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Abstract

We study reinforcement learning under model misspecification, where we do not
have access to the true environment but only to a reasonably close approximation
to it. We address this problem by extending the framework of robust MDPs of
[1, 15, 11] to the model-free Reinforcement Learning setting, where we do not have
access to the model parameters, but can only sample states from it. We define robust
versions of Q-learning, SARSA, and TD-learning and prove convergence to an
approximately optimal robust policy and approximate value function respectively.
We scale up the robust algorithms to large MDPs via function approximation
and prove convergence under two different settings. We prove convergence of
robust approximate policy iteration and robust approximate value iteration for linear
architectures (under mild assumptions). We also define a robust loss function, the
mean squared robust projected Bellman error and give stochastic gradient descent
algorithms that are guaranteed to converge to a local minimum.

1 Introduction

Reinforcement learning is concerned with learning a good policy for sequential decision making
problems modeled as aMarkov Decision Process (MDP), via interacting with the environment [20, 18].
In this work we address the problem of reinforcement learning from a misspecified model. As a
motivating example, consider the scenario where the problem of interest is not directly accessible,
but instead the agent can interact with a simulator whose dynamics is reasonably close to the true
problem. Another plausible application is when the parameters of the model may evolve over time
but can still be reasonably approximated by an MDP.

To address this problem we use the framework of robust MDPs which was proposed by [1, 15, 11]
to solve the planning problem under model misspecification. The robust MDP framework considers a
class of models and finds the robust optimal policy which is a policy that performs best under the
worst model. It was shown by [1, 15, 11] that the robust optimal policy satisfies the robust Bellman
equation which naturally leads to exact dynamic programming algorithms to find an optimal policy.
However, this approach is model dependent and does not immediately generalize to the model-free
case where the parameters of the model are unknown.

Essentially, reinforcement learning is a model-free framework to solve the Bellman equation using
samples. Therefore, to learn policies from misspecified models, we develop sample based methods to
solve the robust Bellman equation. In particular, we develop robust versions of classical reinforcement
learning algorithms such as Q-learning, SARSA, and TD-learning and prove convergence to an
approximately optimal policy under mild assumptions on the discount factor. We also show that
∗Work done while at Georgia Tech

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



the nominal versions of these iterative algorithms converge to policies that may be arbitrarily worse
compared to the optimal policy.
We also scale up these robust algorithms to large scale MDPs via function approximation, where

we prove convergence under two different settings. Under a technical assumption similar to [5, 24]
we show convergence of robust approximate policy iteration and value iteration algorithms for linear
architectures. We also study function approximation with nonlinear architectures, by defining an
appropriate mean squared robust projected Bellman error (MSRPBE) loss function, which is a
generalization of the mean squared projected Bellman error (MSPBE) loss function of [22, 21, 6].
We propose robust versions of stochastic gradient descent algorithms as in [22, 21, 6] and prove
convergence to a local minimum under some assumptions for function approximation with arbitrary
smooth functions.

Contribution. In summary we have the following contributions:

1. We extend the robust MDP framework of [1, 15, 11] to themodel-free reinforcement learning
setting. We then define robust versions of Q-learning, SARSA, and TD-learning and prove
convergence to an approximately optimal robust policy.

2. We also provide robust reinforcement learning algorithms for the function approximation case
and prove convergence of robust approximate policy iteration and value iteration algorithms
for linear architectures. We also define the MSRPBE loss function which contains the robust
optimal policy as a local minimum and we derive stochastic gradient descent algorithms to
minimize this loss function as well as establish convergence to a local minimum in the case
of function approximation by arbitrary smooth functions.

3. Finally, we demonstrate empirically the improvement in performance for the robust algorithms
compared to their nominal counterparts. For this we used various Reinforcement Learning
test environments from OpenAI [9] as benchmark to assess the improvement in performance
as well as to ensure reproducibility and consistency of our results.

RelatedWork. Recently, several approaches have been proposed to address model performance due
to parameter uncertainty for Markov Decision Processes (MDPs). A Bayesian approach was proposed
by [19] which requires perfect knowledge of the prior distribution on transition matrices. Other
probabilistic and risk based settings were studied by [10, 25, 23] which propose various mechanisms
to incorporate percentile risk into the model. A framework for robust MDPs was first proposed by
[1, 15, 11] who consider the transition matrices to lie in some uncertainty set and proposed a dynamic
programming algorithm to solve the robust MDP. Recent work by [24] extended the robust MDP
framework to the function approximation setting where under a technical assumption the authors
prove convergence to an optimal policy for linear architectures. Note that these algorithms for robust
MDPs do not readily generalize to the model-free reinforcement learning setting where the parameters
of the environment are not explicitly known.
For reinforcement learning in the non-robust model-free setting, several iterative algorithms such

as Q-learning, TD-learning, and SARSA are known to converge to an optimal policy under mild
assumptions, see [4] for a survey. Robustness in reinforcement learning for MDPs was studied by
[13] who introduced a robust learning framework for learning with disturbances. Similarly, [16] also
studied learning in the presence of an adversary who might apply disturbances to the system. However,
for the algorithms proposed in [13, 16] no theoretical guarantees are known and there is only limited
empirical evidence. Another recent work on robust reinforcement learning is [12], where the authors
propose an online algorithm with certain transitions being stochastic and the others being adversarial
and the devised algorithm ensures low regret.

For the case of reinforcement learning with large MDPs using function approximations, theoretical
guarantees for most TD-learning based algorithms are only known for linear architectures [2]. Recent
work by [6] extended the results of [22, 21] and proved that a stochastic gradient descent algorithm
minimizing the mean squared projected Bellman equation (MSPBE) loss function converges to a
local minimum, even for nonlinear architectures. However, these algorithms do not apply to robust
MDPs; in this work we extend these algorithms to the robust setting.
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2 Preliminaries

We consider an infinite horizon Markov Decision Process (MDP) [18] with finite state space X of
size n and finite action space A of size m. At every time step t the agent is in a state i ∈ X and
can choose an action a ∈ A incurring a cost ct(i, a). We will make the standard assumption that
future cost is discounted, see e.g., [20], with a discount factor ϑ < 1 applied to future costs, i.e.,
ct(i, a) := ϑtc(i, a), where c(i, a) is a fixed constant independent of the time step t for i ∈ X and
a ∈ A. The states transition according to probability transition matrices τ := {Pa}a∈A which
depends only on their last taken action a. A policy of the agent is a sequence π = (a0, a1, . . . ), where
every at(i) corresponds to an action in A if the system is in state i at time t. For every policy π, we
have a corresponding value function vπ ∈ Rn, where vπ(i) for a state i ∈ X measures the expected
cost of that state if the agent were to follow policy π. This can be expressed by the recurrence relation

vπ(i) := c(i, a0(i)) + ϑEj∼X [vπ(j)] . (1)

The goal is to devise algorithms to learn an optimal policy π∗ that minimizes the expected total cost:
Definition 2.1 (Optimal policy). Given an MDP with state space X , action space A and transition
matrices Pa, let Π be the strategy space of all possibile policies. Then an optimal policy π∗ is one
that minimizes the expected total cost, i.e.,

π∗ := arg min
π∈Π

E

[
∞

∑
t=0

ϑtc(it, at(it))

]
. (2)

In the robust case we will assume as in [15, 11] that the transition matrices Pa are not fixed and may
come from some uncertainty region P a and may be chosen adversarially by nature in future runs of
the model. In this setting, [15, 11] prove the following robust analogue of the Bellman recursion. A
policy of nature is a sequence τ := (P0, P1, . . . ) where every Pt(a) ∈ P a corresponds to a transition
probability matrix chosen from P a. Let T denote the set of all such policies of nature. In other words,
a policy τ ∈ T of nature is a sequence of transition matrices that may be played by it in response to
the actions of the agent. For any set P ⊆ Rn and vector v ∈ Rn, let σP(v) := sup

{
p>v | p ∈ P

}
be the support function of the set P. For a state i ∈ X , let P a

i be the projection onto the ith row of P a.
Theorem 2.2. [15] We have the following perfect duality relation

min
π∈Π

max
τ∈T

Eτ

[
∞

∑
t=0

ϑtc (it, at(it))

]
= max

τ∈T
min
π∈Π

Eτ

[
∞

∑
t=0

ϑtc (it, at(it))

]
. (3)

The optimal value function vπ∗ corresponding to the optimal policy π∗ satisfies

vπ∗(i) = min
a∈A

(
c(i, a) + ϑσP a

i
(vπ∗)

)
, (4)

and π∗ can then be obtained in a greedy fashion, i.e.,

a∗(i) ∈ arg min
a∈A

{
c(i, a) + ϑσP a

i
(v)
}

. (5)

The main shortcoming of this approach is that it does not generalize to themodel free case where the
transition probabilities are not explicitly known but rather the agent can only sample states according
to these probabilities. In the absence of this knowledge, we cannot compute the support functions of
the uncertainty sets P a

i . On the other hand it is often easy to have a confidence region Ua
i , e.g., a ball

or an ellipsoid, corresponding to every state-action pair i ∈ X , a ∈ A that quantifies our uncertainty
in the simulation, with the uncertainty set P a

i being the confidence region Ua
i centered around the

unknown simulator probabilities. Formally, we define the uncertainty sets corresponding to every
state action pair in the following fashion.
Definition 2.3 (Uncertainty sets). Corresponding to every state-action pair (i, a)we have a confidence
region Ua

i so that the uncertainty region P a
i of the probability transition matrix corresponding to

(i, a) is defined as
P a

i := {x + pa
i | x ∈ Ua

i } , (6)
where pa

i is the unknown state transition probability vector from the state i ∈ X to every other state
in X given action a during the simulation.
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As a simple example, we have the ellipsoid Ua
i :=

{
x | x>Aa

i x ≤ 1, ∑i∈X xi = 0
}
for some

n× n psd matrix Aa
i with the uncertainty set P a

i being P a
i :=

{
x + pa

i | x ∈ Ua
i
}

, where pa
i is the

unknown simulator state transition probability vector with which the agent transitioned to a new state
during training. Note that while it may easy to come up with good descriptions of the confidence
region Ua

i , the approach of [15, 11] breaks down since we have no knowledge of pa
i and merely

observe the new state j sampled from this distribution.
In the following sections we develop robust versions of Q-learning, SARSA, and TD-learning

which are guaranteed to converge to an approximately optimal policy that is robust with respect to
this confidence region. The robust versions of these iterative algorithms involve an additional linear
optimization step over the set Ua

i , which in the case of Ua
i = {‖x‖2 ≤ r} simply corresponds to

adding fixed noise during every update. In later sections we will extend it to the function approximation
case where we study linear architectures as well as nonlinear architectures; in the latter case we derive
new stochastic gradient descent algorithms for computing approximately robust policies.

3 Robust exact dynamic programming algorithms

In this section we develop robust versions of exact dynamic programming algorithms such as Q-
learning, SARSA, and TD-learning. These methods are suitable for small MDPs where the size n of
the state space is not too large. Note that confidence region Ua

i must also be constrained to lie within
the probability simplex ∆n. However since we do not have knowledge of the simulator probabilities
pa

i , we do not know how far away pa
i is from the boundary of ∆n and so the algorithms will make

use of a proxy confidence region Ûa
i where we drop the requirement of Ûa

i ⊆ ∆n, to compute the
robust optimal policies. With a suitable choice of step lengths and discount factors we can prove
convergence to an approximately optimal Ua

i -robust policy where the approximation depends on the
difference between the unconstrained proxy region Ûa

i and the true confidence region Ua
i . Below we

give specific examples of possible choices for simple confidence regions.

Ellipsoid: Let {Aa
i }i,a be a sequence of n× n psd matrices. Then we can define the confidence

region as

Ua
i :=

{
x

∣∣∣∣∣x>Aa
i x ≤ 1, ∑

i∈X
xi = 0,−pa

ij ≤ xj ≤ 1− pa
ij, ∀j ∈ X

}
. (7)

Note that Ua
i has some additional linear constraints so that the uncertainty set P a

i :={
pa

i + x | x ∈ Ua
i
}
lies inside ∆n. Since we do not know pa

i , we will make use of the proxy con-
fidence region Ûa

i := {x | x>Aa
i x ≤ 1, ∑i∈X xi = 0}. In particular when Aa

i = r−1 In for every
i ∈ X , a ∈ A then this corresponds to a spherical confidence interval of [−r, r] in every direction. In
other words, each uncertainty set P a

i is an `2 ball of radius r.

Parallelepiped: Let {Ba
i }i,a be a sequence of n× n invertible matrices. Then we can define the

confidence region as

Ua
i :=

{
x

∣∣∣∣∣‖Ba
i x‖1 ≤ 1, ∑

i∈X
xi = 0,−pa

ij ≤ xj ≤ 1− pa
ij, ∀j ∈ X

}
. (8)

As before, we will use the unconstrained parallelepiped Ûa
i without the −pa

ij ≤ xj ≤ 1 − pa
ij

constraints, as a proxy for Ua
i since we do not have knowledge pa

i . In particular if Ba
i = D for a

diagonal matrix D, then the proxy confidence region Ûa
i corresponds to a rectangle. In particular if

every diagonal entry is r, then every uncertainty set P a
i is an `1 ball of radius r.

3.1 Robust Q-learning

Let us recall the notion of a Q-factor of a state-action pair (i, a) and a policy π which in the non-robust
setting is defined as

Q(i, a) := c(i, a) + Ej∼X [v(j)] , (9)
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where v is the value function of the policy π. In other words, the Q-factor represents the expected cost
if we start at state i, use the action a and follow the policy π subsequently. One may similarly define
the robust Q-factors using a similar interpretation and the minimax characterization of Theorem 2.2.
Let Q∗ denote the Q-factors of the optimal robust policy and let v∗ ∈ Rn be its value function. Note
that we may write the value function in terms of the Q-factors as v∗ = mina∈AQ∗(i, a). From
Theorem 2.2 we have the following expression for Q∗:

Q∗(i, a) = c(i, a) + ϑσP a
i
(v∗) (10)

= c(i, a) + ϑσUa
i
(v∗) + ϑ ∑

j∈X
pa

ij min
a′∈A

Q∗(j, a′), (11)

where equation (11) follows from Definition 2.3. For an estimate Qt of Q∗, let vt ∈ Rn be its value
vector, i.e., vt(i) := mina∈AQt(i, a). The robust Q-iteration is defined as:

Qt(i, a) := (1− γt)Qt−1(i, a) + γt

(
c(i, a) + ϑσÛa

i
(vt−1) + ϑ min

a′∈A
Qt−1(j, a′)

)
, (12)

where a state j ∈ X is sampled with the unknown transition probability pa
ij using the simulator. Note

that the robust Q-iteration of equation (12) involves an additional linear optimization step to compute
the support function σÛa

i
(vt) of vt over the proxy confidence region Ûa

i . We will prove that iterating
equation (12) converges to an approximately optimal policy. The following definition introduces the
notion of an ε-optimal policy, see e.g., [4]. The error factor ε is also referred to as the amplification
factor. We will treat the Q-factors as a |X | × |A| matrix in the definition so that its `∞ norm is
defined as usual.
Definition 3.1 (ε-optimal policy). A policy π with Q-factors Q′ is ε-optimal with respect to the
optimal policy π∗ with corresponding Q-factors Q∗ if

∥∥Q′−Q∗
∥∥

∞ ≤ ε ‖Q∗‖∞ .

The following simple lemma allows us to decompose the optimization of a linear function over the
proxy uncertainty set P̂ a

i in terms of linear optimization over P a
i , Ua

i , and Ûa
i .

Lemma 3.2. Let v ∈ Rn be any vector and let βa
i := maxy∈Ûa

i
minx∈Ua

i
‖y− x‖1. Then we have

σP̂ a
i
(v) ≤ σP a

i
(v) + βa

i ‖v‖∞ .

The following theorem proves that under a suitable choice of step lengths γt and discount factor
ϑ, the iteration of equation (12) converges to an ε-approximately optimal policy with respect to the
confidence regions Ua

i .
Theorem 3.3. Let the step lengths γt of the Q-iteration algorithm be chosen such that ∑∞

t=0 γt = ∞
and ∑∞

t=0 γ2
t < ∞ and let the discount factor ϑ < 1. Let βa

i be as in Lemma 3.2 and let β :=
maxi∈X ,a∈A βa

i . If ϑ(1 + β) < 1 then with probability 1 the iteration of equation (12) converges to
an ε-optimal policy where ε := ϑβ

1−ϑ(1+β)
.

Remark 3.4. If β = 0 then note that by Theorem 3.3, the robust Q-iterations converge to the exact
optimal Q-factors since ε = 0. Since βa

i := maxy∈Ûa
i

minx∈Ua
i
‖y− x‖1, it follows that β = 0 iff

Ûa
i = Ua

i for every i ∈ X , a ∈ A. This happens when the confidence region is small enough so that
the simplex constraints −pa

ij ≤ xj ≤ 1− pa
ij∀j ∈ X in the description of P a

i become redundant for
every i ∈ X , a ∈ A. Equivalently every pa

i is “far” from the boundary of the simplex ∆n compared
to the size of the confidence region Ua

i .
Remark 3.5. Note that simply using the nominal Q-iteration without the σÛa

i
(v) term does not

guarantee convergence to Q∗. Indeed, the nominal Q-iterations converge to Q-factors Q′ where∥∥Q′−Q∗
∥∥

∞ may be arbitrary large. This follows easily from observing that

|Q′(i, a)−Q∗(i, a)| =
∣∣∣σÛa

i
(v∗)

∣∣∣ (13)

, where v∗ is the value function of Q∗ and so∥∥Q′−Q∗
∥∥

∞ = max
i∈X ,a∈A

∣∣∣σÛa
i
(v∗)

∣∣∣ (14)

which can be as high as ‖v∗‖∞ = ‖Q∗‖∞.
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3.2 Robust TD-Learning

Let (i0, i1, . . . ) be a trajectory of the agent, where im denotes the state of the agent at time step m.
The main idea behind the TD(λ)-learning method is to estimate the value function vπ of a policy π
using the temporal difference errors dm defined as

dm := c(im, π(im)) + νvt(im+1)− vt(im). (15)

For a parameter λ ∈ (0, 1), the TD-learning iteration is defined in terms of the temporal difference
errors as

vt+1(ik) := vt(ik) + γt

(
∞

∑
m=k

(ϑλ)m−k dm

)
. (16)

In the robust setting, we have a confidence region Ua
i with proxy Ûa

i for every temporal difference
error, which leads us to define the robust temporal difference errors as

d̃m := dm + ϑσ
Ûπ(im)

im

(vt), (17)

where dm is the non-robust temporal difference. The robust TD-update is the usual TD-update, with
the robust temporal difference errors d̃m replacing the usual temporal difference error dm. We define
an ε-suboptimal value function for a fixed policy π similar to Definition 3.1.
Definition 3.6 (ε-approximate value function). Given a policy π, we say that a vector v′ ∈ Rn is an
ε-approximation of vπ if ‖v′ − vπ‖∞ ≤ ε ‖vπ‖∞ .

The following theorem guarantees convergence of the robust TD-iteration to an approximate value
function for π. We refer the reader to the supplementary material for a proof.
Theorem 3.7. Let βa

i be as in Lemma 3.2 and let β := maxi∈X ,a∈A βa
i . Let ρ := ϑλ

1−ϑλ . If ϑ(1 +
ρβ) < 1 then the robust TD-iteration converges to an ε-approximate value function, where ε :=

ϑβ
1−ϑ(1+ρβ)

. In particular if βa
i = β = 0, i.e., the proxy confidence region Ûa

i is the same as the true
confidence region Ua

i , then the convergence is exact, i.e., ε = 0.

4 Robust Reinforcement Learning with function approximation

In Section 3 we derived robust versions of exact dynamic programming algorithms such as Q-learning,
SARSA and TD-learning respectively. If the state space X of the MDP is large then it is prohibitive
to maintain a lookup table entry for every state. A standard approach for large scale MDPs is to
use the approximate dynamic programming (ADP) framework [17]. In this setting, the problem is
parametrized by a smaller dimensional vector θ ∈ Rd where d� n = |X |.
The natural generalizations of Q-learning, SARSA, and TD-learning algorithms of Section 3 are

via the projected Bellman equation, where we project back to the space spanned by all the parameters
in θ ∈ Rd, since they are the value functions representable by the model. Convergence for these
algorithms even in the non-robust setting are known only for linear architectures, see e.g., [2]. Recent
work by [6] proposed stochastic gradient descent algorithms with convergence guarantees for smooth
nonlinear function architectures, where the problem is framed in terms of minimizing a loss function.
We give robust versions of both these approaches.

4.1 Robust approximations with linear architectures

In the approximate setting with linear architectures, we approximate the value function vπ of a policy
π by Φθ where θ ∈ Rd and Φ is a n × d feature matrix with rows φ(j) for every state j ∈ X
representing its feature vector. Let S be the span of the columns of Φ, i.e., S :=

{
Φθ | θ ∈ Rd

}
.

Define the operator Tπ : Rn → Rn as (Tπv)(i) := c(i, π(i)) + ϑ ∑j∈X pπ(i)
ij v(j), so that the

true value function vπ satisfies Tπvπ = vπ . A natural approach towards estimating vπ given a
current estimate Φθt is to compute Tπ (Φθt) and project it back to S to get the next parameter θt+1.
The motivation behind such an iteration is the fact that the true value function is a fixed point of
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this operation if it belonged to the subspace S. This gives rise to the projected Bellman equation
where the projection Π is typically taken with respect to a weighted Euclidean norm ‖·‖ξ , i.e.,
‖x‖ξ = ∑i∈X ξix2

i , where ξ is some probability distribution over the states X .

In the model free case, where we do not have explicit knowledge of the transition probabilities,
various methods like LSTD(λ), LSPE(λ), TD(λ) have been proposed [3, 8, 7, 14, 22, 21]. The key
idea behind proving convergence for these methods is to show that the mapping ΠTπ is a contraction
mapping with respect to the ‖·‖ξ for some distribution ξ over the states X . While the operator Tπ

in the non-robust case is linear and is a contraction in the `∞ norm as in Section 3, the projection
operator with respect to such norms is not guaranteed to be a contraction. However, it is known that if
ξ is the steady state distribution of the policy π under evaluation, then Π is non-expansive in ‖·‖ξ
[4, 2].

In the robust setting, we have the same methods but with the robust Bellman operators Tπ defined as
(Tπv)(i) := c(i, π(i)) + ϑσ

Pπ(i)
i

(v). Since we do not have access to the simulator probabilities pa
i ,

we will use a proxy set P̂ a
i as in Section 3, with the proxy operator denoted by T̂π . While the iterative

methods of the non-robust setting generalize via the robust operator Tπ and the robust projected
Bellman equation Φθ = ΠTπ(Φθ), it is however not clear how to choose the distribution ξ under
which the projected operator ΠTπ is a contraction in order to show convergence. Let ξ be the steady
state distribution of the exploration policy π̂ of the MDP with transition probability matrix Pπ̂ . We
make the following assumption on the discount factor ϑ as in [24].
Assumption 4.1. For every state i ∈ X and action a ∈ A, there exists a constant α ∈ (0, 1) such
that for any p ∈ P a

i we have ϑpj ≤ αPπ̂
ij for every j ∈ X .

Assumption 4.1 might appear artificially restrictive; however, it is necessary to prove that ΠTπ is a
contraction. While [24] require this assumption for proving convergence of robust MDPs, a similar
assumption is also required in proving convergence of off-policy Reinforcement Learning methods of
[5] where the states are sampled from an exploration policy π̂ which is not necessarily the same as
the policy π under evaluation. Note that in the robust setting, all methods are necessarily off-policy
since the transition matrices are not fixed for a given policy.
The following lemma is an ξ-weighted Euclidean norm version of Lemma 3.2.

Lemma 4.2. Let v ∈ Rn be any vector and let βa
i :=

max
y∈Ûa

i
minx∈Ua

i
‖y−x‖ξ

ξmin
. Then we have

σP̂ a
i
(v) ≤ σP a

i
(v) + βa

i ‖v‖ξ , where ξmin := mini∈X ξi.

The following theorem shows that the robust projected Bellman equation is a contraction under
some assumptions on the discount factor ϑ.

Theorem 4.3. Let βa
i be as in Lemma 4.2 and let β := maxi∈X β

π(i)
i . If the discount factor ϑ satisfies

Assumption 4.1 and α2 + ϑ2β2 < 1
2 , then the operator T̂π is a contraction with respect to ‖·‖ξ . In

other words for any two θ, θ′ ∈ Rd, we have∥∥∥T̂π(Φθ)− T̂π(Φθ′)
∥∥∥2

ξ
≤ 2

(
α2 + ϑ2β2

) ∥∥Φθ −Φθ′
∥∥2

ξ
<
∥∥Φθ −Φθ′

∥∥2
ξ

. (18)

If βi = β = 0 so that Ûπ(i)
i = Uπ(i)

i , then we have a simpler contraction under the assumption that
α < 1.

The following corollary shows that the solution to the proxy projected Bellman equation converges
to a solution that is not too far away from the true value function vπ .
Corollary 4.4. Let Assumption 4.1 hold and let β be as in Theorem 4.3. Let ṽπ be the fixed point of
the projected Bellman equation for the proxy operator T̂π , i.e., ΠT̂π ṽπ = ṽπ . Let v̂π be the fixed
point of the proxy operator T̂π , i.e., T̂π v̂π = v̂π . Let vπ be the true value function of the policy π,
i.e., Tπvπ = vπ . Then it follows that

‖ṽπ − vπ‖ξ ≤
ϑβ ‖vπ‖ξ + ‖Πvπ − vπ‖ξ

1−
√

2 (α2 + ϑ2β2)
. (19)
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In particular if βi = β = 0 i.e., the proxy confidence region is actually the true confidence region,
then the proxy projected Bellman equation has a solution satisfying ‖ṽπ − vπ‖ξ ≤

‖Πvπ−vπ‖ξ

1−α .

Theorem 4.3 guarantees that the robust projected Bellman iterations of LSTD(λ), LSPE(λ) and
TD(λ)-methods converge, while Corollary 4.4 guarantees that the solution it coverges to is not too
far away from the true value function vπ .

4.2 Robust approximations with nonlinear architectures

In this section we consider the situation where the function approximator vθ is a smooth but not
necessarily linear function of θ. This section generalizes the results of [6] to the robust setting with
confidence regions. We define robust analogues of the nonlinear GTD2 and nonlinear TDC algorithms
respectively.

LetM :=
{

vθ | θ ∈ Rd
}
be the manifold spanned by all possible value functions representable

by our model and let PMθ be the tangent plane ofM at θ. Let TMθ be the tangent space, i.e.,
the translation of PMθ to the origin. In other words, TMθ :=

{
Φθu | u ∈ Rd

}
, where Φθ is an

n× d matrix with entries Φθ(i, j) := ∂
∂θj

vθ(i). In the nonlinear case, we project on to the tangent
space TMθ , since projections on toM is computationally hard. We denote this projection by
Πθ and it is also with respect to a weighted Euclidean norm ‖·‖ξ . The mean squared projected
Bellman equation (MSPBE) loss function was proposed by [6] and is an extension of [22, 21],
MSPBE(θ) = ‖vθ −ΠθTπvθ‖2

ξ , where we now project to the the tangent space TMθ . Since the
number n of states is prohibitively large, we want stochastic gradient algorithms that run in time
polynomial in d. Therefore, we assume that the confidence region of every state action pair is the
same: Ua

i = U and Ûa
i = Ua

i . The robust version of the MSPBE loss function, the. mean squared
robust projected Bellman equation (MSRPBE) loss can then be defined in terms of the robust Bellman

operator with the proxy confidence region Û and proxy uncertainty set P̂π(i)
i as

MSRPBE(θ) =
∥∥∥vθ −Πθ T̂πvθ

∥∥∥2

ξ
. (20)

In order to derive stochastic gradient descent algorithms for minimizing the MSRPBE loss function,
we need to take the gradient of σP(vθ) for the a convex set P. The gradient µ of σ is given by

µP(θ) := ∇max
y∈P

y>vθ = Φ>θ arg max
y∈P

y>vθ , (21)

where Φθ(i) := ∇vθ(i). Let us denote Φθ(i) simply by φ and Φθ(i′) by φ′, where i′ is the next

sampled state. Let us denote by Û the proxy confidence region Ûπ(i)
i of state i and the policy π under

evaluation. Let

h(θ, u) := −E
[
(d̃− φ>u)∇2vθ(i)u

]
(22)

where d̃ is the robust temporal difference error. As in [6], we may express ∇MSRPBE(θ) in terms
of h(θ, w) where w = E

[
φφ>

]−1
E
[
d̃φ
]
. We refer the reader to the supplementary material for

the details. This leads us to the following robust analogues of nonlinear GTD and nonlinear TDC,
where we update the estimators wk of w as wk+1 := wk + βk

(
d̃k − φ>k wk

)
φk, with the parameters

θk being updated on a slower timescale as

θk+1 := Γ
(

θk + αk

{(
φk − ϑφ′k − ϑµÛ(θ)

)
(φ>k wk)− hk

})
robust-nonlinear-GTD2, (23)

θk+1 := Γ
(

θk + αk

{
d̃kφk − ϑφ′k − ϑµÛ(θ)(φ

>
k wk)− hk

})
robust-nonlinear-TDC, (24)

where hk :=
(

d̃k − φ>k wk

)
∇2vθk (ik)wk and Γ is a projection into an appropriately chosen compact

set C with a smooth boundary as in [6]. Under the assumption of Lipschitz continuous gradients
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and suitable assumptions on the step lengths αk and βk and the confidence region Û, the updates of
equations (23) converge with probability 1 to a local optima of MSRPBE(θ). See the supplementary
material for the exact statement and proof of convergence. Note that in general computing µÛ(θ)

would take time polynomial in n, but it can be done in O(d2) time using a rank-d approximation to Û.

5 Experiments

We implemented robust versions of Q-learning and SARSA as in Section 3 and evaluated its perfor-
mance against the nominal algorithms using the OpenAI gym framework [9]. To test the performance
of the robust algorithms, we perturb the models slightly by choosing with a small probability p a
random state after every action. The size of the confidence region Ua

i for the robust model is chosen
by a 10-fold cross validation via line search. After the value functions are learned for the robust
and the nominal algorithms, we evaluate its performance on the true environment. To compare the
true algorithms we compare both the cumulative reward as well as the tail distribution function
(complementary cumulative distribution function) as in [24] which for every a plots the probability
that the algorithm earned a reward of at least a.

Note that there is a tradeoff in the performance of the robust versus the nominal algorithms with the
value of p due to the presence of the β term in the convergence results. See Figure 1 for a comparison.
More figures and detailed results are included in the supplementary material.

Figure 1: Line search, tail distribution, and cumulative rewards during transient phase of robust vs
nominal Q-learning on FrozenLake-v0 with p = 0.01. Note the instability of reward as a function
of the size of the uncertainty set (left) is due to the small sample size used in line search.
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