]]
Following previous work we also analyze the average risk of the Gibbs predictor which draws a

random w from ¢(w) and predicts using p(y|w, ). Although the Gibbs predictor is not an optimal
strategy, its analysis has been found useful in previous work and it serves as an intermediate step



in our results. Assuming the draw of w is done independently for each = we get: rgip(g(w)) =
E(z,y)~D[Eq(w)[— log p(y|w, )]]. Previous work has defined the Gibbs risk with expectations in
reversed order. That is, the algorithm draws a single w and uses it for prediction on all examples. We
find the one given here more natural. Some of our results require the two definitions to be equivalent,
i.e., the conditions for Fubini’s theorem must hold. We make this explicit in

Assumption 1. E(%y)ND[Eq(w) [7 logp(y\w, 17)]] = Eq(w) [E(z,y)ND[f logp(y\w, :Z?)]]

This is a relatively mild assumption. It clearly holds when y takes discrete values, where p(y|z, w) < 1
implies that the log loss is positive and Fubini’s theorem applies. In the case of continuous y, upper
bounded likelihood functions imply that a translation of the loss function satisfies the condition of
Fubini’s theorem. For example, if p(y|z, w) = N (y|f(w, z), 0?) where o is a hyperparameter, then
log p(y|z,w) < B = —log(v/271) — log(c?). Therefore, —log p(y|z, w) + B > 0 so that if we
redeﬁneﬂ the loss by adding the constant B, then the loss is positive and Fubini’s theorem applies.
More generally, we might need to enforce constraints on D, ¢(w), and/or p(y|z, w).

2.2 Variational Learners for Latent Variable Models

Approximate inference generally limits g(w) to some fixed family of distributions () (e.g. the family
of normal distributions, or the family of products of independent components in the mean-field
approximation). Given a dataset S = {(x;,y;)}_;, we define the following general problem,

q = argmin{lKL (q(w)Hp(w)) —|—L(w,S)} , (1)
q€Q n

where KL denotes Kullback-Leibler divergence. Standard variational inference uses n = 1 and
L(w, S) = =, Eqqw)[log p(yi|w, z;)], and it is well known that (1)) is the optimization of a lower
bound on p(y). If —log p(y;|w, ;) is replaced with a general loss function, then (1)) may no longer
correspond to a lower bound on p(y). In any case, the output of , denoted by ¢g;;,. is achieved via
regularized cumulative-loss minimization (RCLM) which optimizes a sum of training set error and a
regularization function. In particular, ¢g;, uses a KL regularizer and optimizes the Gibbs risk rg;p, in
contrast to the Bayes risk rp,y. This motivates some of the analysis in the paper.

Many interesting Bayesian models have two levels (2L) of latent variables given by
p(w)p(flw,x) [ ], p(yi| fi) where both w and f are latent. Of course one can treat (w, f) as one set
of parameters and apply the one-level model, but this does not capture the hierarchical structure of the
model. The standard approach in the literature infers a posterior on w via a variational distribution
q(w)q(f|w), and assumes that g(w) is sufficient for predicting p(y.|z.). We refer to this structural
assumption, i.e., p(f«, flw, z, z.) = p(fi|w, z.)p(f|w, x), as Conditional Independence. 1t holds
in models where an additional factorization p( f|w, z) = [[, p(fi|w,x;) holds, e.g., in GLM, CTM.
In the case of sparse Gaussian processes (SGP), Conditional Independence does not hold, but it is
required in order to reduce the cubic complexity of the algorithm, and it has been used in all prior
work on sGP. Assuming Conditional Independence, the definition of risk extends naturally from the
one-level model by writing p(y|w, ) = Ep(f|w,«) [P(y]f)] to get:

rmg(aw) = B [“log E[ E (sl @
rn(gw) = B [E[-lg E Al G)

Even though Conditional Independence is used in prediction, the learning algorithm must decide
how to treat ¢(f|w) during the optimization of ¢(w). The mean field approximation uses q(w)q(f)
in the optimization. We analyze two alternatives that have been used in previous work. The
approximation ¢( f|w) = p(f|w), used in sparse GP [26, 8] 23], is described by (1) with L(w, S) =
— > i Eq(w) [Ep(f,jw,2s) [log p(y:| fi)]]. We denote this by g3, and observe it is the RCLM solution
for the risk defined as

ralgw))= E [E[ E [~logp(ylf)]] “4)

 (@y)~D gq(w) p(flw,)

"For the smoothed log loss, the translation can be applied prior to the re-scaling, i.e.,
- lOg(,,,axwy:’;g(y‘w’w)p(y|wv z) + ).



As shown by [23, O] 22]], alternatively, for each w, we can pick the optimal ¢(f|w) = p(f|w, S).
Following [25] we call this a collapsed approximation. This leads to (I) with L(w,S) =
— Eq(w)[log Ep(fjw,x)[[1; p(yil fi)]] and is denoted by g3p; (joint expectation). For models where
p(fw) = T1, p(i ). this simplifies to L(w, §) = — >, By 108 By, .o [p(ui| )] and we
denote the algorithm by ¢jp; (independent expectation). Note that ¢}y, performs RCLM for the risk
given by i even if the factorization does not hold.

Finally, viewing approximate inference as performing RCLM, we observe a discrepancy between
our definition of risk in (2) and the loss function being optimized by existing algorithms, e.g.,
variational inference. This perspective suggests direct loss minimization described by the alternative
L(w, S) = = 10g Eqw) [Ep(f,|w,e.) [P(yil fi)]] in (1)) and which we denote ¢5p,. In this case, g3
is a “posterior” but one for which we do not have a Bayesian interpretation.

Given the discussion so far, we can hope to get some analysis for regularized loss minimization where
each of the algorithms implicitly optimizes a different definition of risk. Our goal is to identify good
algorithms for which we can bound the definition of risk we care about, gy, as defined in @)

3 RCLM

Regularized loss minimization has been analyzed for general hypothesis spaces and losses. For
hypothesis space H and hypothesis h € H we have loss function £(h, (x,y)), and associated risk
r(h) = E(zy)~p[l(h, (x,y))]. Now, given a regularizer R : H — 0 U R, a non-negative scalar 7,
and sample S, regularized cumulative loss minimization is defined as

1
RCLM(H, (, R,n, §) = argmin | ~R(h) + Y _£(h, (zi,3:)) | - )
heH n Z

Theorem 1 ([20)). Assume that the regularizer R(h) is o-strong-convex in h and the loss {(h, (z,y))
is p-Lipschitz and convex in h, and let h*(S) = RCLM(H,¢,R,n,S). Then, for all h € H,

Esepn [r(h*(S))] < r(h) + 35 R(h) + 222,

The theorem bounds the expectation of the risk. Using Markov’s inequality we can get a high

probability bound: with probability > 1 — 4, r(h*(5)) < r(h) + %(W%R(h) + @) Tighter
dependence on § can be achieved for bounded losses using standard techniques. To simplify the
presentation we keep the expectation version throughout the paper.

For this paper we specialize RCLM for Bayesian algorithms, that is, H corresponds to the parameter
space for a parameterized family of (possibly degenerate) distributions, denoted @), where ¢ € @) is a
distribution over a base parameter space w.

We have already noted above that ¢, (w), ¢p;(w) and ¢jp(w) are RCLM algorithms. We can
therefore get immediate corollaries for the corresponding risks (see supplementary material). Such
results are already useful, but the convexity and p-Lipschitz conditions are not always easy to analyze
or guarantee. We next show how to use recent ideas from PAC-Bayes analysis to derive a similar
result for Gibbs risk with less strong requirements. We first develop the result for the one-level model.
Toward this, define the loss and risk for individual base parameters as fy (w, (z,y)), and ry (w) =
Ep[lw (w, (z,y))], and the empirical estimate #y (w, S) = 2 3. fyw (w, (x4, ;)). Following [7], let

V(A n) =log Es~pn[Epuw) [eA(TW(w)f’gW(w’S))]] where A is an additional parameter. Combining
arguments from [20]] with the use of the compression lemma [2] as in [[7]] we can derive the following
bound (proof in supplementary material):

Theorem 2. Forall ¢ € Q, Es~pr[rain(a5(w))] < r6in(q)+ 55 KL (qllp) + 5 maxgeq KL (qllp) +
TU(A,n).
The theorem applies to the two-level model by writing p(y|w) = Ep(fw)[p(y|f)]. This yields

Corollary 3. For all ¢ € Q Eswprlrgn(@y(w)] < res(a) + 5 KL(alp) +
+maxqeq KL (qlp) + 3 ¥(A, n).

2 [20] analyzed regularized average loss but the same proof steps with minor modifications yield the statement
for cumulative loss given here.



A similar result has already been derived by [[1] without making the explicit connection to RCLM.
However, the implied algorithm uses a “regularization factor” A\ which may not coincide with n = 1,
whereas standard variational inference can be analyzed with Theorem 2] (or Corollary [3).

The work of [4} [7] showed how the ¥ term can be bounded. Briefly, if ¢y (w, (z,y)) is bounded

in [a,b], then T(A\,n) < W; if 4w (w, (x,y)) is not bounded, but the random variable
rw (w) — by (w, (z,y)) is sub-Gaussian or sub-gamma, then U (\, n) can be bounded with additional

assumptions on the underlying distribution D). More details are in the supplementary material.

4 Concrete Bounds on Excess Risk in LGM

The LGM family is a special case of the two-level model where the prior p(w) over the M -dimensional
parameter w is given by a Normal distribution. Following previous work we let ) to be a family
of Normal distributions. For the analysis we further restrict () by placing bounds on the mean and
covariance as follows: Q@ = {N(w|m, V) s.t. [[m|ly < B, Amin (V) > €, Amax (V) < By} for
some € > 0. The KL divergence from g(w) = N (w|m, V) to p(w) = N(w|u,X) is given by

KL (q]lp) = 3 (tr(E*V) + (1= m)TS (= m) + log I} — M)

4.1 General Bounds on Excess Risk in LGM Against Point Estimates

First, we note that KL (q|| p) is bounded under a lower bound on the minimum eigenvalue of V' (proof
in supplementary material follows from linear algebra identities):

2 2
Lemma 4. Let B, = 3 <W + Mlog (Amax (2)) — M) Forq € Q,

1

MBy +||pll; + B
KL (qu) < Br == < llll5

)\min (E)

5 + Mlog (M) —M> — By — %Mloge. 6)
€

The risk bounds of the previous section do not allow for point estimate competitors because the
KL portion is not bounded. We next generalize a technique from [[L1]] showing that adding a little
variance to a point estimate does not hurt too much. This allows us to derive the promised bounds. In
the following, ¢ > 0 is a constant whose value is determined in the proof. For any w, we consider the
e-inflated distribution g (w) = N (w|w, eI') and calculate the distribution’s Gibbs risk w.r.t. a generic
loss. Specifically, we consider the (1L or 2L) Gibbs risk r(q) = E(; )~ [Eq(uw)[¢ (w, (z,))]] with
C:RM x (X xY)—=R.

Lemma 5. If (i) {(w,(x,y)) is continuously differentiable in w up to order 2, and (ii)
Mmax (V20 (w, (z,y))) < B, then for w € RM and q(w) = N'(w|, eI)

rai (q(w)) = el L E (w, (z,9))]] < re (6 (w—1d)) + %eMBH. 7

Proof. By the multivariable Taylor’s theorem, for & € RM

T

U(w, (2,y)) = L, (z,9)) + | Vwl(w, (z,y)) (w — )

w=w

+ 5 (w—)" | Vil(w, (,9))

w=w

where V,,4(w, (z,y)) and V2, ¢(w, (x,y)) denote the gradient and Hessian, and v = (1 — a) w+aw
for some « € [0, 1] where « is a function of w. Taking the expectation results in

E)[é(wv(l",y))] = lw, (z,y)) + lg [(w — @) Vi l(w, (z,7))

q(w 2 q(w)

(w — ). (8)

w=w



If the maximum eigenvalue of V2 l(w (x y)) is bounded uniformly by some By < oo, then the
second term of (8) is bounded above by 1By E[(w — )T (w— )] = $eM By Taking expectation
w.r.t. D yields the statement of the lemma O

Since @ includes e-inflated distributions centered on w where |||, < B,,, we have the following.

Theorem 6 (Bound on Gibbs Risk Against Point Estimate Competitors). If (i)
—log Ep (1w [p(y|f]) is continuously differentiable in w up to order 2, and (ii)

Amar (v%v (— log Ep(f|w)[p(y|f]))> < By, then, for all i with |||, < Bu,
) 1
B [r26in(a2m: (w))] < r2gip (6 (w =) + A(B) + LU (A n),
1 /1 1\ [ 2 nA
AB) 2 -M(=+<)| =By +1+10g (B .
(Bu) 7 <n+)\) PRt +0g<H<n+)\>> )

Proof. Using the distribution ¢ = N (w|w, eI) in the RHS of Corollary [3] yields

* 1 1 1
s~E1))n [r26ib (@28i (w))] < 2cib(q) + TTnKL (qllp) + 5\ IL;IE?B(KL (qllp) + X‘I/()\»n)

< ragin (0 (w — W) + %eMBH - %AM loge + ABR + %q:(x, n)  (10)

where A = (i + %) and we have used Lemma [4{ and Lemma Eq is optimized when

nn

€= éiH. Re-substituting the optimal € in yields

SNED,,L [racin (g (w))] < ragiv (6 (w — W)
1 1 1 1 1 1 1
M —+< )| Br+1-1 —+< ~U(A\n). (11
(L) (Zms og(BH< +A)) +Lyoun. an
Setting = 1 yields the result. 0

The theorem calls for running the variational algorithm with constraints on eigenvalues of V. The
fixed-point characterization [21]] of the optimal solution in /inear LGM implies that such constraints
hold for the optimal solution. Therefore, they need not be enforced explicitly in these models.

For any distribution q(w) and function f(w) we have min,, [f(w)] < Eq(u)[f(w)]. Therefore, the
minimizer of the Gibbs risk is a point estimate, which with Theorem [6]implies:

Corollary 7. Under the conditions of Theorem@ for all g(w) = N(w|m, V) with||m|, < By,
Es~pn [r26i(@35(w))] < r26m (¢(w)) + A(Br) + V(A n).

More importantly, as another immediate corollary, we have a bound for the Bayes risk:

Corollary 8 (Bound on Bayes Risk Against Point Estimate Competitors). Under the conditions
of Theorem|f] for all @ with |||, < By,

Es~pn [128ay (@35:(w))] < 7284y (6 (w — ©)) + A(Bu) + ¥ (A, n).

Proof. Follows from (a) Vq,7may(q) < 72aib(g) (Jensen’s inequality), and (b) Vi €
RM, ragay (3(w — ) = 7agin(3(w — ). H

The extension for Bayes risk in step b of the proof is only possible thanks to the extension to
point estimates. As stated in the previous section, for bounded losses, ¥(\,n) is bounded as
A2 (b—a)?
2n
respectively, where the latter has a fixed non-decaying gap term (b — a)?/2. However, unlike [7],
in our proof both cases are achievable with 7 = 1, i.e., for the variational algorithm. For example,

logn
n

logn

. As in [7], we can choose A = /m or A = n to obtain decays rates Jn OF




using n = 1, A = /n, the prior with 4 = 0 and X = %(MBV + B2))I, and bounded loss,
A(Bi) + $¥(An) < 2L (1-+10g By +logn +log (By + ;B2) + “55- ).

The results above are developed for the log loss but we can apply them more generally. Toward
this we note that Corollary [3 holds for an arbitrary loss, and Lemma [5} and Theorem [6] hold for
a sufficiently smooth loss with bounded 2nd derivative w.r.t. w. The conversion to Bayes risk in
Corollary [8| holds for any loss convex in p. Therefore, the result of Corollary [§|holds more generally
for any sufficiently smooth loss that has bounded 2nd derivative in w and that is convex in p. We
provide an application of this more general result in the next section.

4.2 Applications in Concrete Models

This section develops bounds on ¥ and By for members of the 2L family.

CTM: For a document, the generative model for CTM first draws w ~ N (1, %), w € RE-1
where {1, X} are model parameters, and then maps this vector to the K -simplex with the logistic
transformation, & = h(w). For each position ¢ in the document, the latent topic variable, f;, is drawn
from Discrete(), and the word y; is drawn from a Discrete(5y, .) where 5 denotes the topics and is
treated as a parameter of the model. In this case p(f|w) can be integrated out analytically and the

loss is — log (Zszl ﬁhyhk(w)). We have (proof in supplementary material):

Corollary 9. For CTM models where the parameters By, , are uniformly bounded away from 0, i.e.,
Bry = > 0, for all w with |0, < B,

2
Es0n [728ay (@35:(0))] < 7284y (8 (w — @) + A(Bpr) + 2081 yinh By =5.

The following lemma is expressed in terms of log loss but also holds for smoothed log loss (proof in
supplementary material):

Lemma 10. When f is a deterministic function of w, if (i) —logp (y\f(w, :c)) is continuously
differentiable in f up to order 2, and f(w,z) is continuously differentiable in w up to order

o s oir) o[ o)

2, (i) ——p— < e (iii) < o, () |V f(w,a)|l; < ¢, and (v)

O max (V?Df(m x)) < cg (T max 1S the max singular value), then By = 020{ +c1 cg.

GLM: The bound of [11]] for GLM was developed for exact Bayesian inference. The following
corollary extends this to approximate inference through RCLM. In GLM, f = w”'z, ||V, ||*> = |z||%
and V2 = 0 and a bound on By is immediate from Lemma In addition the smoothed loss is

bounded 0 < / < —log «. This implies

Corollary 11. For GLM, if (i) {(w, (z,y)) = —log((1 — a)p (ylf(w,x)) + ) is continuously

differentiable in f up to order 2, and (ii) g—;é < ¢ then, for all W with ||0||y, < By,
: o 2 .

Espn [F28ay (@35:(0))] < Tagay (8 (w — @) + A(Bpr) + 20890 with By = emax,e x|z,

We develop the bound c for the logistic and Normal likelihoods (see supplementary material). Let
o/ = 32, For the logistic likelihood o(yf), we have ¢ = 15 iyz + ¥3 1 For the Gaussian

Seali 1 1 (=) _ 1 1 11
likelihood —7—— exp(—§?), we have ¢ = smale(@)? + e

The work of [[7] has claime(ﬂ a bound on the Gibbs risk for linear regression which should be
compared to our result for the Gaussian likelihood. Their result is developed under the assumption that
the Bayesian model specification is correct and in addition that z is generated from z ~ N (0, 021).
In contrast our result, using the smoothed loss, holds for arbitrary distributions D without the
assumption of correct model specification.

? Denoting Ar;(w) = rw(w) — fw (w, (zi,¥:)) and fi(w,n,A) = Ep(ar,; (w)) [exp (%An(w))], the

proof of Corollary 5 in [[7]] erroneously replaces Ep ) [[]; fi(w,n, A)] with [T, Epw)[fi(w, n, A)]. We are not
aware of a correction of this proof which yields a correct bound for ¥ without using a smoothed loss. Any such
bound would, of course, be applicable with our Corollary[?}



Sparse GP: In the sparse GP model, the conditional is p (f|w,z) = N(fl|a(z)Tw + b(x), 02 (z))
where a(z)? = K K5, b(x) = pe — K& K pur and 0% () = Kup — K Kol Kue with
denoting the mean function and Ky, Ky denoting the kernel matrix evaluated at inputs (U, )
and (U, U) respectively. In the conjugate case, the likelihood is given by p (y| f ) = N(y|f,o%) and
integrating f out yields ' (y|a(z)Tw + b(x),0%(z) + 0% ). Using the smoothed loss, we obtain:

Corollary 12. For conjugate sparse GP, for all W with ||0|, < By,

- ~ - N 2, 2
Es~pn [T28ay(@p:(w))] < T2pay (5 (w— w)) + A(Bg) + W with By = cmaxgex ||a(x) o
where ¢ = 27{‘;;1,6 (041’)2 + 27103 %
Y

Proof. The Hessian is given by V2 /(w, (z,y)) = (Nfa,)ZVwJ\/(VwN)T — w27 Va N where
N denotes N (y|f(w),o%(z) + o), with f(w) = a(z)Tw + b(z). The gradient V, N equals
(%) a(z) and the Hessian V2N equals (%) a(z)a(z)T . Therefore, V2{ =

92 7log((1fo¢)./\/+a)
{ COIE ]a(:r)a(x)T . The

1 ON 1 °N T
V+a7)? (3(f(w))) - Vi 6(f(w))2) a(z)a(z)
result of Corollary [TT] for Gaussian likelihood can be used to bound the 2nd derivative of the

9 [~ log((1-a)N +a)] 1 1 1 1 11
smoothed loss: B ()2 = 2n(oZ(@) T2 )% (@)2 + \/%(02@)-&-0%/)% o = 2mole ()2 +
271“7% L = ¢ . Finally, the eigenvalue of the rank-1 matrix ca(z)a(z)” is bounded by
2
cmaxggeXHa(x)HQ. O

Remark 1. We noted above that, for sGP, g35; does not correspond to a variational algorithm. The
standard variational approach uses g3, and the collapsed bound uses ¢3p; (but requires cubic time).
It can be shown that gjp; corresponds exactly to the fully independent training conditional (FITC)
approximation for sGP [24] [16]] in that their optimal solutions are identical. Our result can be seen to
justify the use of this algorithm which is known to perform well empirically.

Finally, we consider binary classification in GLM with the convex loss function ¢ (w, (x,y)) =

+(y — (2p(y|lw, z) — 1))%. The proof of the following corollary is in the supplementary material:

Corollary 13. For GLM with p(ylw,z) = o(ywTz), for all w with @], < Bp,
B [y (65, (0))] < Ty (8 (w0 — 0)) + A(Br) + 2 with By = % maxyex o]

4.3 Direct Application of RCLM to Conjugate Linear LGM

In this section we derive a bound for an algorithm that optimizes a surrogate of the loss directly. In
particular, we consider the Bayes loss for linear LGM with conjugate likelihood p(y|f) = N (y|f, 0%)
where —10g Eq () [Ep(f1u) [P(W]f)]] = —log N (y|a®'m + b, 02 + 0} + a”'Va) and where a, b, and

o2 are functions of . This includes, for example, linear regression and conjugate sGP.

The proposed algorithm ¢}y, performs RCLM with competitor set © = {(m, V) :[jm||, < B,,,V €

S+, IVl < Bv}, regularizer R(m,V) = [m|3 + 3|V|5 0 = % and the surrogate loss

v (m, V) = Llog (2m) + 3 (02 + 0% +a’Va) + %%.Wﬂh these definitions we can
Y

apply Theorem |I]to get (proof in supplementary material):

Theorem 14. With probability at least 1 — 6, 7Tapay(Gp,) < mingeq rig,,(¢(w)) +

s (B2 BY 4 8(0%, + p)) where py = 2 iy [lally masoe x yeym |y —a”

(y—aTm—b)? )

m — bl and

2

2
pv = ﬁ maxgex,yey,mllal (1 + oy

5 Direct Loss Minimization

The results in this paper expose the fact that different algorithms are apparently implicitly optimizing
criteria for different loss functions. In particular, ¢}, optimizes for rya, ¢3g; optimizes for rygip
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Figure 1: Artificial data. Cumulative test set losses of different variational algorithms. x-axis is
iteration. Mean =+ 1o of 30 trials are shown per objective. g3, in blue. g3p; in green. ¢}y, in red.

and g3, optimizes for rp,y. Even though we were able to bound r;p,, of the gjy; algorithm, it is
interesting to check the performance of these algorithms in practice.

We present an experimental study comparing these algorithms on the correlated topic model (CTM)
that was described in the previous section. To explore the relation between the algorithms and their
performance we run the three algorithms and report their empirical risk on a test set, where the risk
is also measured in three different ways. Figure[l|shows the corresponding learning curves on an
artificial document generated from the model. Full experimental details and additional results on a
real dataset are given in the supplementary material.

We observe that at convergence each algorithm is best at optimizing its own implicit criterion.
However, considering rag,y, the differences between the outputs of the variational algorithm g3g; and
direct loss minimization gj, are relatively small. We also see that at least in this case ¢}p; takes longer
to reach the optimal point for ryp,y. Clearly, except for its own implicit criterion, g5, should not be
used. This agrees with prior empirical work on g3, and ¢jp; [22]. The current experiment shows the
potential of direct loss optimization for improved performance but justifies the use of g3g; both under
correct model specification (artificial data) and when the model is incorrect (real data in supplement).

Preliminary experiments in sparse GP show similar trends. The comparison in that case is more
complex because g3p; is not the same as the collapsed variational approximation, which in turn
requires cubic time to compute, and we additionally have the surrogate optimizer g5p,,. We defer a
full empirical exploration in sparse GP to future work.

6 Discussion

The paper provides agnostic learning bounds for the risk of the Bayesian predictor, which uses the
posterior calculated by RCLM, against the best single predictor. The bounds apply for a wide class
of Bayesian models, including GLM, sGP and CTM. For CTM our bound applies precisely to the
variational algorithm with the collapsed variational bound. For sGP and GLM the bounds apply
to bounded variants of the log loss. The results add theoretical understanding of why approximate
inference algorithms are successful, even though they optimize the wrong objective, and therefore
justify the use of such algorithms. In addition, we expose a discrepancy between the loss used
in optimization and the loss typically used in evaluation and propose alternative algorithms using
regularized loss minimization. A preliminary empirical evaluation in CTM shows the potential of
direct loss minimization but that the collapsed variational approximation ¢3g; has the advantage of
strong theoretical guarantees and excellent empirical performance, both when the Bayesian model is
correct and under model misspecification.

Our results can be seen as a first step toward full analysis of approximate Bayesian inference methods.
One limitation is that the competitor class in our results is restricted to point estimates. While point
estimate predictors are optimal for the Gibbs risk, they are not optimal for Bayes predictors. In
addition, the bounds show that the Bayesian procedures will do almost as well as the best point
estimator. However, they do not show an advantage over such estimators, whereas one would expect
such an advantage. It would also be interesting to incorporate direct loss minimization within the
Bayesian framework. These issues remain an important challenge for future work.
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