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Abstract

The option framework integrates temporal abstraction into the reinforcement learn-
ing model through the introduction of macro-actions (i.e., options). Recent works
leveraged the mapping of Markov decision processes (MDPs) with options to
semi-MDPs (SMDPs) and introduced SMDP-versions of exploration-exploitation
algorithms (e.g., RMAX-SMDP and UCRL-SMDP) to analyze the impact of options
on the learning performance. Nonetheless, the PAC-SMDP sample complexity
of RMAX-SMDP can hardly be translated into equivalent PAC-MDP theoretical
guarantees, while the regret analysis of UCRL-SMDP requires prior knowledge of
the distributions of the cumulative reward and duration of each option, which are
hardly available in practice. In this paper, we remove this limitation by combining
the SMDP view together with the inner Markov structure of options into a novel
algorithm whose regret performance matches UCRL-SMDP’s up to an additive
regret term. We show scenarios where this term is negligible and the advantage
of temporal abstraction is preserved. We also report preliminary empirical results
supporting the theoretical findings.

1 Introduction

Tractable learning of how to make good decisions in complex domains over many time steps almost
definitely requires some form of hierarchical reasoning. One powerful and popular framework for
incorporating temporally-extended actions in the context of reinforcement learning is the options
framework [[1]. Creating and leveraging options has been the subject of many papers over the last two
decades (see e.g., [2, 13,14, 15,16 [7} [8]]) and it has been of particular interest recently in combination
with deep reinforcement learning, with a number of impressive empirical successes (see e.g., [9] for
an application to Minecraft). Intuitively (and empirically) temporal abstraction can help speed up
learning (reduce the amount of experience needed to learn a good policy) by shaping the actions
selected towards more promising sequences of actions [10], and it can reduce planning computation
through reducing the need to evaluate over all possible actions (see e.g., Mann and Mannor [[11]]).
However, incorporating options does not always improve learning efficiency as shown by Jong et al.
[12]. Intuitively, limiting action selection only to temporally-extended options might hamper the
exploration of the environment by restricting the policy space. Therefore, we argue that in addition to
the exciting work being done in heuristic and algorithmic approaches that leverage and/or dynamically
discover options, it is important to build a formal understanding of how and when options may help
or hurt reinforcement learning performance, and that such insights may also help inform empirically
motivated options-RL research.
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There has been fairly limited work on formal performance bounds of RL with options. Brunskill and
Li [13] derived sample complexity bounds for an RMax-like exploration-exploitation algorithm for
semi-Markov decision processes (SMDPs). While MDPs with options can be mapped to SMDPs,
their analysis cannot be immediately translated into the PAC-MDP sample complexity of learning
with options, which makes it harder to evaluate their potential benefit. Fruit and Lazaric [14] analyzed
an SMDP variant of UCRL [15] showing how its regret can be mapped to the regret of learning in the
original MDP with options. The resulting analysis explicitly showed how options can be beneficial
whenever the navigability among the states in the original MDP is not compromised (i.e., the MDP
diameter is not significantly increased), the level of temporal abstraction is high (i.e., options have
long durations, thus reducing the number of decision steps), and the optimal policy with options
performs as well as the optimal policy using primitive actions. While this result makes explicit the
impact of options on the learning performance, the proposed algorithm (UCRL-SMDP, or SUCRL
in short) needs prior knowledge on the parameters of the distributions of cumulative rewards and
durations of each option to construct confidence intervals and compute optimistic solutions. In
practice this is often a strong requirement and any incorrect parametrization (e.g., loose upper-bounds
on the true parameters) directly translates into a poorer regret performance. Furthermore, even if
a hand-designed set of options may come with accurate estimates of their parameters, this would
not be possible for automatically generated options, which are of increasing interest to the deep RL
community. Finally, this prior work views each option as a distinct and atomic macro-action, thus
losing the potential benefit of considering the inner structure and the interaction between of options,
which could be used to significantly improve sample efficiency.

In this paper we remove the limitations of prior theoretical analyses. In particular, we combine the
semi-Markov decision process view on options and the intrinsic MDP structure underlying their
execution to achieve temporal abstraction without relying on parameters that are typically unknown.
We introduce a transformation mapping each option to an associated irreducible Markov chain and
we show that optimistic policies can be computed using only the stationary distributions of the
irreducible chains and the SMDP dynamics (i.e., state to state transition probabilities through options).
This approach does not need to explicitly estimate cumulative rewards and duration of options
and their confidence intervals. We propose two alternative implementations of a general algorithm
(FREE-SUCRL, or FSUCRL in short) that differs in whether the stationary distribution of the options’
irreducible Markov chains and its confidence intervals are computed explicitly or implicitly through
an ad-hoc extended value iteration algorithm. We derive regret bounds for FSUCRL that match the
regret of SUCRL up to an additional term accounting for the complexity of estimating the stationary
distribution of an irreducible Markov chain starting from its transition matrix. This additional regret
is the, possibly unavoidable, cost to pay for not having prior knowledge on options. We further the
theoretical findings with a series of simple grid-world experiments where we compare FSUCRL to
SUCRL and UCRL (i.e., learning without options).

2 Preliminaries

Learning in MDPs with options. A finite MDP is a tuple M = {S, A, p,r} where S is the set of
states, A is the set of actions, p(s’|s, a) is the probability of transition from state s to state s’ through
action a, (s, a) is the random reward associated to (s, a) with expectation 7(s, a). A deterministic
policy 7 : & — A maps states to actions. We define an option as a tuple o = {so, Bos 7r0} where
So € S is the state where the option can be initiate 7o : S — Ais the associated stationary Markov
policy, and 3, : S — [0, 1] is the probability of termination. As proved by Sutton et al. [1]], when
primitive actions are replaced by a set of options O, the resulting decision process is a semi-Markov
decision processes (SMDP) My = {So, Os,po, Ro, 7'(9} where Sp C S is the set of states where
options can start and end, O is the set of options available at state s, po(s’|s, 0) is the probability
of terminating in s’ when starting o from s, Ro (s, 0) is the (random) cumulative reward obtained
by executing option o from state s until interruption at s’ with expectation R (s, 0), and 7o (s, 0) is
the duration (i.e., number of actions executed to go from s to s’ by following 7,) with expectation
7(s, O)EI Throughout the rest of the paper, we assume that options are well defined.

IRestricting the standard initial set to one state s, is without loss of generality (see App. @)
Notice that Ro(s,0) (similarly for 7o) is well defined only when s = s,, that is when o € Os.



Assumption 1. The set of options O is admissible, that is 1) all options terminate in finite time with
probability 1, 2), in all possible terminal states there exists at least one option that can start, i.e.,
Usco {8 : Bo(8) > 0} C Upeo{so}, 3) the resulting SMDP Mo is communicating.

Lem. 3 in [14] shows that under Asm. [I]the family of SMDPs induced by using options in MDPs
is such that for any option o, the distributions of the cumulative reward and the duration are sub-
Exponential with bounded parameters (o,-(0), b-(0)) and (o (0), b (0)) respectively. The maximal
expected duration is denoted by Tyax = max; , {To(s,0)}. Let ¢ denote primitive action steps and
let ¢ index decision steps at option level. The number of decision steps up to (primitive) step ¢ is
N(t) = max {n T, < t} where T,, = >""" | 7; is the number of primitive steps executed over n
decision steps and 7; is the (random) number of steps before the termination of the option chosen at
step 7. Under Asm. [I]there exists a policy 7* : S — O over options that achieves the largest gain
(per-step reward)
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where R; is the reward cumulated by the option executed at step ¢. The optimal gain also satisfies the
optimality equation of an equivalent MDP obtained by data-transformation (Lem. 2 in [16]), i.e.,
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where ug, is the optimal bias and O is the set of options than can be started in s (i.e., 0 € Oy &
5o = $). In the following sections, we drop the dependency on the option set O from all previous
terms whenever clear from the context. Given the optimal average reward p(,, we evaluate the
performance of a learning algorithm 2l by its cumulative (SMDP) regret over n decision steps as
AR,n) = (X0, 7)po — iy Ri. In [14] it is shown that A(2, n) is equal to the MDP regret
up to a linear “approximation” regret accounting for the difference between the optimal gains of M
on primitive actions and the associated SMDP M.

3 Parameter-free SUCRL for Learning with Options

Optimism in SUCRL. At each episode, SUCRL runs a variant of extended value iteration (EVI) [17]
to solve the “optimistic” version of the data-transformation optimality equation in Eq.[2] i.e.,

7= i { e { f((:;’)) + 2y (max{ T ls0 ()} -7 (9) } } )
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where R and T are the vectors of cumulative rewards and durations for all state-option pairs and they
belong to confidence intervals constructed using parameters (o,-(0), b,(0)) and (o (0), b-(0)) (see
Sect.3 in [[14] for the exact expression). Similarly, confidence intervals need to be computed for p,
but this does not require any prior knowledge on the SMDP since the transition probabilities naturally
belong to the simplex over states. As a result, without any prior knowledge, such confidence intervals
cannot be directly constructed and SUCRL cannot be run. In the following, we see how constructing
an irreducible Markov chain (MC) associated to each option avoids this problem.

3.1 Irreducible Markov Chains Associated to Options

Options as absorbing Markov chains. A natural way to address SUCRL’s limitations is to avoid
considering options as atomic operations (as in SMDPs) but take into consideration their inner (MDP)
structure. Since options terminate in finite time (Asm.[I)), they can be seen as an absorbing Markov
reward process whose state space contains all states that are reachable by the option and where option
terminal states are absorbing states of the MC (see Fig. [I). More formally, for any option o the set
of inner states S, includes the initial state s, and all states s with 3,(s) < 1 that are reachable by
executing 7, from s, (e.g., S, = {so, s1} in Fig.|1), while the set of absorbing states S includes
all states with 3,(s) > 0 (e.g., S® = {s0, 51, 2} in Fig. ' The absorbing MC associated to o is
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Figure 1: (upper-left) MDP with an option o starting from so and executing ao in all states with termination
probabilities Bo(s0) = Bo, Bo(s1) = 1 and Bo(s2) = 1. (upper-right) SMDP dynamics associated to option o.
(lower-left) Absorbing MC associated to options o. (lower-right) Irreducible MC obtained by transforming the
associated absorbing MC with p" = (1 — 30)(1 — p) + Bo(1 — p) + pB1 and p” = B1(1 — p) + p.

characterized by a transition matrix P, of dimension (|S,| + |S2|) x (|S,| + |S2|) defined af|

Qo V. Qo(s,8") = (1 = Bo(s"))p(s'|s, o (s)) for any s, 5" € S,
P, = { ° IO} with
Vo(s,8") = Bo(8")p(s'|s, mo(s)) for any s € S,, 8" € S,

where @), is the transition matrix between inner states (dim. |S,| X |S,|), V, is the transition
matrix from inner states to absorbing states (dim. |S,| x |S2|), and I is the identity matrix (dim.
|S35| x |S2bs]). As proved in Lem. 3 in [14], the expected cumulative rewards R(s, o), the duration
T(s, 0), and the sub-Exponential parameters (o,.(0), b.(0)) and (o, (0), b, (0)) are directly related to
the transition matrices @, and V,, of the associated absorbing chain P,. This suggests that, given an
estimate of P,, we could directly derive the corresponding estimates of R(s, 0) and 7(s, 0). Following
this idea, we could “propagate” confidence intervals on the entries of P, to obtain confidence intervals
on rewards and duration estimates without any prior knowledge on their parameters and thus solve
Eq. 3] without any prior knowledge. Nonetheless, intervals on P, do not necessarily translate into
compact bounds for R and 7. For example, if the value VO = 0 belongs to the confidence interval of

P, (no state in S can be reached), the corresponding optimistic estimates R(s 0) and 7(s, 0) are
unbounded and Eq [is ill-defined.

Options as irreducible Markov chains. We first notice from Eq. [2| that computing the optimal
policy only requires computing the ratio R(s, 0)/7(s, 0) and the inverse 1/7(s, 0). Starting from P,,
we can construct an irreducible MC whose stationary distribution is directly related to these terms.
We proceed as illustrated in Fig. [1} all terminal states are “merged” together and their transitions
are “redirected” to the initial state s,. More formally, let 1 be the all-one vector of dimension
|52, then v, = V,,1 € RISl contains the cumulative probability to transition from an inner state
to any terminal state. Then the chain P, can be transformed into a MC with transition matrix
P! =[v, Q] € RSS2 where @/, contains all but the first column of Q,. P, is now an irreducible
MC as any state can be reached starting from any other state and thus it admits a unique stationary
distribution fi,. In order to relate 1, to the optimality equation in Eq. 2} we need an additional
assumption on the options.

Assumption 2. For any option o € O, the starting state s, is also a terminal state (i.e., 5, (s,) = 1)
and any state s' € S with B,(s') < 1 is an inner state (i.e., s' € S,).

3In the following we only focus on the dynamics of the process; similar definitions apply for the rewards.



Input: Confidence § €]0, 1], Tmax, S, A, O
For episodes k = 1,2, ... do

1. Setiy := 14, t = i and episode counters v (s, a) = 0, vi(s,0) =0

2. Compute estimates Dy (s'|s, 0), ﬁ;k, 7k (s, a) and their confidence intervals in Eq,lEI
3. Compute an e,-approximation of the optimal optimistic policy 7 of Eq.

4. While VI € [t +1,t+ Ti], Z/k(sl, al) < Nk(sl, CL[) do

(a) Execute option 0; = 7% (s;), obtain primitive rewards r;, ..., 7* and visited states s}, ..., 87" = s;41
(b) Setvi(si,0;) +=1,i +=1,t += 7; and vx (s, mo, (s)) += 1 forall s € {s},...,s.°}

5. Set Ni(s,0) += vi(s,0) and N(s,a) += vi(s,a)

Figure 2: The general structure of FSUCRL.

While the first part has a very minor impact on the definition of O, the second part of the assumption
guarantees that options are “well designed” as it requires the termination condition to be coherent
with the true inner states of the option, so that if 5,(s’) < 1 then s’ should be indeed reachable by the
option. Further discussion about Asm. [2]is reported in App.[A] We then obtain the following property.

Lemma 1. Under Asm. [Z] let po € [0,1]5° be the unique stationary distribution of the irreducible
MC P(; associated to option o, then

Vs €S, Yo € Os, ﬁ = uo(s) and R(s,0) = Z (s, o (s po(s)). (@)
’ s'eS,

This lemma illustrates the relationship between the stationary distribution of P/ and the key terms in
Eq.[2°| As a result, we can apply Lem. (1|to Eq.|3[and obtain the optimistic optimality equation

Vs€S p*=max { max { Z To (8') 110(8") +ﬁo(s)<r%ax {E;‘)ﬁ*} _ ﬂ*(s))}}, ®)

0€Qyq Po,To scs, o

where 7, (s") = 7 (s',m,(s")) and b, = (p(s'[s,0)), cs- Unlike in the absorbing MC case, where
compact confidence sets for P, may lead to unbounded optimistic estimates for R and 7, in this for-
mulation y,(s) can be equal to 0 (i.e., infinite duration and cumulative reward) without compromising
the solution of Eq.[5] Furthermore, estimating 1, implicitly leverages over the correlation between
cumulative reward and duration, which is ignored when estimating R(s, 0) and 7(s, 0) separately.
Finally, we prove the following result.

Lemma 2. Let7, € R, 50 € P, and 11, € M, with R, P, M compact sets containing the true
parameters T, b, and 1., then the optimality equation in Eq.[5|always admits a unique solution p*
and p* > p* (i.e., the solution of Eq.[3is an optimistic gain).

Now, we need to provide an explicit algorithm to compute the optimistic optimal gain p* of Eq.[5|and
its associated optimistic policy. In the next section, we introduce two alternative algorithms that are
guaranteed to compute an e-optimistic policy.

3.2 SUCRL with Irreducible Markov Chains

The structure of the UCRL-like algorithm for learning with options but with no prior knowledge on
distribution parameters (called FREE-SUCRL, or FSUCRL) is reported in Fig. 2] Unlike SUCRL we
do not directly estimate the expected cumulative reward and duration of options but we estimate the
SMDP transition probabilities p(s’|s, 0), the irreducible MC P, associated to each option, and the
state-action reward 7(s, a). For all these terms we can compute confidence intervals (Hoeffding and
empirical Bernstein) without any prior knowledge as

“Notice that since option o is defined in s, then s = s,. Furthermore 7 is the MDP expected reward.
SLem. in App. @]extends this result by giving an interpretation of p,(s'), Vs’ € S,.
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where Ny (s, a) (resp. Ni(s,0)) is the number of samples collected at state-action s, a (resp. state-
option s,0) up to episode k, Eq. [6a] coincides with the one used in UCRL, in Eq. [6b] s = s,
and s’ € S, and in Eq.[6d]s,s' € S,. Finally, we set ¢;, 5 = O (log (SOty)/6)) and dy, 5 =
O (log (|So|log(tx)/6)) 18, Eq. 31].

To obtain an actual implementation of the algorithm reported on Fig. 2] we need to define a procedure
to compute an approximation of Eq. [5] (step 3). Similar to UCRL and SUCRL, we define an EVI
algorithm starting from a function uy(s) = 0 and computing at each iteration j

u;+1(s) =max {m@x { Z To (8') [1o(8") + Tio(s) (nlax {Eguj} - u](s)) } }—l—uj(s), (7)
0€05 Ho s'es bo

where 7,(s’) is the optimistic reward (i.e., estimate plus the confidence bound of Eq. [6a) and the
optimistic transition probability vector b, is computed using the algorithm introduced in [19, App.
A] for Bernstein bound as in Eqs. [6b} [6c|or in [15] Fig. 2] for Hoeffding bound (see App.[B).

Depending on whether confidence intervals for 1, are computed explicitly or implicitly we can define
two alternative implementations that we present below.

Explicit confidence intervals. Given the estimate P/, let i, be the solution of &I = /il P’ under

constraint £Te = e. Such a fi, always exists and is unique since 13(2 is computed after terminating
the option at least once and is thus irreducible. The perturbation analysis in [20] can be applied to
derive the confidence interval

1o = Fiolli < B}:(0) i= Romin| Py = Phlloc1s (8)
where ||-||co,1 is the maximum of the ¢;-norm of the rows of the transition matrix, Ko min is the
smallest condition numbelﬂ for the £1-norm of .. Let ¢, € RISo! be such that ¢,(s,) = 7o (s,) +
maxg {bTu;} — uj(s,) and ¢y(s) = 7o(s), then the maximum over fi, in Eq. has the same
form as the innermost maximum over b, (with Hoeffding bound) and thus we can directly apply
Alg. [15] Fig. 2] with parameters fi,, ,B,’j (0), and states S, ordered descendingly according to {,. The

resulting value is then directly plugged into Eq. [/|and u ;1 is computed. We refer to this algorithm
as FSUCRLVI.

Nested extended value iteration. An alternative approach builds on the observation that the maxi-
mum over u, in Eq.[7|can be seen as the optimization of the average reward (gain)

p(uj—max{Z@ (s } ©)

s’eS,

where (, is defined as above. Eq.[9]is indeed the optimal gain of a bounded-parameter MDP with

state space S,, an action space composed of the option action (i.e., 7,(s)), and transitions P’ in the
confidence intervals E] of Eq. E 6¢, and thus we can write its optimality equation

po(u;) = max{ +ZP s5,8") )} wi(s), (10)

The provably smallest condition number (refer to [21 Th. 2.3]) is the one pr0V1ded by Seneta [22]:
Ro,min = Tl(Z ) =max; j 5 HZ )—Z (7, )l whereZ (2,:) is the 4-th row on =({- P'—i—lT )*

"The confidence intervals on P, can never exclude a non-zero transition between any two states of S,,. There-
fore, the corresponding bounded-parameter MDP is always communicating and p}, (u;) is state-independent.



where w? is an optimal bias. For any input function v we can compute p*(v) by using EVI on the

bounded-parameter MDP, thus avoiding to explicitly construct the confidence intervals of fi,. As a

result, we obtain two nested EVI algorithms where, starting from an initial bias function vy(s) = 0,
at any iteration j we set the bias function of the inner EVI to w? (s) = 0 and we compute (see
pp. [C.3|for the general EVI for bounded-parameter MDPs and its guarantees)

wi i (s') = “;ax{Co(S) + ﬁo(-ls’)Tw;’,z} : (11)

o

until the stopping condition [ = inf{l > 0 : sp{w};, ; —w$,;} < €;} is met, where (£;);>0 is a
vanishing sequence. As w?,,; — w7, converges to p5(v;) with I, the outer EVI becomes

viy1(s) = (I)Iel%}z {g(w;’l;+1 - w;?,l;;)} +v;(s), (12)

2
call FSUCRLV2, converges to the solution of Eq. urthermore, if the algorithm is stopped when

sp{vj41 — v} +e; <ethen [p” — g(vjp1 —vj)[ <&/2.

One of the interesting features of this algorithm is its hierarchical structure. Nested EVI is operating
on two different time scales by iteratively considering every option as an independent optimistic
planning sub-problem (EVI of Eq. and gathering all the results into a higher level planning
problem (EVI of Eq.[I2). This idea is at the core of the hierarchical approach in RL, but it is not
always present in the algorithmic structure, while nested EVI naturally arises from decomposing
Eq.[7]in two value iteration algorithms. It is also worth to underline that the confidence intervals
implicitly generated for i, are never worse than those in Eq.|8|and they are often much tighter. In
practice the bound of Eq.[§|may be actually worse because of the worst-case scenario considered in
the computation of the condition numbers (see Sec. [5]and App. [F).

where g : v — 1 (max{v} 4+ min{v}). In App we show that this nested scheme, that we
&

4 Theoretical Analysis

Before stating the guarantees for FSUCRL, we recall the definition of diameter of M and M¢:

_ . / _ . /
D= pmigg i Elre(s ), Do = max nging Blre(e )],

where 7. (s, ") is the (random) number of primitive actions to move from s to s’ following policy 7.
We also define a pseudo-diameter characterizing the “complexity” of the inner dynamics of options:

) r*ni + Tmaxkeo
O T ——
/u*

where we define:

* 1 _ 1 oo 00 * . .
r* =max{sp(ro)}, #, = max {Ro}, K= max {#,°}, and x" = min {snéfsno uo(S)}
with ! and k° the condition numbers of the irreducible MC associated to options o (for the ¢; and
{~-norm respectively [20]) and sp(r,) the span of the reward of the option. In App. @]W(a prove the
following regret bound.

Theorem 1. Let M be a communicating MDP with reward bounded between O and rmax = 1 and
let O be a set of options satisfying Asm. and[Z] such that o,.(s,0) < oy, 0:(s,0) < o, and
7(8,0) < Timax. We also define Bo = max, , supp(p(:|s, 0)) (resp. B = max; o supp(p(-|s,a)) as
the largest support of the SMDP (resp. MDP) dynamics. Let T,, be the number of primitive steps
executed when running FSUCRLV2 over n decision steps, then its regret is bounded as

A(FSUCRL,n) = O ( DoV SBoOn + (o, + o7)v/n +SAT, + Do/ SBOT, ) (13)

Ap AR, Ay

8We use v; instead of u; since the error in the inner EVI directly affects the value of the function at the outer
EVI, which thus generates a sequence of functions different from (u; ).



Comparison to SUCRL. Using the confidence intervals of Eq. |6bjand a slightly tighter analysis than
the one by Fruit and Lazaric [[14] (Bernstein bounds and higher accuracy for EVI) leads to a regret
bound for SUCRL as

A(SUCRL,n) = 5(A,, + Apr + (o) + oi)\/SAn), (14)

’
ARr

where o;F and o are upper-bounds on o, and o, that are used in defining the confidence intervals for
7 and R that are actually used in SUCRL. The term A, is the regret induced by errors in estimating
the SMDP dynamics p(s’|s, 0), while Ag , summarizes the randomness in the cumulative reward
and duration of options. Both these terms scale as /n, thus taking advantage of the temporal
abstraction (i.e., the ratio between the number of primitive steps 7;, and the decision steps n). The
main difference between the two bounds is then in the last term, which accounts for the regret due to
the optimistic estimation of the behavior of the options. In SUCRL this regret is linked to the upper
bounds on the parameters of R and 7. As shown in Thm.2 in [14], when aj = o, and ch+ = o,, the
bound of SUCRL is nearly-optimal as it almost matches the lower-bound, thus showing that A%,J
is unavoidable. In FSUCRL however, the additional regret A, comes from the estimation errors of
the per-time-step rewards r, and the dynamic P/. Similar to A, these errors are amplified by the

pseudo-diameter 50. While A, may actually be the unavoidable cost to pay for removing the prior

knowledge about options, it is interesting to analyze how Dy changes with the structure of the options
(see App. E]for a concrete example). The probability y,(s) decreases as the probability of visiting
an inner state s € S, using the option policy. In this case, the probability of collecting samples on
the inner transitions is low and this leads to large estimation errors for P.. These errors are then
propagated to the stationary distribution i, through the condition numbers  (e.g., . directly follows
from an non-empirical version of Eq.[8). Furthermore, we notice that 1/p,(s) > 75(s) > |Sol,
suggesting that “long” or “big” options are indeed more difficult to estimate. On the other hand, A,
becomes smaller whenever the transition probabilities under policy 7, are supported over a few states
(B small) and the rewards are similar within the option (sp(r,) small). While in the worst case A,
may actually be much bigger than A’R’T when the parameters of R and 7 are accurately known (i.e.,

of =~ o, and o) =~ 0,.), in Sect. we show scenarios in which the actual performance of FSUCRL
is close or better than SUCRL and the advantage of learning with options is preserved.

To explain why FSUCRL can perform better than SUCRL we point out that FSUCRL’s bound is
somewhat worst-case w.r.t. the correlation between options. In fact, in Eq. [6¢|the error in estimating
P! in a state s does not scale with the number of samples obtained while executing option o but
those collected by taking the primitive action prescribed by m,. This means that even if o has a low
probability of reaching s starting from s, (i.e., i, ($) is very small), the true error may still be small
as soon as another option o’ executes the same action (i.e., m,(s) = 7, (s)). In this case the regret
bound is loose and the actual performance of FSUCRL is much better. Therefore, although it is
not apparent in the regret analysis, not only is FSUCRL leveraging on the correlation between the
cumulative reward and duration of a single option, but it is also leveraging on the correlation between
different options that share inner state-action pairs.

Comparison to UCRL. We recall that the regret of UCRL is bounded as O(D+/SBAT,,), where
T, is to the total number of steps. As discussed by [[14]], the major advantage of options is in terms
of temporal abstraction (i.e., T;, > n) and reduction of the state-action space (i.e., So < S and
O < A). Eq.(13) also reveals that options can also improve the learning speed by reducing the size of
the support B of the dynamics of the environment w.r.t. primitive actions. This can lead to a huge
improvement e.g., when options are designed so as to reach a specific goal. This potential advantage
is new compared to [14] and matches the intuition on “good” options often presented in the literature
(see e.g., the concept of “funnel” actions introduced by Dietterich [23])).

Bound for FSUCRLvV1. Bounding the regret of FSUCRLV1 requires bounding the empirical X in
Eq. (8) with the true condition number . Since % tends to « as the number of samples of the option
increases, the overall regret would only be increased by a lower order term. In practice however,
FSUCRLV2 is preferable to FSUCRLv1. The latter will suffer from the true condition numbers

(/@(1))0 co since they are used to compute the confidence bounds on the stationary distributions

(o) co» While for FSUCRLV2 they appear only in the analysis. As much as the dependency on the
diameter in the analysis of UCRL, the condition numbers may also be loose in practice, although
tight from a theoretical perspective. See App/D.6|and experiments for further insights.
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Figure 3: (Left) Regret after 1.2 - 108 steps normalized w.r.t. UCRL for different option durations in a 20x20
grid-world. (Right) Evolution of the regret as I3, increases for a 14x14 four-rooms maze.

5 Numerical Simulations

In this section we compare the regret of FSUCRL to SUCRL and UCRL to empirically verify
the impact of removing prior knowledge about options and estimating their structure through the
irreducible MC transformation. We consider the toy domain presented in [14] that was specifically
designed to show the advantage of temporal abstraction and the classical 4-rooms maze [1]]. To be
able to reproduce the results of [14], we run our algorithm with Hoeffding confidence bounds for the
£1-deviation of the empirical distribution (implying that By has no impact). We consider settings
where A ; is the dominating term of the regret (refer to App. E] for details).

When comparing the two versions of FSUCRL to UCRL on the grid domain (see Fig. [3|(left)), we

empirically observe that the advantage of temporal abstraction is indeed preserved when removing

the knowledge of the parameters of the option. This shows that the benefit of temporal abstraction is

not just a mere artifact of prior knowledge on the options. Although the theoretical bound in Thm.|T]
is always worse than its SMDP counterpart (14), we see that FSUCRL performs much better than

SUCRL in our examples. This can be explained by the fact that the options we use greatly overlap.
Even if our regret bound does not make explicit the fact that FSUCRL exploits the correlation between

options, this can actually significantly impact the result in practice. The two versions of SUCRL
differ in the amount of prior knowledge given to the algorithm to construct the parameters o, and
ot that are used in building the confidence intervals.In v3 we provide a tight upper-bound 7,ax
on the rewards and distinct option-dependent parameters for the duration (7, and o, (0)), in v2 we
only provide a global (option-independent) upper bound on 7, and ¢,. Unlike FSUCRL which is
“parameter-free”, SUCRL is highly sensitive to the prior knowledge about options and can perform
even worse than UCRL. A similar behaviour is observed in Fig. |3| (right) where both the versions
of SUCRL fail to beat UCRL but FSUCRLV2 has nearly half the regret of UCRL. On the contrary,
FSUCRLV1 suffers a linear regret due to a loose dependency on the condition numbers (see App. [F.2).
This shows that the condition numbers appearing in the bound of FSUCRLV2 are actually loose. In
both experiments, UCRL and FSUCRL had similar running times meaning that the improvement in
cumulative regret is not at the expense of the computational complexity.

6 Conclusions

We introduced FSUCRL, a parameter-free algorithm to learn in MDPs with options by combining
the SMDP view to estimate the transition probabilities at the level of options (p(s’|s,0)) and the
MDP structure of options to estimate the stationary distribution of an associated irreducible MC
which allows to compute the optimistic policy at each episode. The resulting regret matches SUCRL
bound up to an additive term. While in general, this additional regret may be large, we show both
theoretically and empirically that FSUCRL is actually competitive with SUCRL and it retains the
advantage of temporal abstraction w.r.t. learning without options. Since FSUCRL does not require
strong prior knowledge about options and its regret bound is partially computable, we believe the
results of this paper could be used as a basis to construct more principled option discovery algorithms
that explicitly optimize the exploration-exploitation performance of the learning algorithm.
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