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Abstract

This paper develops upper and lower bounds on the influence measure in a network,
more precisely, the expected number of nodes that a seed set can influence in the
independent cascade model. In particular, our bounds exploit nonbacktracking
walks, Fortuin–Kasteleyn–Ginibre type inequalities, and are computed by message
passing algorithms. Nonbacktracking walks have recently allowed for headways
in community detection, and this paper shows that their use can also impact the
influence computation. Further, we provide parameterized versions of the bounds
that control the trade-off between the efficiency and the accuracy. Finally, the
tightness of the bounds is illustrated with simulations on various network models.

1 Introduction

Influence propagation is concerned with the diffusion of information from initially influenced nodes,
called seeds, in a network. Understanding how information propagates in networks has become
a central problem in a broad range of fields, such as viral marketing [18], sociology [9, 20, 24],
communication [13], epidemiology [21], and social network analysis [25].

One of the most fundamental questions on influence propagation is to estimate the influence, i.e. the
expected number of influenced nodes at the end of the propagation given a set of seeds. Estimating
the influence is central to diverse research problems related to influence propagation, such as the
widely-known influence maximization problem — finding a set of k nodes that maximizes the
influence.

Recent studies on influence propagation have proposed various algorithms [12, 19, 4, 8, 23, 22] for
the influence maximization problem while using Monte Carlo (MC) simulations to approximate the
influence. The submodularity argument and the probabilistic error bound on MC give a probabilistic
lower bound on the influence that is obtainable by the algorithms in terms of the true maximum
influence. Despite its benefits on the influence maximization problem, approximating the influence
via MC simulations is far from ideal for large networks; in particular, MC may require a large amount
of computations in order to stabilize the approximation.

To overcome the limitations of Monte Carlo simulations, many researchers have been taking both
algorithmic and theoretical approaches to approximate the influence of given seeds in a network.
Chen and Teng [3] provided a probabilistic guarantee on estimating the influence of a single seed with
a relative error bound with the expected running time O(`(|V |+ |E|)|V | log |V |/ε2), such that with
probability 1− 1/n`, for all node v, the computed influence of v has relative error at most ε. Draief
et al., [6] introduced an upper bound for the influence by using the spectral radius of the adjacency
matrix. Tighter upper bounds were later suggested in [17] which relate the ratio of influenced nodes
in a network to the spectral radius of the so-called Hazard matrix. Further, improved upper bounds
which account for sensitive edges were introduced in [16].
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In contrast, there has been little work on finding a tight lower bound for the influence. An exception
is a work by Khim et al. [14], where the lower bound is obtained by only considering the influence
through the maximal-weighted paths.

In this paper, we propose both upper and lower bounds on the influence using nonbacktracking walks
and Fortuin–Kasteleyn–Ginibre (FKG) type inequalities. The bounds can be efficiently obtained by
message passing implementation. This shows that nonbacktracking walks can also impact influence
propagation, making another case for the use of nonbacktracking walks in graphical model problems
as in [15, 10, 2, 1], discussed later in the paper. Further, we provide a parametrized version of the
bounds that can adjust the trade-off between the efficiency and the accuracy of the bounds.

2 Background

We introduce here the independent cascade model and provide background for the main results.
Definition 1 (Independent Cascade Model). Consider a directed graph G = (V,E) where |V | = n,
a transmission probability matrix P ∈ [0, 1]n×n, and a seed set S0 ⊆ V . For all u ∈ V , let N+(u)
be the set of out-neighbors of node u. The independent cascade model IC(G,P, S0) sequentially
generates the influenced set St ⊆ V for each discrete time t ≥ 1 as follows. At time t, St is initialized
to be an empty set. Then, each node u ∈ St−1 attempts to influence v ∈ N+(u)\∪t−1

i=0Si with
probability Puv, i.e. node u influences its uninfluenced out-neighbor v with probability Puv. If v is
influenced at time t, add v to St. The process stops at T if ST = ∅ at the end of the step t = T . The
set of the influenced nodes at the end of propagation is defined as S = ∪T−1

i=0 St.

We often refer an edge (u, v) being open if node u influences node v. The IC model is equivalent
to the live-arc graph model, where the influence happens at once, rather than sequentially. The
live-arc graph model first decides the state of every edge with a Bernoulli trial, i.e. edge (u, v) is
open independently with probability Puv and closed, otherwise. Then, the set of influenced nodes is
defined as the nodes that are reachable from at least one of the seeds by the open edges.
Definition 2 (Influence). The expected number of nodes that are influenced at the end of the prop-
agation process is called the influence (rather than the expected influence, with a slight abuse of
terminology) of IC(G,P, S0), and is defined as

σ(S0) =
∑
v∈V

P(v is influenced). (1)

It is shown in [5] that computing the influence σ(S0) in the independent cascade model IC(G,P, S0)
is #P-hard, even with a single seed, i.e. |S0| = 1.

Next, we define nonbacktracking (NB) walks on a directed graph. Nonbacktracking walks have
already been used for studying the characteristics of networks. To the best of our knowledge, the use
of NB walks in the context of epidemics was first introduced in the paper of Karrer et al. [11] and
later applied to percolation in [10]. In particular, Karrer et al. reformulate the spread of influence as a
message passing process and demonstrate how the resulting equations can be used to calculate an
upper bound on the number of nodes that are susceptible at a given time. As we shall see, we take a
different approach to the use of the NB walks, which focuses on the effective contribution of a node
in influencing another node and accumulates such contributions to obtain upper and lower bounds.
More recently, nonbacktracking walks are used for community detection [15, 2, 1].
Definition 3 (Nonbacktracking Walk). Let G = (V,E) be a directed graph. A nonbacktracking walk
of length k is defined as w(k) = (v0, v1, . . . , vk), where vi ∈ V and (vi−1, vi) ∈ E for all i ∈ [k],
and vi−1 6= vi+1 for all i ∈ [k − 1].

We next recall a key inequality introduced by Fortuin et. al [7].
Theorem 1 (FKG Inequality). Let (Γ,≺) be a distributive lattice, where Γ is a finite partially ordered
set, ordered by ≺, and let µ be a positive measure on Γ satisfying the following condition: for all
x, y ∈ Γ,

µ(x ∧ y)µ(x ∨ y) ≥ µ(x)µ(y),

where x ∧ y = max{z ∈ Γ : z � x, z � y} and x ∨ y = min{z ∈ Γ : y � z, y � z}. Let f and g
be both increasing (or both decreasing) functions on Γ. Then,

(
∑
x∈Γ

µ(x))(
∑
x∈Γ

f(x)g(x)µ(x)) ≥ (
∑
x∈Γ

f(x)µ(x))(
∑
x∈Γ

g(x)µ(x)). (2)
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FKG inequality is instrumental in studying influence propagation since the probability that a node is
influenced is nondecreasing with respect to the partial order of random variables describing the states,
open or closed, of the edges.

3 Nonbacktracking bounds on the influence

In this section, we present upper and lower bounds on the influence in the independent cascade model
and explain the motivations and intuitions of the bounds. The bounds utilize nonbacktracking walks
and FKG inequalities and are computed efficiently by message passing algorithms. In particular,
the upper bound on a network based on a graph G(V,E) runs in O(|V |2 + |V ||E|) and the lower
bound runs in O(|V | + |E|), whereas Monte Carlo simulation would require O(|V |3 + |V |2|E|)
computations without knowing the variance of the influence, which is harder to estimate than the
influence. The reason for the large computational complexity of MC is that in order to ensure
that the standard error of the estimation does not grow with respect to |V |, MC requires O(|V |2)
computations. Hence, for large networks, where MC may not be feasible, our algorithms can still
provide bounds on the influence.

Furthermore, from the proposed upper σ+ and lower bounds σ−, we can compute an upper bound on
the variance given by (σ+ − σ−)2/4. This could be used to estimate the number of computations
needed by MC. Computing the upper bound on the variance with the proposed bounds can be done in
O(|V |2 + |V ||E|), whereas computing the variance with MC simulation requires O(|V |5 + |V |4|E|).

3.1 Nonbacktracking upper bounds (NB-UB)

We start by defining the following terms for the independent cascade model IC(G,P, S0), where
G = (V,E) and |V | = n.
Definition 4. For any v ∈ V , we define the set of in-neighbors N−(v) = {u ∈ V : (u, v) ∈ E} and
the set of out-neighbors N+(v) = {u ∈ V : (v, u) ∈ E}.
Definition 5. For any v ∈ V and l ∈ [n − 1], the set Pl(S0→v) is defined as the set of all paths
with length l from any seed s ∈ S0 to v. We call a path P is open iff every edge in P is open. For
l = 0, we define P0(S0→v) as the set (of size one) of the zero-length path containing node v and
assume the path P ∈ P0(S0→v) is open iff v ∈ S0.
Definition 6. For any v ∈ V and l ∈ {0, . . . , n− 1}, we define

p(v) = P(v is influenced) (3)
pl(v) = P(∪P∈Pl(S0→v){P is open}) (4)

pl(u→v) = P(∪P∈Pl(S0→u),P 6 ∈v{P is open and edge (u, v) is open}) (5)

In other words, pl(v) is the probability that node v is influenced by open paths of length l, i.e. there
exists an open path of length l from a seed to v, and pl(u→v) is the probability that v is influenced
by node u with open paths of length l+ 1, i.e. there exists an open path of length l+ 1 from a seed to
v that ends with edge (u, v).
Lemma 1. For any v ∈ V ,

p(v) ≤ 1−
n−1∏
l=0

(1− pl(v)). (6)

For any v ∈ V and l ∈ [n− 1],

pl(v) ≤ 1−
∏

u∈N−(v)

(1− pl−1(u→v)). (7)

Lemma 1, which can be proved by FKG inequalities, suggests that given pl−1(u→ v), we may
compute an upper bound on the influence. Ideally, pl−1(u→v) can be computed by considering all
paths that end with (u, v) having length l. However, this results in exponential complexity O(nl),
as l goes up to n− 1. Thus, we present an efficient way to compute an upper bound UBl−1(u→v)
on pl−1(u→v), which in turns gives an upper bound UBl(v) on pl(v), with the following recursion
formula.
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Definition 7. For all l ∈ {0, . . . , n−1} and u, v ∈ V such that (u, v) ∈ E, UBl(u) ∈ [0, 1] and
UBl(u→v) ∈ [0, 1] are defined recursively as follows.
Initial condition: For every s∈S0, s+∈N+(s), u∈V \S0, and v∈N+(u),

UB0(s) = 1, UB0(s→s+) = Pss+ (8)
UB0(u) = 0, UB0(u→v) = 0. (9)

Recursion: For every l∈ [n−1], s∈S0, s+∈N+(s), s−∈N−(s), u∈V \S0, and v∈N+(u)\S0,

UBl(s) = 0,UBl(s→s+) = 0,UBl(s−→s) = 0 (10)

UBl(u) = 1−
∏

w∈N−(u)

(1− UBl−1(w→u)) (11)

UBl(u→v) =

{
Puv(1− 1−UBl(u)

1−UBl−1(v→u) ), if v∈N−(u)

PuvUBl(u), otherwise.
(12)

Equation (10) follows from that for any seed node s ∈ S0 and for all l > 0, the probabilities
pl(s) = 0, pl(s → s+) = 0, and pl(s

− → s) = 0. A naive way to compute UBl(u → v) is
UBl(u→v) = PuvUBl−1(u), but this results in an extremely loose bound due to the backtracking.
For a tighter bound, we use nonbacktracking in Equation (12), i.e. when computing UBl(u→v), we
ignore the contribution of UBl−1(v→u).
Theorem 2. For any independent cascade model IC(G,P, S0),

σ(S0) ≤
∑
v∈V

(1−
n−1∏
l=0

(1− UBl(v))) =: σ+(S0), (13)

where UBl(v) is obtained recursively as in Definition 7.

Next, we present Nonbacktracking Upper Bound (NB-UB) algorithm which computes UBl(v) and
UBl(u→v) by message passing. At the l-th iteration, the variables in NB-UB represent as follows.
· Sl is the set of nodes that are processed at the l-th iteration.
· Mcurr(v) = {(u,UBl−1(u→ v)) : u is an in-neighbor of v, and u ∈ Sl−1} is the set of pairs

(previously processed in-neighbor u of v, incoming message from u to v).
· MSrc(v) = {u : u is a in-neighbor of v, and u ∈ Sl−1} is the set of in-neighbor nodes of v that

were processed at the previous step.
· Mcurr(v)[u] = UBl−1(u→v) is the incoming message from u to v.
· Mnext(v) = {(u,UBl(u→ v)) : u is an in-neighbor of v, and u ∈ Sl} is the set of pairs (cur-

rently processed in-neighbor u, next iteration’s incoming message from u to v).

Algorithm 1 Nonbacktracking Upper Bound (NB-UB)

Initialize: UBl(v) = 0 for all 0 ≤ l ≤ n− 1 and v ∈ V
Initialize: Insert (s, 1) to Mnext(s) for all s ∈ S0

for l = 0 to n− 1 do
for u ∈ Sl do

Mcurr(u) = Mnext(u) and Clear Mnext(u)
UBl(u) = ProcessIncomingMsgUB(Mcurr(u))

for u ∈ Sl do
for v ∈ N+(u) \ S0 do

Sl+1.insert(v)
if v ∈ MSrc(u) then

UBl(u→v) = GenerateOutgoingMsgUB(Mcurr(u)[v],UBl(u),Puv)
Mnext(v).insert((u,UBl(u→v))).

else
UBl(u→v) = GenerateOutgoingMsgUB(0,UBl(u),Puv)
Mnext(v).insert((u,UBl(u→v))).

Output: UBl(u) for all l, u
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At the beginning, every seed node s ∈ S0 is initialized such that Mcurr(s) = {(s, 1)} in order to
satisfy the initial condition, UB0(s) = 1. For each l-th iteration, every node u in Sl is processed as
follows. First, ProcessIncomingMsgUB(Mcurr(u)) computes UBl(u) as in Equation (11). Second, u
passes a message to its neighbor v ∈ N+(u) \ S0 along the edge (u, v), and v stores (inserts) the
message in Mnext(v) for the next iteration. The message contains 1) the source of the message, u, and
2) UBl(u→v), which is computed as in Equation (12), by the function GenerateOutgoingMsgUB.
Finally, the algorithm outputs UBl(u) for all u ∈ V and l ∈ {0, . . . , n−1}, and the upper bound
σ+(S0) is computed by Equation (13). The description of how the algorithm runs on a small network
can be found in the supplementary material.

Computational complexity: Notice that for each iteration l ∈ {0, . . . , n− 1}, the algorithm
accesses at most n nodes, and for each node v, the functions ProcessIncomingMsgUB and
GenerateOutgoingMsgUB are computed in O(deg(v)) and O(1), respectively. Therefore, the worst
case computational complexity is O(|V |2 + |V ||E|).

3.2 Nonbacktracking lower bounds (NB-LB)

A naive way to compute a lower bound on the influence in a network IC(G,P, S0) is to reduce the
network to a (spanning) tree network, by removing edges. Then, since there is a unique path from
a node to another, we can compute the influence of the tree network, which is a lower bound on
the influence in the original network, in O(|V |). We take this approach of generating a subnetwork
from the original network, yet we avoid the significant gap between the bound and the influence by
considering the following directed acyclic subnetwork, in which there is no backtracking walk.
Definition 8 (Min-distance Directed Acyclic Subnetwork). Consider an independent cascade model
IC(G,P, S0) with G = (V,E) and |V | = n. Let d(S0, v) := mins∈S0

d(s, v), i.e. the mini-
mum distance from a seed in S0 to v. A minimum-distance directed acyclic subnetwork (MDAS),
IC(G′,P ′, S0), where G′ = (V ′, E′), is obtained as follows.
· V ′ = {v1, ..., vn} is an ordered set of nodes such that d(S0, vi) ≤ d(S0, vj), for every i < j.
· E′ = {(vi, vj) ∈ E : i < j}, i.e. E′ is obtained from E by removing edges whose source node

comes later in the order than its destination node.
· P ′vivj = Pvivj , if (vi, vj) ∈ E′, and P ′vivj = 0, otherwise.

If there are multiple ordered sets of vertices satisfying the condition, we may choose one arbitrarily.

For any k ∈ [n], let p(vk) be the probability that vk ∈ V ′ is influenced in the MDAS, IC(G′,P ′, S0).
Since p(vk) is equivalent to the probability of the union of the events that an in-neighbor ui ∈ N−(vk)
influences vk, p(vk) can be computed by the principle of inclusion and exclusion. Thus, we may
compute a lower bound on p(vk), using Bonferroni inequalities, if we know the probabilities that
in-neighbors u and v both influences vk, for every pair u, v ∈ N−(vk). However, computing such
probabilities can take O(kk). Hence, we present LB(vk) which efficiently computes a lower bound
on p(vk) by the following recursion.
Definition 9. For all vk ∈ V ′, LB(vk) ∈ [0, 1] is defined by the recursion on k as follows.
Initial condition: For every vs ∈ S0,

LB(vs) = 1. (14)
Recursion: For every vk ∈ V ′ \ S0,

LB(vk) =

m∗∑
i=1

P ′uivk
LB(ui)(1−

i−1∑
j=1

P ′ujvk
)

 , (15)

where N−(vk) = {u1, . . . , um} is the ordered set of in-neighbors of vk in IC(G′,P ′, S0) and
m∗=max{m′ ≤ m :

∑m′−1
j=1 P ′ujvk

≤ 1}.

Remark. Since the i-th summand in Equation (15) can utilize
∑i−2
j=1 P ′ujvk

, which is already

computed in (i−1)-th summand, to compute
∑i−1
j=1 P ′ujvk

, the summation takes at most O(deg(vk)).

Theorem 3. For any independent cascade model IC(G,P, S0) and its MDAS IC(G′,P ′, S0),

σ(S0) ≥
∑
vk∈V ′

LB(vk) =: σ−(S0), (16)

where LB(vk) is obtained recursively as in Definition 9.
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Next, we present Nonbacktracking Lower Bound (NB-LB) algorithm which efficiently computes
LB(vk). At the k-th iteration, the key variable in NB-LB has the following meaning.
· M(vk) = {(LB(vj),P ′vjvk) : vj is an in-neighbor of vk} is the set of pairs (incoming message

from an in-neighbor vj to vk, the transmission probability of edge (vj , vk)).

Algorithm 2 Nonbacktracking Lower Bound (NB-LB)

Input: directed acyclic network IC(G′,P ′, S0)
Initialize: σ− = 0
Initialize: Insert (1, 1) to M(vi) for all vi ∈ S0

for k = 1 to n do
LB(vk) = ProcessIncomingMsgLB(M(vk))
σ− += LB(vk)
for vl ∈ N+(vk) \ S0 do

M(vl).insert((LB(vk),P ′vkvl))
Output: σ−

At the beginning, every seed node s ∈ S0 is initialized such that M(s) = {(1, 1)} in order to satisfy
the initial condition, LB(s) = 1. For each k-th iteration, node vk is processed as follows. First,
LB(vk) is computed as in the Equation (15), by the function ProcessIncomingMsgLB, and added
to σ−. Second, vk passes the message (LB(vk),P ′vkvl) to its out-neighbor vl ∈ N+(vk)\S0, and vl
stores (inserts) it in M(vl). Finally, the algorithm outputs σ−, the lower bound on the influence. The
description of how the algorithm runs on a small network can be found in the supplementary material.

Computational complexity: Obtaining an arbitrary directed acyclic subnetwork from the original
network takes O(|V | + |E|). Next, the algorithm iterates through the nodes V ′ = {v1, . . . , vn}.
For each node vk, ProcessIncomingMsgLB takes O(deg(vk)), and vk sends messages to its out-
neighbors in O(deg(vk)). Hence, the worst case computational complexity is O(|V |+ |E|).

3.3 Tunable bounds

In this section, we briefly introduce the parametrized version of NB-UB and NB-LB which provide
control to adjust the trade-off between the efficiency and the accuracy of the bounds.

Upper bounds (tNB-UB): Given a non-negative integer t ≤ n − 1, for every node u ∈ V , we
compute the probability p≤t(u) that node u is influenced by open paths whose length is less than or
equal to t, and for each v ∈ N+(u), we compute the probability pt(u→v). Then, we start NB-UB
from l = t+ 1 with the new initial conditions that UBt(u→v) = pt(u→v) and UBt(u) = p≤t(u),
and compute the upper bound as

∑
v∈V (1−

∏n−1
l=t (1− UBl(v))).

For higher values of t, the algorithm results in tighter upper bounds, while the computational
complexity may increase exponentially for dense networks. Thus, this method is most applicable in
sparse networks, where the degree of each node is bounded.

Lower bounds (tNB-LB): We first order the set of nodes {v1, . . . , vn} such that d(S0, vi) ≤
d(S0, vj) for every i < j. Given a non-negative integer t ≤ n, we obtain a subnetwork
IC(G[Vt],P[Vt], S0 ∩ Vt) of size t, where G[Vt] is the subgraph induced by the set of nodes
Vt = {v1, . . . , vt}, and P[Vt] is the corresponding transmission probability matrix. For each
vi ∈ Vt, we compute the exact probability pt(vi) that node vi is influenced in the subnetwork
IC(G[Vt],P[Vt], S0 ∩ Vt). Then, we start NB-LB from i = t+ 1 with the new initial conditions that
LB(vk) = pt(vk), for all k ≤ t.
For larger t, the algorithm results in tighter lower bounds. However, the computational complexity
may increase exponentially with respect to t, the size of the subnetwork. This algorithm can
adopt Monte Carlo simulations on the subnetwork to avoid the large computational complexity.
However, this modification results in probabilistic lower bounds, rather than theoretically guaranteed
lower bounds. Nonetheless, this can still give a significant improvement, because the Monte Carlo
simulations on a smaller size of network require less computation to stabilize the estimation.
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4 Experimental Results

In this section, we evaluate the NB-UB and NB-LB in independent cascade models on a variety of
classical synthetic networks.

Network Generation. We consider 4 classical random graph models with the parameters shown
as follows: Erdos Renyi random graphs with ER(n = 1000, p = 0.003), scale-free networks
SF (n = 1000, α = 2.5), random regular graphs Reg(n = 1000, d = 3), and random tree graphs
with power-law degree distributions T (n = 1000, α = 3). For each graph model, we generate 100
networks IC(G, pA, {s}) as follows. The graph G is the largest connected component of a graph
drawn from the graph model, the seed node s is a randomly selected vertex, and A is the adjacency
matrix of G. The corresponding IC model has the same transmission probability p for every edge.

Evaluation of Bounds. For each network generated, we compute the following quantities for
each p ∈ {0.1, 0.2, . . . , 0.9}.
· σmc: the estimation of the influence with 106 Monte Carlo simulations.
· σ+: the upper bound obtained by NB-UB.
· σ+

spec: the spectral upper bound by [17].

· σ−: the lower bound obtained by NB-LB.
· σ−prob: the probabilistic lower bound obtained by 10 Monte Carlo simulations.

Figure 1: This figure compares the average relative gap of the bounds: NB-UB, the spectral upper bound in [17],
NB-LB, and the probabilistic lower bound computed by MC simulations, for various types of networks.

The probabilistic lower bound is chosen for the experiments since there has not been any tight lower
bound. The sample size of 10 is determined to overly match the computational complexity of NB-LB
algorithm. In Figure 1, we compare the average relative gap of the bounds for every network model
and for each transmission probability, where the true value is assumed to be σmc. For example,
the average relative gap of NB-UB for 100 Erdos Renyi networks {Ni}100

i=1 with the transmission
probability p is computed by 1

100

∑
i∈[100]

σ+[Ni]−σmc[Ni]
σmc[Ni]

, where σ+[Ni] and σmc[Ni] denote the
NB-UB and the MC estimation, respectively, for the network Ni.
Results. Figure 1 shows that NB-UB outperforms the upper bound in [17] for the Erdos-Renyi and
random 3-regular networks, and performs comparably for the scale-free networks. Also, NB-LB gives
tighter bounds than the MC bounds on the Erdos-Renyi, scale-free, and random regular networks
when the transmission probability is small, p < 0.4. Both NB-UB and NB-LB compute the exact
influence for the tree networks since both algorithms avoid backtracking walks.

Next, we show the bounds on exemplary networks.

4.1 Upper Bounds

Selection of Networks. In order to illustrate a typical behavior of the bounds, we have chosen
the network in Figure 2a as follows. First, we generate 100 random 3-regular graphs G with 1000
nodes and assign a random seed s. Then, the corresponding IC model is defined as IC(G,P =
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Figure 2: (a) The figure compares various upper bounds on the influence in the 3-regular network in section 4.1.
The MC upper bounds are computed with various simulation sizes and shown with the data points indicated
with MC(N), where N is the number of simulations. The spectral upper bound in [17] is shown in red line, and
NB-UB is shown in green line.
(b) The figure shows lower bounds on the influence of a scale-free network in section 4.2. The probabilistic
lower bounds shown with points are obtained from Monte Carlo simulations with various simulation sizes, and
the data points indicated with MC(N) are obtained by N number of simulations. NB-LB is shown in green line.

pA, S0 = {s}). For each network, we compute NB-UB and MC estimation. Then, we compute the
score for each network, where the score is defined as the sum of the square differences between the
upper bounds and MC estimations over the transmission probability p ∈ {0.1, 0.2,. . ., 0.9}. Finally,
a graph whose score is the median from all 100 scores is chosen for Figure 2a.

Results. In figure 2a, we compare 1) the upper bounds introduced [17] and 2) the probabilistic upper
bounds obtained by Monte Carlo simulations with 99% confidence level, to NB-UB. The MC upper
bounds are computed with the various sample sizes N ∈ {5, 10, 30, 300, 3000}. It is evident from
the figure that a larger sample size provides a tighter probabilistic upper bound. NB-UB outperforms
the bound by [17] and the probabilistic MC bound when the transmission probability is relatively
small. Further, it shows a similar trend as the MC simulations with a large sample size.

4.2 Lower Bounds

Selection of Networks. We adopt a similar selection process as in the selection for the upper
bounds, but with the scale free networks, with 3000 nodes and α = 2.5.

Results. We compare probabilistic lower bounds obtained by MC with 99% confidence level
to NB-LB. The lower bounds from Monte Carlo simulations are computed with various sample
sizes N ∈ {5, 12, 30, 300, 3000}, which accounts for a constant, log(|V |), 0.01|V |, 0.1|V |, and
|V |. NB-LB outperforms the probabilistic bounds by MC with small sample sizes. Recall that
the computational complexity of the lower bound in algorithm 2 is O(|V | + |E|), which is the
computational complexity of a constant number of Monte Carlo simulations. In figure 2b, it shows
that NB-LB is tighter than the probabilistic lower bounds with the same computational complexity,
and it also agrees with the behavior of the MC simulations.

5 Conclusion

In this paper, we propose both upper and lower bounds on the influence in the independent cascade
models and provide algorithms to efficiently compute the bounds. We extend the results by proposing
tunable bounds which can adjust the trade-off between the efficiency and the accuracy. Finally, the
tightness and the performance of the bounds are shown with the experimental results. One can further
improve the bounds considering r-nonbacktracking walks, i.e. avoiding cycles of length r rather than
just backtracks, and we leave this for future study.
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