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Abstract

We study minimax strategies for the online prediction problem with expert advice.
It has been conjectured that a simple adversary strategy, called COMB, is near
optimal in this game for any number of experts. Our results and new insights make
progress in this direction by showing that, up to a small additive term, COMB is
minimax optimal in the finite-time three expert problem. In addition, we provide
for this setting a new near minimax optimal COMB-based learner. Prior to this
work, in this problem, learners obtaining the optimal multiplicative constant in
their regret rate were known only when K = 2 or K → ∞. We characterize, when
K = 3, the regret of the game scaling as

�
8/(9π)T ± log(T )2 which gives for

the first time the optimal constant in the leading (
√
T ) term of the regret.

1 Introduction

This paper studies the online prediction problem with expert advice. This is a fundamental problem
of machine learning that has been studied for decades, going back at least to the work of Hannan [12]
(see [4] for a survey). As it studies prediction under adversarial data the designed algorithms are
known to be robust and are commonly used as building blocks of more complicated machine learning
algorithms with numerous applications. Thus, elucidating the yet unknown optimal strategies has the
potential to significantly improve the performance of these higher level algorithms, in addition to
providing insight into a classic prediction problem. The problem is a repeated two-player zero-sum
game between an adversary and a learner. At each of the T rounds, the adversary decides the
quality/gain of K experts’ advice, while simultaneously the learner decides to follow the advice of
one of the experts. The objective of the adversary is to maximize the regret of the learner, defined as
the difference between the total gain of the learner and the total gain of the best fixed expert.

Open Problems and our Main Results. Previously this game has been solved asymptotically as
both T and K tend to ∞: asymptotically the upper bound on the performance of the state-of-the-
art Multiplicative Weights Algorithm (MWA) for the learner matches the optimal multiplicative
constant of the asymptotic minimax optimal regret rate

�
(T/2) logK [3]. However, for finite K,

this asymptotic quantity actually overestimates the finite-time value of the game. Moreover, Gravin et
al. [10] proved a matching lower bound

�
(T/2) logK on the regret of the classic version of MWA,

additionally showing that the optimal learner does not belong an extended MWA family. Already,
Cover [5] proved that the value of the game is of order of

�
T/(2π) when K = 2, meaning that the

regret of a MWA learner is 47% larger that the optimal learner in this case. Therefore the question of
optimality remains open for non-asymptotic K which are the typical cases in applications.

In studying a related setting with K = 3, where T is sampled from a geometric distribution with
parameter δ, Gravin et al. [9] conjectured that, for any K, a simple adversary strategy, called
the COMB adversary, is asymptotically optimal (T → ∞, or when δ → 0), and also excessively
competitive for finite-time fixed T . The COMB strategy sorts the experts based on their cumulative
gains and, with probability one half, assigns gain one to each expert in an odd position and gain zero
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to each expert in an even position. With probability one half, the zeros and ones are swapped. The
simplicity and elegance of this strategy, combined with its almost optimal performance makes it very
appealing and calls for a more extensive study of its properties.

Our results and new insights make progress in this direction by showing that, for any fixed T and up to
small additive terms, COMB is minimax optimal in the finite-time three expert problem. Additionally
and with similar guarantees, we provide for this setting a new near minimax optimal COMB-based
learner. For K = 3, the regret of a MWA learner is 39% larger than our new optimal learner1. In
this paper we also characterize, when K = 3, the regret of the game as

�
8/(9π)T ± log(T )2 which

gives for the first time the optimal constant in the leading (
√
T ) term of the regret. Note that the

state-of-the-art non-asymptotic lower bound in [15] on the value of this problem is non informative
as the lower bound for the case of K = 3 is a negative quantity.

Related Works and Challenges. For the case of K = 3, Gravin et al. [9] proved the exact minimax
optimality of a COMB-related adversary in the geometrical setting, i.e. where T is not fixed in advance
but rather sampled from a geometric distribution with parameter δ. However the connection between
the geometrical setting and the original finite-time setting is not well understood, even asymptotically
(possibly due to the large variance of geometric distributions with small δ). Addressing this issue, in
Section 7 of [8], Gravin et al. formulate the “Finite vs Geometric Regret” conjecture which states
that the value of the game in the geometrical setting, Vα, and the value of the game in the finite-time
setting, VT , verify VT = 2√

π
Vα=1/T . We resolve here the conjecture for K = 3.

Analyzing the finite-time expert problem raises new challenges compared to the geometric setting. In
the geometric setting, at any time (round) t of the game, the expected number of remaining rounds
before the end of the game is constant (does not depend on the current time t). This simplifies the
problem to the point that, when K = 3, there exists an exactly minimax optimal adversary that
ignores the time t and the parameter δ. As noted in [9], and noticeable from solving exactly small
instances of the game with a computer, in the finite-time case, the exact optimal adversary seems to
depend in a complex manner on time and state. It is therefore natural to compromise for a simpler
adversary that is optimal up to a small additive error term. Actually, based on the observation of the
restricted computer-based solutions, the additive error term of COMB seems to vanish with larger T .

Tightly controlling the errors made by COMB is a new challenge with respect to [9], where the
solution to the optimality equations led directly to the exact optimal adversary. The existence of such
equations in the geometric setting crucially relies on the fact that the value-to-go of a given policy in
a given state does not depend on the current time t (because geometric distributions are memoryless).
To control the errors in the finite-time setting, our new approach solves the game by backward
induction showing the approximate greediness of COMB with respect to itself (read Section 2.1 for
an overview of our new proof techniques and their organization). We use a novel exchangeability
property, new connections to random walks and a close relation that we develop between COMB and
a TWIN-COMB strategy. Additional connections with new related optimal strategies and random
walks are used to compute the value of the game (Theorem 2). We discuss in Section 6 how our new
techniques have more potential to extend to an arbitrary number of arms, than those of [9].

Additionally, we show how the approximate greediness of COMB with respect to itself is key to
proving that a learner based directly on the COMB adversary is itself quasi-minimax-optimal. This is
the first work to extend to the approximate case, approaches used to designed exactly optimal players
in related works. In [2] a probability matching learner is proven optimal under the assumption that the
adversary is limited to a fixed cumulative loss for the best expert. In [14] and [1], the optimal learner
relies on estimating the value-to-go of the game through rollouts of the optimal adversary’s plays.
The results in these papers were limited to games where the optimal adversary was only playing
canonical unit vector while our result holds for general gain vectors. Note also that a probability
matching learner is optimal in [9].

Notation: Let [a : b] = {a, a + 1, . . . , b} with a, b ∈ N, a ≤ b, and [a] = [1 : a]. For a vector
w ∈ Rn, n ∈ N, �w�∞ = maxk∈[n]|wk|. A vector indexed by both a time t and a specific
element index k is wt,k. An undiscounted Markov Decision Process (MDP) [13, 16] M is a 4-tuple
�S,A, r, p�. S is the state space, A is the set of actions, r : S ×A → R is the reward function, and
the transition model p(·|s, a) gives the probability distribution over the next state when action a is
taken in state s. A state is denoted by s or st if it is taken at time t. An action is denoted by a or at.

1[19] also provides an upper-bound that is suboptimal when K = 3 even after optimization of its parameters.
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2 The Game

We consider a game, composed of T rounds, between two players, called a learner and an adversary.
At each time/round t the learner chooses an index It ∈ [K] from a distribution pt on the K arms.
Simultaneously, the adversary assigns a binary gain to each of the arms/experts, possibly at random
from a distribution Ȧt, and we denote the vector of these gains by gt ∈ {0, 1}K . The adversary and
the learner then observe It and gt. For simplicity we use the notation g[t] = (gs)s=1,...,t. The value
of one realization of such a game is the cumulative regret defined as

RT =

�����
T�

t=1

gt

�����
∞

−
T�

t=1

gt,It .

A state s ∈ S = (N ∪ {0})K is a K-dimensional vector such that the k-th element is the cumulative
sum of gains dealt by the adversary on arm k before the current time t. Here the state does not include
t but is typically denoted for a specific time t as st and computed as st =

�t−1
t�=1 gt� . This definition

is motivated by the fact that there exist minimax strategies for both players that rely solely on the
state and time information as opposed to the complete history of plays, g[t] ∪ I[t]. In state s, the set
of leading experts, i.e., those with maximum cumulative gain, is X(s) = {k ∈ [K] : sk = �s�∞}.

We use π to denote the (possibly non-stationary) strategy/policy used by the adversary, i.e., for any
input state s and time t it outputs the gain distribution π(s, t) played by the adversary at time t in
state s. Similarly we use p̄ to denote the strategy of the learner. As the state depends only on the
adversary plays, we can sample a state s at time t from π.

Given an adversary π and a learner p̄, the expected regret of the game, V T
p̄,π, is

V T
p̄,π = Eg[T ]∼π,I[T ]∼p̄ [RT ] . The learner tries to minimize the expected regret while the adversary

tries to maximize it. The value of the game is the minimax value VT defined by

VT = min
p̄

max
π

V T
p̄,π = max

π
min
p̄

V T
p̄,π.

In this work, we are interested in the search for optimal minimax strategies, which are adversary
strategies π∗ such that VT = minp̄ V

T
p̄,π∗ and learner strategies p̄∗, such that VT = maxπ V

T
p̄∗,π .

2.1 Summary of our Approach to Obtain the Near Greediness of COMB

Most of our material is new. First, Section 3 recalls that Gravin et al. [9] have shown that the search
for the optimal adversary π∗ can be restricted to the finite family of balanced strategies (defined in
the next section). When K = 3, the action space of a balanced adversary is limited to seven stochastic
actions (gain distributions), denoted by Ḃ3 = {Ẇ, Ċ, V̇, 1̇, 2̇, {}, {123}} (see Section 5.1 for their
description). The COMB adversary repeats the gain distribution Ċ at each time and in any state.

In Section 4 we provide an explicit formulation of the problem as finding π∗ inside an MDP with
a specific reward function. Interestingly, we observe that another adversary, which we call TWIN-
COMB and denote by πW, which repeats the distribution Ẇ, has the same value as πC (Section 5.1).
To control the errors made by COMB, the proof uses a novel and intriguing exchangeability property
(Section 5.2). This exchangeability property holds thanks to the surprising role played by the TWIN-
COMB strategy. For any distributions Ȧ ∈ Ḃ3 there exists a distribution Ḋ, mixture of Ċ and Ẇ,
such that for almost all states, playing Ȧ and then Ḋ is the same as playing Ẇ and then Ȧ in terms of
the expected reward and the probabilities over the next states after these two steps. Using Bellman
operators, this can be concisely written as: for any (value) function f : S −→ R, in (almost) any
state s, we have that [TȦ[TḊf ]](s) = [TẆ[TȦf ]](s). We solve the MDP with a backward induction
in time from t = T . We show that playing Ċ at time t is almost greedy with respect to playing πC in
later rounds t� > t. The greedy error is defined as the difference of expected reward between always
playing πC and playing the best (greedy) first action before playing COMB. Bounding how these
errors accumulate through the rounds relates the value of COMB to the value of π∗ (Lemma 16).

To illustrate the main ideas, let us first make two simplifying (but unrealistic) assumptions at time t:
COMB has been proven greedy w.r.t. itself in rounds t� > t and the exchangeability holds in all states.
Then we would argue at time t that by the exchangeability property, instead of optimizing the greedy
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action w.r.t. COMB as maxȦ∈Ḃ3
ȦĊ . . . Ċ, we can study the optimizer of maxȦ∈Ḃ3

ẆȦĊ . . . Ċ. Then
we use the induction property to conclude that Ċ is the solution of the previous optimization problem.

Unfortunately, the exchangeability property does not hold in one specific state denoted by sα. What
saves us though is that we can directly compute the error of greedification of any gain distribution
with respect to COMB in sα and show that it diminishes exponentially fast as T − t, the number of
rounds remaining, increases (Lemma 7). This helps us to control how the errors accumulate during
the induction. From one given state st �= sα at time t, first, we use the exchangeability property once
when trying to assess the ‘quality’ of an action Ȧ as a greedy action w.r.t. COMB. This leads us to
consider the quality of playing Ȧ in possibly several new states {st+1} at time t+1 reached following
TWIN-COMB in s. We use our exchangeability property repeatedly, starting from the state st until a
subsequent state reaches sα, say at time tα, where we can substitute the exponentially decreasing
greedy error computed at this time tα in sα. Here the subsequent states are the states reached after
having played TWIN-COMB repetitively starting from the state st. If sα is never reached we use
the fact that COMB is an optimal action everywhere else in the last round. The problem is then to
determine at which time tα, starting from any state at time t and following a TWIN-COMB strategy,
we hit sα for the first time. This is translated into a classical gambler’s ruin problem, which concerns
the hitting times of a simple random walk (Section 5.3). Similarly the value of the game is computed
using the study of the expected number of equalizations of a simple random walk (Theorem 5.1).

3 Solving for the Adversary Directly

In this section, we recall the results from [9] that, for arbitrary K, permit us to directly search for the
minimax optimal adversary in the restricted set of balanced adversaries while ignoring the learner.
Definition 1. A gain distribution Ȧ is balanced if there exists a constant cȦ, the mean gain of Ȧ, such
that ∀k ∈ [K], cȦ = Eg|Ȧ [gk]. A balanced adversary uses exclusively balanced gain distributions.
Lemma 1 (Claim 5 in [9]). There exists a minimax optimal balanced adversary.

Use B to denote the set of all balanced strategies and Ḃ to denote the set of all balanced gain
distributions. Interestingly, as demonstrated in [9], a balanced adversary π inflicts the same regret
on every learner: If π ∈ B, then ∃V π

T ∈ R : ∀p̄, V T
p̄,π = V π

T . (See Lemma 10) Therefore, given an
adversary strategy π, we can define the value-to-go V π

t0 (s) associated with π from time t0 in state s,

V π
t0 (s) = E

sT+1

�sT+1�∞ −
T�

t=t0

E
st

�
cπ(st,t)

�
, st+1 ∼ P (.|st,π(st, t), st0 = s).

Another reduction comes from the fact that the set of balanced gain distributions can be seen as a
convex combination of a finite set of balanced distributions [9, Claim 2 and 3]. We call this limited
set the atomic gain distributions. Therefore the search for π∗ can be limited to this set. The set of
convex combinations of the m distributions Ȧ1, . . . Ȧm is denoted by Δ(Ȧ1, . . . Ȧm).

4 Reformulation as a Markovian Decision Problem

In this section we formulate, for arbitrary K, the maximization problem over balanced adversaries
as an undiscounted MDP problem �S,A, r, p�. The state space S was defined in Section 2 and the
action space is the set of atomic balanced distributions as discussed in Section 3. The transition
model is defined by p(.|s, Ḋ), which is a probability distribution over states given the current state
s and a balanced distribution over gains Ḋ. In this model, the transition dynamics are deterministic
and entirely controlled by the adversary’s action choices. However, the adversary is forced to choose
stochastic actions (balanced gain distributions). The maximization problem can therefore also be
thought of as designing a balanced random walk on states so as to maximize a sum of rewards (that
are yet to be defined). First, we define PȦ the transition probability operator with respect to a gain
distribution Ȧ. Given function f : S −→ R, PȦ returns

[PȦf ](s) = E[f(s�)|s� ∼ p(.|s, Ȧ)] = E
g∼s,Ȧ

[f(s+ g)].

g is sampled in s according to Ȧ. Given Ȧ in s, the per-step regret is denoted by rȦ(s) and defined as
rȦ(s) = E

s�|s,Ȧ
�s��∞ − �s�∞ − cȦ.
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Given an adversary strategy π, starting in s at time t0, the cumulative per-step regret is
V̄ π
t0 (s) =

�T
t=t0

E
�
rπ(·,t)(st) | st+1 ∼ p(.|st,π(st, t), st0 = s)

�
. The action-value function of π

at (s, Ḋ) and t is the expected sum of rewards received by starting from s, taking action Ḋ, and then
following π: Q̄π

t (st, Ḋ) = E [
�T

t�=t rȦt
(st) | Ȧ0 = Ḋ, st+1 ∼ p(·|st, Ȧt), Ȧt+1 = π(st+1, t+ 1)].

The Bellman operator of Ȧ, TȦ, is [TȦf ](s) = rȦ(s) + [PȦf ](s). with [Tπ(s,t)V̄
π
t+1](s) = V̄ π

t (s).

This per-step regret, rȦ(s), depends on s and Ȧ and not on the time step t. Removing the time
from the picture permits a simplified view of the problem that leads to a natural formulation of the
exchangeability property that is independent of the time t. Crucially, this decomposition of the regret
into per-step regrets is such that maximizing V̄ π

t0 (s) over adversaries π is equivalent, for all time t0
and s, to maximizing over adversaries the original value of the game, the regret V π

t0 (s) (Lemma 2).

Lemma 2. For any adversary strategy π and any state s and time t0, V π
t0 (s) = V̄ π

t0 (s) + �s�∞.

The proof of Lemma 2 is in Section 8. In the following, our focus will be on maximizing V̄ π
t (s) in

any state s. We now show some basic properties of the per-step regret that holds for an arbitrary
number of experts K and discuss their implications. The proofs are in Section 9.

Lemma 3. Let Ȧ ∈ Ḃ, for all s, t , we have 0 ≤ rȦ(s) ≤ 1. Furthermore if |X(s)|= 1, rȦ(s) = 0.

Lemma 3 shows that a state s in which the reward is not zero contains at least two equal leading
experts, |X(s)|> 1. Therefore the goal of maximizing the reward can be rephrased into finding a
policy that visits the states with |X(s)|> 1 as often as possible, while still taking into account that the
per-step reward increases with |X(s)|. The set of states with |X(s)|> 1 is called the ‘reward wall’.
Lemma 4. In any state s, with |X(s)|= 2, for any balanced gain distribution Ḋ such that with
probability one exactly one of the leading expert receives a gain of 1, rḊ(s) = maxȦ∈Ḃ rȦ(s).

5 The Case of K = 3

5.1 Notations in the 3-Experts Case, the COMB and the TWIN-COMB Adversaries

First we define the state space in the 3-expert case. The experts are sorted with respect to their
cumulative gains and are named in decreasing order, the leading expert, the middle expert and the
lagging expert. As mentioned in [9], in our search for the minimax optimal adversary, it is sufficient
for any K to describe our state only using dij that denote the difference between the cumulative gains
of consecutive sorted experts i and j = i+ 1. Here, i denotes the expert with ith largest cumulative
gains, and hence dij ≥ 0 for all i < j. Therefore one notation for a state, that will be used throughout
this section, is s = (x, y) = (d12, d23). We distinguish four types of states C1,C2,C3,C4 as
detailed below in Figure 1. In the same figure, in the center, the states are represented on a 2d-grid.
C4 contains only the state denoted sα = (0, 0).

s ∈ C1, d12 > 0, d23 > 0

s ∈ C2, d12 = 0, d23 > 0

s ∈ C3, d12 > 0, d23 = 0

s ∈ C4, d12 = 0, d23 = 0 d12

d23

4 3 3 3

2 1 1 1

2 1 1 1

2 1 1 1

Reward Wall

Atomic Ȧ Symbol cȦ

{1}{23} Ẇ 1/2
{2}{13} Ċ 1/2
{3}{12} V̇ 1/2
{1}{2}{3} 1̇ 1/3

{12}{13}{23} 2̇ 2/3

Figure 1: 4 types of states (left), their location on the 2d grid of states (center) and 5 atomic Ȧ (right)

Concerning the action space, the gain distributions use brackets. The group of arms in the same bracket
receive gains together and each group receive gains with equal probability. For instance, {1}{2}{3}
exclusively deals a gain to expert 1 (leading expert) with probability 1/3, expert 2 (middle expert)
with probability 1/3, and expert 3 (lagging expert) with probability 1/3, whereas {1}{23} means
dealing a gain to expert 1 alone with probability 1/2 and experts 2 and 3 together with probability 1/2.
As discussed in Section 3, we are searching for a π∗ using mixtures of atomic balanced distributions.
When K = 3 there are seven atomic distributions, denoted by Ḃ3 = {V̇, 1̇, 2̇, Ċ, Ẇ, {}, {123}}
and described in Figure 1 (right). Moreover, in Figure 2, we report in detail—in a table (left) and
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s rĊ(s)
Distribution of next state s� ∼ p(·|s, Ċ)
with s = (x, y)

C1 0 P (s� = (x−1, y+1)) = P (s� = (x+1, y−1)) = .5
C2 1/2 P (s� = (x+ 1, y)) = P (s� = (x+ 1, y − 1)) = .5
C3 0 P (s� = (x, y + 1)) = P (s� = (x− 1, y + 1)) = .5
C4 1/2 P (s� = (x, y + 1)) = P (s� = (x+ 1, y)) = .5 4

.5

2
.5

.5

3

.5

.5
.5

1
.5

.5

0

0

1/2

1/2

d12

d23

Figure 2: The per-step regret and transition probabilities of the gain distribution Ċ

an illustration (right) on the 2-D state grid—the properties of the COMB gain distribution Ċ. The
remaining atomic distributions are similarly reported in the appendix in Figures 5 to 8.

In the case of three experts, the COMB distribution is simply playing {2}{13} in any state. We use
Ẇ to denote the strategy that plays {1}{23} in any state and refer to it as the TWIN-COMB strategy.
The COMB and TWIN-COMB strategies (as opposed to the distributions) repeat their respective gain
distributions in any state and any time. They are respectively denoted πC,πW. The Lemma 5 shows
that the COMB strategy πC, the TWIN-COMB strategy πW and therefore any mixture of both, have
the same expected cumulative per-step regret. The proof is reported to Section 11.
Lemma 5. For all states s at time t, we have V̄ πC

t (s) = V̄ πW
t (s).

5.2 The Exchangeability Property

Lemma 6. Let Ȧ ∈ Ḃ3, there exists Ḋ ∈ Δ(Ċ, Ẇ) such that for any s �= sα, and for any f : S −→ R,

[TȦ[TḊf ]](s) = [TẆ[TȦf ]](s).

Proof. If Ȧ = Ẇ, Ȧ = {} or Ȧ = {123}, use Ḋ = Ẇ. If Ȧ = Ċ, use Lemma 11 and 12.
Case 1. Ȧ = V̇: V̇ is equal to Ċ in C3 ∪C4 and if s� ∼ p(.|s, Ẇ) with s ∈ C3 then s� ∈ C3 ∪C4.
So when s ∈ C3 we reuse the case Ȧ = Ċ above. When s ∈ C1 ∪C2, we consider two cases.
Case 1.1. s �= (0, 1): We choose Ḋ = Ẇ which is {1}{23}. If s� ∼ p(.|s, V̇) with s ∈ C2 then
s� ∈ C2. Similarly, if s� ∼ p(.|s, V̇) with s ∈ C1 then s� ∈ C1 ∪ C3. Moreover Ḋ modifies
similarly the coordinates (d12, d23) of s ∈ C1 and s ∈ C3. Therefore the effect in terms of transition
probability and reward of Ḋ is the same whether it is done before or after the actions chosen by V̇. If
s� ∼ p(.|s, Ḋ) with s ∈ C1 ∪C2 then s� ∈ C1 ∪C2. Moreover V̇ modifies similarly the coordinates
(d12, d23) of s ∈ C1 and s ∈ C2. Therefore the effect in terms of the transition probability of V̇ is
the same whether it is done before or after the action Ḋ. In terms of reward, notice that in the states
s ∈ C1 ∪C2, V̇ has 0 per-step regret and using V̇ does not make s� leave or enter the reward wall.
Case 1.2 st = (0, 1): We can chose Ḋ = Ẇ. One can check from the tables in Figures 7 and 8 that
exchangebility holds. Additionally we provide an illustration of the exchangeability equality in the
2d-grid in Figure 1. The starting state s = (0, 1), is graphically represented by . We show on the
grid the effect of the gain distribution V̇ (in dashed red) followed (left picture) or preceded (right
picture) by the gain distribution Ḋ (in plain blue). The illustration shows that V̇·Ḋ and Ḋ·V̇ lead to
the same final states ( ) with equal probabilities. The rewards are displayed on top of the pictures.
Their color corresponds to the actions, the probabilities are in italic, and the rewards are in roman.

Case 2 & 3. Ȧ = 1̇ & Ȧ = 2̇: The proof is similar and is reported in Section 12 of the appendix.
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5.3 Approximate Greediness of COMB, Minimax Players and Regret

The greedy error of the gain distribution Ḋ in state s at time t is

�Ḋ
s,t = max

Ȧ∈Ḃ3

Q̄πC
t (s, Ȧ)− Q̄πC

t (s, Ḋ).

Let �Ḋ
t = maxs∈S �Ḋ

s,t denote the maximum greedy error of the gain distribution Ḋ at time t. The
COMB greedy error in sα is controlled by the following lemma proved in Section 13.1. Missing
proofs from this section are in the appendix in Section 13.2.

Lemma 7. For any t ∈ [T ] and gain distribution Ḋ ∈ {Ẇ, Ċ, V̇, 1̇}, �Ḋ
sα,t ≤ 1

6

�
1
2

�T−t
.

d12

d23

4 3 3 3 3

2 1 1 1 1

2 1 1 1 1

2 1 1 1 1

.5.5

.5.5

.5

.5

.5

.5

 

1 2 3 4

3 4 5 62

5 6 7 84

7 8 9 106

d12d23
4 3 3 3 3

.5.5

1 1 2 3 40

Figure 3: Numbering TWIN-COMB
(top) & πG random walks (bottom)

The following proposition shows how we can index the states
in the 2d-grid as a one dimensional line over which the TWIN-
COMB strategy behaves very similarly to a simple random walk.
Figure 3 (top) illustrates this random walk on the 2d-grid and
the indexing scheme (the yellow stickers).
Proposition 1. Index a state s = (x, y) by is = x + 2y ir-
respective of the time. Then for any state s �= sα, and s� ∼
p(·|s, Ẇ) we have that P (is� = is−1) = P (is� = is+1) = 1

2 .

Consider a random walk that starts from state s0 = s and is gen-
erated by the TWIN-COMB strategy, st+1 ∼ p(.|st, Ẇ). Define
the random variable Tα,s = min{t ∈ N∪{0} : st = sα}. This
random variable is the number of steps of the random walk be-
fore hitting sα for the first time. Then, let Pα(s, t) be the proba-
bility that sα is reached after t steps: Pα(s, t) = P (Tα,s = t).
Lemma 8 controls the COMB greedy error in st in relation to
Pα(s, t). Lemma 9 derives a state-independent upper-bound for Pα(s, t).
Lemma 8. For any time t ∈ [T ] and state s,

�Ċ
s,t ≤

T�

t�=t

Pα(s, t
� − t)

1

6

�
1

2

�T−t�

.

Proof. If s = sα, this is a direct application of Lemma 7 as Pα(sα, t
�) = 0 for t� > 0.

When s �= sα, the following proof is by induction.

Initialization: Let t = T . At the last round only the last per-step regret matters (for all states s,
Q̄πC

t (s, Ḋ) = rḊ(s)). As s �= sα, s is such that |X(s)|≤ 2 then rḊ(s) = maxȦ∈Ḃ rȦ(s) because of
Lemma 4 and Lemma 3. Therefore the statement holds.

Induction: Let t < T . We assume the statement is true at time t+ 1. We distinguish two cases.

For all gain distributions Ḋ ∈ Ḃ3,

Q̄πC
t (s, Ḋ)

(a)
= [TḊ[TĖV̄

πC
t+2]](s)

(b)
= [TẆ[TḊV̄

πC
t+2]](s) = [TẆQ̄

πC
t+1(., Ḋ)](s)

(c)

≥ [TẆ max
Ȧ∈Ḃ3

Q̄πC
t+1(., Ȧ)](s)−

T�

t1=t+1

[PẆPα(., t1 − t− 1)
1

6

�
1

2

�T−t1

](s)

(d)

≥ max
Ȧ∈Ḃ3

[TẆQ̄
πC
t+1(., Ȧ)](s)−

T�

t1=t+1

1

6

�
1

2

�T−t1

[PẆPα(., t1 − t− 1)](s)

(b)
= max

Ȧ∈Ḃ3

Q̄πC
t (s, Ȧ)−

T�

t1=t+1

1

6

�
1

2

�T−t1

[PẆPα(., t1 − t− 1)](s)

(e)
= max

Ȧ∈Ḃ3

Q̄πC
t (s, Ȧ)−

T�

t1=t

1

6

�
1

2

�T−t1

Pα(s, t1 − t)
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where in (a) Ė is any distribution in Δ(Ċ, Ẇ) and this step holds because of Lemma 5, (b) holds
because of the exchangeability property of Lemma 6, (c) is true by induction and monotonicity
of Bellman operator, in (d) the max operators change from being specific to any next state s� at
time t + 1 to being just one max operator that has to choose a single optimal gain distribution in
state s at time t, (e) holds by definition as for any t2, (here the last equality holds because s �= sα)
[PẆPα(., t2)](s) = Es�∼p(.|s,Ẇ)[Pα(s

�, t2)] = Es�∼p(.|s,Ẇ)[P (Tα,s� = t2)] = Pα(s, t2 + 1).

Lemma 9. For t > 0 and any s,

Pα(s, t) ≤ 2

t

�
2

π
.

Proof. Using the connection between the TWIN-COMB strategy and a simple random walk in
Proposition 1, a formula can be found for Pα(s, t) from the classical “Gambler’s ruin” problem,
where one wants to know the probability that the gambler reaches ruin (here state sα) at any time
t given an initial capital in dollars (here is as defined in Proposition 1). The gambler has an equal
probability to win or lose one dollar at each round and has no upper bound on his capital during the
game. Using [7] (Chapter XIV, Equation 4.14) or [18] we have Pα(s, t) =

is
t

�
t

t+is
2

�
2−t, where the

binomial coefficient is 0 if t and is are not of the same parity. The technical Lemma 14 completes the
proof.

We now state our main result, connecting the value of the COMB adversary to the value of the game.
Theorem 1. Let K = 3, the regret of COMB strategies against any learner p̄, minp̄ V

T
p̄,πC

, satisfies

min
p̄

V T
p̄,πC

≥ VT − 12 log2 (T + 1) .

We also characterize the minimax regret of the game.
Theorem 2. Let K = 3, for even T , we have that

����VT −
�

T + 2

T/2 + 1

�
T/2 + 1

3 ∗ 2T
���� ≤ 12 log2(T + 1), with

�
T + 2

T/2 + 1

�
T/2 + 1

3 ∗ 2T ∼
�

8T

9π
.

In Figure 4 we introduce a COMB-based learner that is denoted by p̄C. Here a state is represented
by a vector of 3 integers. The three arms/experts are ordered as (1) (2) (3), breaking ties arbitrarily.

pt,(1)(s) = V πC
t+1(s+e(1))−V πC

t (s)
pt,(2)(s) = V πC

t+1(s+e(2))−V πC
t (s)

pt,(3)(s) = 1−pt,(1)(s)−pt,(2)(s)

Figure 4: A COMB learner, p̄C

We connect the value of the COMB-based learner to the
value of the game.
Theorem 3. Let K = 3, the regret of COMB-based
learner against any adversary π, maxπ V

T
p̄C,π

, satisfies

max
π

V T
p̄C,π

≤ VT + 36 log2 (T + 1) .

Similarly to [2] and [14], this strategy can be efficiently
computed using rollouts/simulations from the COMB adversary in order to estimate the value V πC

t (s)
of πC in s at time t.

6 Discussion and Future Work

The main objective is to generalize our new proof techniques to higher dimensions. In our case, the
MDP formulation and all the results in Section 4 already holds for general K. Interestingly, Lemma 3
and 4 show that the COMB distribution is the balanced distribution with highest per-step regret in all
the states s such that |X(s)|≤ 2, for arbitrary K. Then assuming an ideal exchangeability property
that gives maxȦ∈Ḃ ȦĊ . . . Ċ = maxȦ∈Ḃ ĊĊ . . . ĊȦ, a distribution would be greedy w.r.t the COMB
strategy at an early round of the game if it maximizes the per-step regret at the last round of the
game. The COMB policy specifically tends to visit almost exclusively states |X(s)|≤ 2, states where
COMB itself is the maximizer of the per-step regret (Lemma 3). This would give that COMB is greedy
w.r.t. itself and therefore optimal. To obtain this result for larger K, we will need to extend the
exchangeability property to higher K and therefore understand how the COMB and TWIN-COMB
families extend to higher dimensions. One could also borrow ideas from the link with pde approaches
made in [6].
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