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Abstract

From just a glance, humans can make rich predictions about the future of a wide
range of physical systems. On the other hand, modern approaches from engineering,
robotics, and graphics are often restricted to narrow domains or require information
about the underlying state. We introduce the Visual Interaction Network, a general-
purpose model for learning the dynamics of a physical system from raw visual
observations. Our model consists of a perceptual front-end based on convolutional
neural networks and a dynamics predictor based on interaction networks. Through
joint training, the perceptual front-end learns to parse a dynamic visual scene into
a set of factored latent object representations. The dynamics predictor learns to roll
these states forward in time by computing their interactions, producing a predicted
physical trajectory of arbitrary length. We found that from just six input video
frames the Visual Interaction Network can generate accurate future trajectories of
hundreds of time steps on a wide range of physical systems. Our model can also
be applied to scenes with invisible objects, inferring their future states from their
effects on the visible objects, and can implicitly infer the unknown mass of objects.
This work opens new opportunities for model-based decision-making and planning
from raw sensory observations in complex physical environments.

1 Introduction

Physical reasoning is a core domain of human knowledge [22]] and among the earliest topics in Al
(24, 25]. However, we still do not have a system for physical reasoning that can approach the abilities
of even a young child. A key obstacle is that we lack a general-purpose mechanism for making
physical predictions about the future from sensory observations of the present. Overcoming this
challenge will help close the gap between human and machine performance on important classes
of behavior that depend on physical reasoning, such as model-based decision-making [3]], physical
inference [13]], and counterfactual reasoning [[10} [11]].

We introduce the Visual Interaction Network (VIN), a general-purpose model for predicting future
physical states from video data. The VIN is learnable and can be trained from supervised data
sequences which consist of input image frames and target object state values. It can learn to
approximate a range of different physical systems which involve interacting entities by implicitly
internalizing the rules necessary for simulating their dynamics and interactions.

The VIN model is comprised of two main components: a visual encoder based on convolutional
neural networks (CNNs) [[17], and a recurrent neural network (RNN) with an interaction network (IN)
[2]] as its core, for making iterated physical predictions. Using this architecture we are able to learn a
model which infers object states and can make accurate predictions about these states in future time
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steps. We show that this model outperforms various baselines and can generate compelling future
rollout trajectories.

1.1 Related work

One approach to learning physical reasoning is to train models to make state-to-state predictions.
One early algorithm using this approach was the “NeuroAnimator” [12]], which was able to simulate
articulated bodies. Ladicky et al. [[16] proposed a learned model for simulating fluid dynamics based
on regression forests. Battaglia et al. [2] introduced a general-purpose learnable physics engine,
termed an Interaction Network (IN), which could learn to predict gravitational systems, rigid body
dynamics, and mass-spring systems. Chang et al. [[/] introduced a similar model in parallel that could
likewise predict rigid body dynamics.

Another class of approaches learn to predict summary physical judgments and produce simple
actions from images. There have been several efforts [[18, [19] which used CNN-based models to
predict whether a stack of blocks would fall. Mottaghi et al. [20, 21] predicted coarse, image-space
motion trajectories of objects in real images. Several efforts [4, 16, 26, [27] have fit the parameters
of Newtonian mechanics equations to systems depicted in images and videos, though the dynamic
equations themselves were not learned. Agrawal et al. [1] trained a system that learns to move objects
by poking.

A third class of methods [} 18} 9} 23], like our Visual Interaction Network, have been used to predict
future state descriptions from pixels. However, in contrast to the Visual Interaction Network, these
models have to be tailored to the particular physical domain of interest, are only effective over a few
time steps, or use side information such as object locations and physical constraints at test time.

2 Model

The Visual Interaction Network (VIN) learns to produce future trajectories of objects in a physical
system from video frames of that system. The VIN is depicted in Figure |1} and consists of the
following components:

e The visual encoder takes a triplet of frames as input and outputs a state code. A state code
is a list of vectors, one for each object in the scene. Each of these vectors is a distributed
representation of the position and velocity of its corresponding object. We apply the encoder
in a sliding window over a sequence of frames, producing a sequence of state codes. See
Section [2.1 and Figure [24 for details.

e The dynamics predictor takes a sequence of state codes (output from a visual encoder
applied in a sliding-window manner to a sequence of frames) and predicts a candidate state
code for the next frame. The dynamics predictor is comprised of several interaction-net
cores, each taking input at a different temporal offset and producing candidate state codes.
These candidates are aggregated by an MLP to produce a predicted state code for the next
frame. See Section [2.2]and Figure [2b] for details.

o The state decoder converts a state code to a state. A state is a list of each object’s posi-
tion/velocity vector. The training targets for the system are ground truth states. See Section
2.3l for details.

2.1 Visual Encoder

The visual encoder is a CNN that produces a state code from a sequence of 3 images. It has a
frame pair encoder Ej,;; shown in Figure [2af which takes a pair of consecutive frames and outputs
a candidate state code. This frame pair encoder is applied to both consecutive pairs of frames in
a sequence of 3 frames. The two resulting candidate state codes are aggregated by a shared MLP
applied to the concatenation of each pair of slots. The result is an encoded state code. Eipg itself
applies a CNN with two different kernel sizes to a channel-stacked pair of frames, appends constant
x,y coordinate channels, and applies a CNN with alternating convolutional and max-pooling layers
until unit width and height. The resulting matrix of shape 1 x 1 x (Nobject - Leode) is reshaped into
a state code of shape Nopject X Lcodes Where Nopjece is the number of objects in the scene and Lioge
is the length of each state code slot. The two state codes are fed into an MLP to produce the final
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Figure 1: Visual Interaction Network: The general architecture is depicted here (see legend on the
bottom right). The visual encoder takes triplets of consecutive frames and produces a state code
for the third frame in each triplet. The visual encoder is applied in a sliding window over the input
sequence to produce a sequence of state codes. Auxiliary losses applied to the decoded output of the
encoder help in training. The state code sequence is then fed into the dynamics predictor which has
several Interaction Net cores (2 in this example) working on different temporal offsets. The outputs
of these Interaction Nets are then fed into an aggregator to produce the prediction for the next time
step. The core is applied in a sliding window manner as depicted in the figure. The predicted state
codes are linearly decoded and are used in the prediction loss when training.

encoder output from the triplet. See the Supplementary Material for further details of the visual
encoder model.

One important feature of this visual encoder architecture is its weight sharing given by applying
the same E,,;, on both pairs of frames, which approximates a temporal convolution over the input
sequence. Another important feature is the inclusion of constant coordinate channels (an x- and
y-coordinate meshgrid over the image), which allows positions to be incorporated throughout much
of the processing. Without the coordinate channels, such a convolutional architecture would have to
infer position from the boundaries of the image, a more challenging task.

2.2 Dynamics Predictor

The dynamics predictor is a variant of an Interaction Network (IN) [2l]. An IN, summarized in Figure
[2b] is a state-to-state physical predictor model that uses a shared relation net on pairs of objects
as well as shared self-dynamics and global affector nets to predict per-object dynamics. The main
difference between our predictor and a vanilla IN is aggregation over multiple temporal offsets. Our
predictor has a set of temporal offsets (in practice we use {1, 2,4}), with one IN core for each. Given
an input state code sequence, for each offset ¢ a separate IN core computes a candidate predicted state
code from the input state code at index ¢. An MLP aggregator transforms the list of candidate state
codes into a predicted state code. This aggregator is applied independently to the concatenation over
candidate state codes of each slot and is shared across slots to enforce some consistency of object
representations. See the Supplementary Material for further details of the dynamics predictor model.

As with the visual encoder, we explored many dynamics predictor architectures (some of which we
compare as baselines below). The temporal offset aggregation of this architecture enhances its power
by allowing it to accommodate both fast and slow movements by different objects within a sequence
of frames. See the Supplementary Material for an exploration of the importance of temporal offset
aggregation. The factorized representation of INs, which allows efficient learning of interactions even
in scenes with many objects, is an important contributor to our predictor architecture’s performance.
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Figure 2: Frame Pair Encoder and Interaction Net. (a) The frame pair encoder is a CNN which
transforms two consecutive input frame into a state code. Important features are the concatenation of
coordinate channels before pooling to unit width and height. The pooled output is reshaped into a
state code. (b) An Interaction Net (IN) is used for each temporal offset by the dynamics predictor. For
each slot, a relation net is applied to the slot’s concatenation with each other slot. A self-dynamics
net is applied to the slot itself. Both of these results are summed and post-processed by the affector to
produce the predicted slot.

2.3 State Decoder

The state decoder is simply a linear layer with input size L.qq4e and output size 4 (for a position/velocity
vector). This linear layer is applied independently to each slot of the state code. We explored more
complicated architectures, but this yielded the best performance. The state decoder is applied to both
encoded state codes (for auxiliary encoding loss) and predicted state codes (for prediction loss).

3 Experiments

3.1 Physical Systems Simulations

We focused on five types of physical systems with high dynamic complexity but low visual complexity,
namely 2-dimensional simulations of colored objects on natural-image backgrounds interacting with
a variety of forces (see the Supplementary Material for details). In each system the force law is
applied pair-wise to all objects and all objects have the same mass and density unless otherwise
stated.

e Spring Each pair of objects has an invisible spring connection with non-zero equilibrium.
All springs share the same equilibrium and Hooke’s constant.

e Gravity Objects are massive and obey Newton’s Law of gravity.

o Billiards No long-distance forces are present, but the billiards bounce off each other and off
the boundaries of the field of vision.

e Magnetic Billiards All billiards are positively charged, so instead of bouncing, they repel
each other according to Coulomb’s Law. They still bounce off the boundaries.

e Drift No forces of any kind are present. Objects drift with their initial velocities.

These systems include previously studied gravitational and billiards systems [3| [1]] with the added
challenge of natural image backgrounds. For example videos of these systems, see the Supplementary
Material or visit (https://goo.gl/yVQbUa).

One limitation of the above systems is that the positions, masses, and radii of all objects are either
visually observable in every frame or global constants. Furthermore, while occlusion is allowed,
the objects have the same radius so total occlusion never occurs. In contrast, systems with hidden
quantities that influence dynamics abound in the real world. To mimic this, we explored a few
challenging additional systems:

e Springs with Invisibility. In each simulation a random object is not rendered. In this way
a model must infer the location of the invisible object from its effects on the other objects.

e Springs and Billiards with Variable Mass. In each simulation, each object’s radius is
randomly generated. This not only causes total occlusion (in the Spring system), but density
is held constant, so a model must determine each object’s mass from its radius.
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To simulate each system, we initialized the position and velocity of each ball randomly and used a
physics engine to simulate the resulting dynamics. See the Supplementary Material for more details.
To generate video data, we rendered the system state on top of a CIFAR-10 natural image background.
The background was randomized between simulations. Importantly, we rendered the objects with
15-fold anti-aliasing so the visual encoder could learn to distinguish object positions much more
finely than pixel resolution, as evident by the visual encoder accuracy described in Section @.1]

For each system we generated a dataset with 3 objects and a dataset with 6 objects. Each dataset had
a training set of 2.5 - 105 simulations and a test set of 2.5 - 10* simulations, with each simulation
64 frames long. Since we trained on sequences of 14 frames, this ensures we had more than 1 - 107
training samples with distinct dynamics. We rendered natural image backgrounds online from
separate training and testing CIFAR-10 sets.

3.2 Baseline Models

We compared the VIN to a suite of baseline and competitor models, including ablation experi-
ments. For each model, we performed hyperparameter sweeps across all datasets and choose the
hyperparameter set with the lowest average test loss.

The Visual RNN has the same visual encoder as the VIN, but the core of its dynamics predictor core
is an MLP instead of an IN. Each state code is flattened before being passed to the dynamics predictor.
The dynamics predictor is still treated as a recurrent network with temporal offset aggregation, but
the dynamics predictor no longer supports the factorized representation of the IN core. Without the
weight-sharing of the IN, this model is forced to learn the same force law for each pair of objects,
which is not scalable as the object number increases.

The Visual LSTM has the same visual encoder as the VIN, but its dynamics predictor is an LSTM
[[14]] with MLP pre- and post-processors. It has no temporal offset aggregation, since the LSTM
implicitly integrates temporal information through state updates. During rollouts, the output state
code from the post-processor MLP is fed into the pre-processor MLP.

The VIN Without Relations is an ablation modification of the VIN. The only difference between
this and the VIN is an omitted relation network in the dynamics predictor cores. Note that there is still
ample opportunity to compute relations between objects (both in the visual encoder and the dynamics
predictor’s temporal offset aggregator), just not specifically through the relation network. Note that
we performed a second ablation experiment to isolate the effect of temporal offset aggregation. See
the Supplementary Material for details.

The Vision With Ground-Truth Dynamics model uses a visual encoder and a miniature version
of the dynamics predictor to predict not the next-step state but the current-step state (i.e. the state
corresponding to the last observed frame). Since this predicts static dynamics, we did not train it on
rollouts. However, when testing, we fed the static state estimation into a ground-truth physics engine
to generate rollouts. This model is not a fair comparison to the other models because it does not learn
dynamics. It serves instead as a performance bound imposed by the visual encoder. We normalized
our results by the performance of this model, as described in Section ]

All models described above learn state from pixels. However, we also trained two baselines with
privileged information: IN from State and LSTM from State models, which have the IN and LSTM
dynamics predictors, but make their predictions directly from state to state. Hence, they do not have
a visual encoder but instead have access to the ground truth states for observed frames. These, in
combination with the Vision with Ground Truth Dynamics, allowed us to comprehensively test our
model in part and in full.

3.3 Training procedure

Our goal was for the models to accurately predict physical dynamics into the future. As shown in
Figure[I] the VIN lends itself well to long-term predictions because the dynamics predictor can be
treated as a recurrent net and rolled out on state codes. We trained the model to predict a sequence of
8 consecutive unseen future states from 6 frames of input video. Our prediction loss was a normalized
weighted sum of the corresponding 8 error terms. The sum was weighted by a discount factor that
started at 0.0 and approached 1.0 throughout training, so at the start of training the model must only
predict the first unseen state and at the end it must predict an average of all 8 future states. Our



training loss was the sum of this prediction loss and an auxiliary encoding loss, as indicated in Figure
[[} The model was trained by backpropagation with an Adam optimizer [13]. See the Supplementary
Material for full training parameters.

4 Results

Our results show that the VIN predicts dynamics accurately, outperforming baselines on all datasets
(see Figures [3|and[d). It is scalable, can accommodate forces with a variety of strengths and distance
ranges, and can infer visually unobservable quantities (invisible object location) from dynamics.
Our model also generates long rollout sequences that are both visually plausible and similar to a
ground-truth physics, even outperforming state-of-the-art state-to-state models on this measure.

4.1 Inverse Normalized Loss

We evaluated the performance of each model with the Inverse Normalized Loss, defined as
Lyound/ Lmodei- Here Lpoynq is the test loss of the Vision with Ground Truth Dynamics and L., oqe;
is the test loss of the model in question (See Section[3.3). We used this metric because it is much
more interpretable than L,,,,q¢; itself. The Vision with Ground Truth Dynamics produces the best
possible predictions given the visual encoder’s error, so the Inverse Normalized Loss always lies in
[0, 1], where a value closer to 1.0 indicates better performance. The visual encoder learned position
predictions accurate to within 0.15% of the framewidth (0.048 times the pixel width), so we have no
concerns about the accuracy of the Vision with Ground Truth Dynamics.

Figure [3|shows the Inverse Normalized Loss on all test datasets after 3 - 105 training steps. The VIN
out-performs all baselines on nearly all systems. The only baseline with comparable performance
is the VIN Without Relations on Drift, which matches the VIN’s performance. This makes sense,
because the objects do not interact in the Drift system, so the relation net should be unnecessary.

Of particular note is the performance of the VIN on the invisible dataset (spring system with random
invisible object), where its performance is comparable to the fully visible 3-object Spring system. It
can locate the invisible object’s position to within 4% of the frame width (1.3 times the pixel width)
for the first 8 rollout steps.
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Figure 3: Performance. We compare our model’s Inverse Normalized Loss to that of the baselines
on all test datasets. 3-object dataset are on the upper row, and 6-object datasets are on the lower row.
By definition of the Inverse Normalized Loss, all values are in [0, 1] with 1.0 being the performance
of a ground-truth simulator given the visual encoder. The VIN (red) outperforms every baseline on
every dataset (except the VIN Without Relations on Drift, the system with no object interactions).

4.2 Euclidean Prediction Error of Rollout Positions
One important desirable feature of a physical predictor is the ability to extrapolate from a short

input video. We addressed this by comparing performance of all models on long rollout sequences
and observing the Euclidean Prediction Error. To compute the Euclidean Prediction Error from a



predicted state and ground-truth state, we calculated the mean over objects of the Euclidean norm
between the predicted and true position vectors.

We computed the Euclidean Prediction Error at each step over a 50-timestep rollout sequence. Figure
M) shows the average of this quantity over all 3-object test datasets with respect to both timestep and
object distance traveled. The VIN out-performs all other models, including the IN from state and
LSTM from state even though they have access to privileged information. This demonstrates the
remarkable robustness and generalization power of the VIN. We hypothesize that it outperforms
state-to-state models in part because its dynamics predictor must tolerate visual encoder noise during
training. This noise-robustness translates to rollouts, where the dynamics predictor remains accurate
even as its predictions deviate from true physical dynamics. The state-to-state methods are not trained
on noisy state inputs, so they exhibit poorer generalization. See the Supplementary Material for a
dataset-specific quantification of these results.
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Figure 4: Euclidean Prediction Error on 3-object datasets. We compute the mean over all test
datasets of the Euclidean Prediction Error for 50-timestep rollouts. The VIN outperforms all other
pixel-to-state models (solid lines) and state-to-state models (dashed lines). Errorbars show 95%
confidence intervals. (a) Mean Euclidean Prediction Error with respect to object distance traveled
(measured as a fraction of the frame-width). The VIN is accurate to within 6% after objects have
traversed 0.72 times the framewidth. (b) Mean Euclidean Prediction Error with respect to timestep.
The VIN is accurate to within 7.5% after 50 timesteps. The optimal information-less predictor
(predicting all objects to be at the frame’s center) has an error of 37%, higher than all models.

4.3 Visualized Rollouts

To qualitatively evaluate the plausibility of the VIN’s rollout predictions, we generated videos by
rendering the rollout predictions. These are best seen in video format, though we show them in
trajectory-trail images here as well. The backgrounds made trajectory-trails difficult to see, so
we masked the background (only for rendering purposes). Trajectory trails are shown for rollouts
between 40 and 60 time steps, depending on the dataset.

We encourage the reader to view the videos at (https://goo.gl/RjE3ey). Those include the CIFAR
backgrounds and show very long rollouts of up to 200 timesteps, which demonstrate the VIN’s
extremely realistic predictions. We find no reason to doubt that the predictions would continue to be
visually realistic (if not exactly tracking the ground-truth simulator) ad infinitum.

5 Conclusion

Here we introduced the Visual Interaction Network and showed that it can infer the physical states of
multiple objects from video input and make accurate predictions about their future trajectories. The
model uses a CNN-based visual encoder to obtain accurate measurements of object states in the scene.
The model also harnesses the prediction abilities and relational computation of Interaction Networks,
providing accurate predictions far into the future. We have demonstrated that our model performs
well on a variety of physical systems and is robust to visual complexity and partially observable data.
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Table 1: Rollout Trajectories. For each of our datasets, we show a sample frame, an example true
future trajectory, and a corresponding predicted rollout trajectory (for 40-60 frames, depending on
the dataset). The left half shows the 3-object regime and the right half shows the 6-object regime. For
visual clarity, all objects are rendered at a higher resolution here than in the training input.

One property of our model is the inherent presence of noise from the visual encoder. In contrast to
state-to-state models such as the Interaction Net, here the dynamic predictor’s input is inherently
noisy due to the discretization of our synthetic dataset rendering. Surprisingly, this noise seemed
to confer an advantage because it helped the model learn to overcome temporally compounding
errors generated by inaccurate predictions. This is especially notable when doing long term roll outs
where we achieve performance which surpasses even a pure state-to-state Interaction Net. Since this
dependence on noise would be inherent in any model operating on visual input, we postulate that this
is an important feature of any prediction model and warrants further research.

While experimentation with variable number of objects falls outside the scope of the material
presented here, this is an important direction that could be explored in further work. Importantly, INs
generalize out of the box to scenes with a variable number of objects. Should the present form of the
perceptual encoder be insufficient to support this type of generalization, this could be addressed by
using an attentional encoder and order-agnostic loss function.

Our Visual Interaction Network provides a step toward understanding how representations of objects,
relations, and physics can be learned from raw data. This is part of a broader effort toward under-
standing how perceptual models support physical predictions and how the structure of the physical
world influences our representations of sensory input, which will help Al research better capture the
powerful object- and relation-based system of reasoning that supports humans’ powerful and flexible
general intelligence.
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