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Abstract

Learning the directed acyclic graph (DAG) structure of a Bayesian network from ob-
servational data is a notoriously difficult problem for which many non-identifiability
and hardness results are known. In this paper we propose a provably polynomial-
time algorithm for learning sparse Gaussian Bayesian networks with equal noise
variance — a class of Bayesian networks for which the DAG structure can be
uniquely identified from observational data — under high-dimensional settings.
We show that O(k

4

log p) number of samples suffices for our method to recover
the true DAG structure with high probability, where p is the number of variables
and k is the maximum Markov blanket size. We obtain our theoretical guarantees
under a condition called restricted strong adjacency faithfulness (RSAF), which is
strictly weaker than strong faithfulness — a condition that other methods based on
conditional independence testing need for their success. The sample complexity of
our method matches the information-theoretic limits in terms of the dependence on
p. We validate our theoretical findings through synthetic experiments.

1 Introduction and Related Work

Motivation. The problem of learning the directed acyclic graph (DAG) structure of Bayesian
networks (BNs) in general, and Gaussian Bayesian networks (GBNs) — or equivalently linear
Gaussian structural equation models (SEMs) — in particular, from observational data has a long
history in the statistics and machine learning community. This is, in part, motivated by the desire to
uncover causal relationships between entities in domains as diverse as finance, genetics, medicine,
neuroscience and artificial intelligence, to name a few. Although in general, the DAG structure
of a GBN or linear Gaussian SEM cannot be uniquely identified from purely observational data
(i.e., multiple structures can encode the same conditional independence relationships present in the
observed data set), under certain restrictions on the generative model, the DAG structure can be
uniquely determined. Furthermore, the problem of learning the structure of BNs exactly is known
to be NP-complete even when the number of parents of a node is at most q, for q > 1, [1]. It is
also known that approximating the log-likelihood to a constant factor, even when the model class is
restricted to polytrees with at-most two parents per node, is NP-hard [2].

Peters and Bühlmann [3] recently showed that if the noise variances are the same, then the structure
of a GBN can be uniquely identified from observational data. As observed by them, this “assumption
of equal error variances seems natural for applications with variables from a similar domain and is
commonly used in time series models”. Unfortunately, even for the equal noise-variance case, no
polynomial time algorithm is known.

Contribution. In this paper we develop a polynomial time algorithm for learning a subclass of
BNs exactly: sparse GBNs with equal noise variance. This problem has been considered by [3]
who proposed an exponential time algorithm based on `

0

-penalized maximum likelihood estimation
(MLE), and a heuristic greedy search method without any guarantees. Our algorithm involves
estimating a p-dimensional inverse covariance matrix and solving 2(p� 1) at-most-k-dimensional
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ordinary least squares problems, where p is the number of nodes and k is the maximum Markov
blanket size of a variable. We show that O((

k4
/↵2

) log(

p
/�)) samples suffice for our algorithm to

recover the true DAG structure and to approximate the parameters to at most ↵ additive error, with
probability at least 1 � �, for some � > 0. The sample complexity of O(k

4

log p) is close to the
information-theoretic limit of ⌦(k log p) for learning sparse GBNs as obtained by [4]. The main
assumption under which we obtain our theoretical guarantees is a condition that we refer to as the
↵-restricted strong adjacency faithfulness (RSAF). We show that RSAF is a strictly weaker condition
than strong faithfulness, which methods based on independence testing require for their success. In
this identifiable regime, given enough samples, our method can recover the exact DAG structure of
any Gaussian distribution. However, existing exact algorithms like the PC algorithm [5] can fail to
recover the correct skeleton for distributions that are not faithful, and fail to orient a number of edges
that are not covered by the Meek orientation rules [6, 7]. Of independent interest is our analysis of
OLS regression under the random design setting for which we obtain `1 error bounds.

Related Work. In the this section, we first discuss some identifiability results for GBNs known in
the literature and then survey relevant algorithms for learning GBNs and Gaussian SEMs.

[3] proved identifiability of distributions drawn from a restricted SEM with additive noise, where in
the restricted SEM the functions are assumed to be non-linear and thrice continuously differentiable.
It is also known that SEMs with linear functions and strictly non-Gaussian noise are identifiable [8].
Indentifiability of the DAG structure for the linear function and Gaussian noise case was proved by
[9] when noise variables are assumed to have equal variance.

Algorithms for learning BNs typically fall into two distinct categories, namely: independence test
based methods and score based methods. This dichotomy also extends to the Gaussian case. Score
based methods assign a score to a candidate DAG structure based on how well it explains the observed
data, and then attempt to find the highest scoring structure. Popular examples for the Gaussian
distribution are the log-likelihood based BIC and AIC scores and the `

0

-penalized log-likelihood
score by [10]. However, given that the number of DAGs and sparse DAGs is exponential in the
number of variables [4, 11], exhaustively searching for the highest scoring DAG in the combinatorial
space of all DAGs, which is a feature of existing exact search based algorithms, is prohibitive for all
but a few number of variables. [12] propose a score-based method, based on concave penalization of
a reparameterized negative log-likelihood function, which can learn a GBN over 1000 variables in an
hour. However, the resulting optimization problem is neither convex — therefore is not guaranteed to
find a globally optimal solution — nor solvable in polynomial time. In light of these shortcomings,
approximation algorithms have been proposed for learning BNs which can be used to learn GBNs in
conjunction with a suitable score function; notable methods are Greedy Equivalence Search (GES)
proposed by [13] and an LP-relaxation based method proposed by [14].

Among independence test based methods for learning GBNs, [15] extended the PC algorithm,
originally proposed by [5], to learn the Markov equivalence class of GBNs from observational data.
The computational complexity of the PC algorithm is bounded by O(p

k
) with high probability, where

k is the maximum neighborhood size of a node, and is only efficient for learning very sparse DAGs.
For the non-linear Gaussian SEM case, [3] developed a two-stage algorithm called RESIT, which
works by first learning the causal ordering of the variables and then performing regressions to learn
the DAG structure. As we formally show in Appendix C.1, RESIT does not work for the linear
Gaussian case. Moreover, Peters et al. proved the correctness of RESIT only in the population
setting. Lastly, [16] developed an algorithm, which is similar in spirit to our algorithm, for efficiently
learning Poisson Bayesian networks. They exploit a property specific to the Poisson distribution
called overdispersion to learn the causal ordering of variables.

Finally, the max-min hill climbing (MMHC) algorithm by [17] is a state-of-the-art hybrid algorithm
for BNs that combines ideas from constraint-based and score-based learning. While MMHC works
well in practice, it is inherently a heuristic algorithm and is not guaranteed to recover the true DAG
structure even when it is uniquely identifiable.

2 Preliminaries

In this section, we formalize the problem of learning Gaussian Bayesian networks from observational
data. First, we introduce some notations and definitions.

2



We denote the set {1, . . . , p} by [p]. Vectors and matrices are denoted by lowercase and uppercase
bold faced letters respectively. Random variables (including random vectors) are denoted by italicized
uppercase letters. Let sr, sc ✓ [p] be any two non-empty index sets. Then for any matrix A 2 Rp⇥p,
we denote the R|sr|⇥|sc| sub-matrix, formed by selecting the sr rows and sc columns of A by:
Asr,sc . With a slight abuse of notation, we will allow the index sets sr and sc to be a single
index, e.g., i, and we will denote the index set of all row (or columns) by ⇤. Thus, A⇤,i and Ai,⇤
denote the i-th column and row of A respectively. For any vector v 2 Rp, we will denote its
support set by: S(v) = {i 2 [p]||vi| > 0}. Vector `p-norms are denoted by k·kp. For matrices,
k ·kp denotes the induced (or operator) `p-norm and | · |p denotes the element-wise `p-norm, i.e.,
|A|p def

= (

P
i,j |Ai,j |p)1/p. Finally, we denote the set [p] \ {i} by �i.

Let G = (V,E) be a directed acyclic graph (DAG) where the vertex set V = [p] and E is the set of
directed edges, where (i, j) 2 E implies the edge i j. We denote by ⇡G(i) and �G(i) the parent
set and the set of children of the i-th node, respectively, in the graph G, and drop the subscript G
when the intended graph is clear from context. A vertex i 2 [p] is a terminal vertex in G if �G(i) = ?.
For each i 2 [p] we have a random variable Xi 2 R, X = (X

1

, . . . , Xp) is the p-dimensional vector
of random variables, and x = (x

1

, . . . , xp) is a joint assignment to X . Without loss of generality, we
assume that E [Xi] = 0, 8i 2 [p]. Every DAG G = (V,E) defines a set of topological orderings TG
over [p] that are compatible with the DAG G, i.e., TG = {⌧ 2 Sp | ⌧(j) < ⌧(i) if (i, j) 2 E}, where
Sp is the set of all possible permutations of [p].

A Gaussian Bayesian network (GBN) is a tuple (G,P(W, S)), where G = (V,E) is a DAG structure,
W = {wi,j 2 R | (i, j) 2 E ^ |wi,j | > 0} is the set of edge weights, S = {�2

i 2 R
+

}pi=1

is the set of
noise variances, and P is a multivariate Gaussian distribution over X = (X

1

, . . . , Xp) that is Markov

with respect to the DAG G and is parameterized by W and S. In other words, P = N (x;0,⌃),
factorizes as follows:

P(x;W, S) =
pY

i=1

Pi(xi;wi,x⇡(i),�
2

i ), (1)

Pi(xi;wi,x⇡(i),�
2

i ) = N (xi;w
T
i x⇡(i),�

2

i ), (2)

where wi 2 R|⇡(i)| def

= (wi,j)j2⇡(i) is the weight vector for the i-th node, 0 is a vector of zeros of
appropriate dimension (in this case p), x⇡(i) = {xj | j 2 ⇡(i)}, ⌃ is the covariance matrix for X ,
and Pi is the conditional distribution of Xi given its parents — which is also Gaussian.

We will also extensively use an alternative, but equivalent, view of a GBN: the linear structural

equation model (SEM). Let B = (wi,j1 [(i, j) 2 E])
(i,j)2[p]⇥[p] be the matrix of weights created

from the set of edge weights W. A GBN (G,P(W, S)) corresponds to a SEM where each variable
Xi can be written as follows:

Xi =

X

j2⇡(i)

Bi,jXj +Ni, 8i 2 [p] (3)

with Ni ⇠ N (0,�

2

i ) (for all i 2 [p]) being independent noise variables and |Bi,j | > 0 for all j 2 ⇡(i).
The joint distribution of X as given by the SEM corresponds to the distribution P in (1) and the
graph associated with the SEM, where we have a directed edge (i, j) if j 2 ⇡(i), corresponds to the
DAG G. Denoting N = (N

1

, . . . , Np) as the noise vector, (3) can be rewritten in vector form as:
X = BX +N .

Given a GBN (G,P(W, S)), with B being the weight matrix corresponding to W, we denote the
effective influence between two nodes i, j 2 [p]

ewi,j
def

= B

T
⇤,iB⇤,j �Bi,j �Bj,i (4)

The effective influence ewi,j between two nodes i and j is zero if: (a) i and j do not have an edge
between them and do not have common children, or (b) i and j have an edge between them but the dot
product between the weights to the children (BT

⇤,iB⇤,j) exactly equals the edge weight between i and
j (Bi,j +Bj,i). The effective influence determines the Markov blanket of each node, i.e., 8i 2 [p],
the Markov blanket is given as: Si = {j | j 2 �i ^ ewi,j 6= 0} 1. Furthermore, a node is conditionally

1Our definition of Markov blanket differs from the commonly used graph-theoretic definition in that the
latter includes the parents, children and all the co-parents of the children of node i in the Markov blanket Si.
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independent of all other nodes not in its Markov blanket, i.e., Pr{Xi|X�i} = Pr{Xi|XSi}. Next,
we present a few definitions that will be useful later.
Definition 1 (Causal Minimality [18]). A distribution P is causal minimal with respect to a DAG

structure G if it is not Markov with respect to a proper subgraph of G.

Definition 2 (Faithfulness [5]). Given a GBN (G,P), P is faithful to the DAG G = (V,E) if for any

i, j 2 V and any V0 ✓ V \ {i, j}:

i d-separated from j | V0 () corr(Xi, Xj |XV0
) = 0,

where corr(Xi, Xj |XV0
) is the partial correlation between Xi and Xj given XV0

.

Definition 3 (Strong Faithfulness [19]). Given a GBN (G,P) the multivariate Gaussian distribution

P is �-strongly faithful to the DAG G, for some � 2 (0, 1), if

min{|corr(Xi, Xj |XV0
)| : i is not d-separated from j | V0

, 8i, j 2 [p] ^ 8V0 ✓ V \ {i, j}^} � �.

Strong faithfulness is a stronger version of the faithfulness assumption that requires that for all triples
(Xi, Xj , XV0

) such that i is not d-separated from j given V0, the partial correlation corr(Xi, Xj |XV0
)

is bounded away from 0. It is known that while the set of distributions P that are Markov to a DAG
G but not faithful to it have Lebesgue measure zero, the set of distributions P that are not strongly
faithful to G have nonzero Lebesgue measure, and in fact can be quite large [20].

The problem of learning a GBN from observational data corresponds to recovering the DAG structure
G and parameters W from a matrix X 2 Rn⇥p of n i.i.d. samples drawn from P(W, S). In this paper
we consider the problem of learning GBNs over p variables where the size of the Markov blanket of a
node is at most k. This is in general not possible without making additional assumptions on the GBN
(G,P(W, S)) and the distribution P as we describe next.

Assumptions. Here, we enumerate our technical assumptions.
Assumption 1 (Causal Minimality). Let (G,P(W, S)) be a GBN, then 8wi,j 2W, |wi,j | > 0.

The above assumption ensures that all edge weights are strictly nonzero, which results in each variable
Xi being a non-constant function of its parents X⇡(i). Given Assumption 1, the distribution P is
causal minimal with respect to G [3] and therefore identifiable under equal noise variances [9], i.e.,
�

1

= . . . = �p = �. Throughout the rest of the paper, we will denote such Bayesian networks by
(G,P(W,�

2

)).
Assumption 2 (Restricted Strong Adjacency Faithfulness). Let (G,P(W,�

2

)) be a GBN with G =

(V,E). For every ⌧ 2 TG, consider the sequence of graphs G[m, ⌧ ] = (V[m, ⌧ ],E[m, ⌧ ]) indexed by

(m, ⌧), where G[m, ⌧ ] is the induced subgraph of G over the first m vertices in the topological ordering

⌧ , i.e., V[m, ⌧ ]

def

= {i 2 [p] | ⌧(i)  m} and E[m, ⌧ ]

def

= {(i, j) 2 E | i 2 V[m, ⌧ ] ^ j 2 V[m, ⌧ ]}.

The multivariate Gaussian distribution P is restricted ↵-strongly adjacency faithful to G, provided

that:

(i) min{|wi,j | | (i, j) 2 E} > 3↵,

(ii) | ewi,j | > 3↵

(↵)

, 8i 2 V[m, ⌧ ] ^ j 2 Si[m, ⌧ ] ^m 2 [p] ^ ⌧ 2 TG,

where ↵ > 0 is a constant, ewi,j is the effective influence between i and j in the induced subgraph

G[m, ⌧ ] as defined in (4), and Si[m, ⌧ ] denotes the Markov blanket of node i in G[m, ⌧ ]. The constant

(↵) = 1 � 2

/(1+9|�G[m,⌧](i)|↵2
) if i is a non-terminal vertex in G[m, ⌧ ], where |�G[m,⌧ ](i)| is the

number of children of i in G[m, ⌧ ], and (↵) = 1 if i is a terminal vertex.

Simply stated, the RSAF assumption requires that the absolute value of the edge weights are at least
3↵ and the absolute value of the effective influence between two nodes, whenever it is non-zero, is at
least 3↵ for terminal nodes and 3↵

/(↵) for non-terminal nodes. Moreover, the above should hold
not only for the original DAG, but also for each DAG obtained by sequentially removing terminal
vertices. The constant ↵ is related to the statistical error and decays as ⌦(k2

p
log p

/n). Note that in

Both the definitions are equivalent under faithfulness. However, since we allow non-faithful distributions, our
definition of Markov blanket is more appropriate.
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Figure 1: A GBN, with noise variance set to 1 that is RSAF, but is neither faithful, nor
strongly faithful, nor adjacency faithful to the DAG structure. This GBN is not faithful
because corr(X4, X5|X2, X3) = 0 even though (2, 3) do not d-separate 4 and 5.
Other violations of faithfulness include corr(X1, X4|?) = 0 and corr(X1, X5|?) =

0. Therefore, a CI test based method will fail to recover the true structure. In Appendix
B.1, we show that the PC algorithm fails to recover the structure of this GBN while
our method recovers the structure exactly.

the regime ↵ 2 (0,

1

/3

p
|�G[m,⌧](i)|), which happens for sufficiently large n, then the condition on

ewi,j is satisfied trivially. As we will show later, Assumption 2 is equivalent to the following, for some
constant ↵0,

min{|corr(Xi, Xj |XV[m,⌧ ]\{i,j})| | i 2 V[m, ⌧ ] ^ j 2 Si[m, ⌧ ] ^m 2 [p] ^ ⌧ 2 TG} � ↵

0
.

At this point, it is worthwhile to compare our assumptions with those made by other methods for
learning GBNs. Methods based on conditional independence (CI) tests, e.g., the PC algorithm for
learning the equivalence class of GBNs developed by [15], require strong faithfulness. While strong
faithfulness requires that for a node pair (i, j) that are adjacent in the DAG, the partial correlation
corr(Xi, Xj |XS) is bounded away from zero for all sets S 2 {S ✓ [p] \ {i, j}}, RSAF only requires
non-zero partial correlations with respect to a subset of sets in {S ✓ [p] \ {i, j}}. Thus, RSAF is
strictly weaker than strong faithfulness. The number of non-zero partial correlations needed by RSAF
is also strictly a subset of those needed by the faithfulness condition. Figure 1 shows a GBN which is
RSAF but neither faithful, nor strongly faithful, nor adjacency faithful (see [20] for a definition).

We conclude this section with one last remark. At first glance, it might appear that the assumption
of equal variance together with our assumptions implies a simple causal ordering of variables in
which the marginal variance of the variables increases strictly monotonically with the causal ordering.
However, this is not the case. For instance, in the GBN shown in Figure 1 the marginal variance of
the causally ordered nodes (1, 2, 3, 4, 5) is (1, 2, 2, 2, 2.125). We also perform extensive simulation
experiments to further investigate this case in Appendix B.6.

3 Results

We start by characterizing the covariance and precision matrix of a GBN (G,P(W,�

2

)). Let B be
the weight matrix corresponding to the edge weights W, then from (3) it follows that the covariance
and precision matrix are, respectively:

⌃ = �

2

(I�B)

�1

(I�B)

�T
, ⌦ =

1

�

2

(I�B)

T
(I�B), (5)

where I is the p⇥ p identity matrix.
Remark 1. Since the elements of the inverse covariance matrix are related to the partial correlations

as follows: corr(Xi, Xj |XV\{i,j}) = �⌦i,j
/

p
⌦i,i⌦j,j . We have that, | ewi,j | � c↵, for some constant

c (Assumption 2), implies that |corr(Xi, Xj |XV\{i,j})| � c↵
/

p
⌦i,i⌦j,j > 0.

Next, we describe a key property of homoscedastic noise GBNs in the lemma below, which will be
the driving force behind our algorithm.
Lemma 1. Let (G,P(W,�

2

)) be a GBN, with ⌦ being the inverse covariance matrix over X and

✓i
def

= E [Xi|(X�i = x�i)] = ✓T
i x�i being the i-th regression coefficient. Under Assumption 1, we

have that

i is a terminal vertex in G () ✓ij = ��2

⌦i,j , 8j 2 �i.

Detailed proofs can be found in Appendix A in the supplementary material. Lemma 1 states that, in
the population setting, one can identify the terminal vertex, and therefore the causal ordering, just
by assuming causal minimality (Assumption 1). However, to identify terminal vertices from a finite
number of samples, one needs additional assumptions. We use Lemma 1 to develop our algorithm
for learning GBNs which, at a high level, works as follows. Given data X drawn from a GBN, we
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first estimate the inverse covariance matrix b
⌦. Then we perform a series of ordinary least squares

(OLS) regressions to compute the estimators b✓i 8i 2 [p]. We then identify terminal vertices using
the property described in Lemma 1 and remove the corresponding variables (columns) from X. We
repeat the process of identifying and removing terminal vertices and obtain the causal ordering of
vertices. Then, we perform a final set of OLS regressions to learn the structure and parameters of the
DAG.

The two main operations performed by our algorithm are: (a) estimating the inverse covariance
matrix, and (b) estimating the regression coefficients ✓i. In what follows, we discuss these two steps
in more detail and obtain theoretical guarantees for our algorithm.

Inverse covariance matrix estimation. The first part of our algorithm requires an estimate b
⌦ of the

true inverse covariance matrix ⌦

⇤. Due in part to its role in undirected graphical model selection,
the problem of inverse covariance matrix estimation has received significant attention over the years.
A popular approach for inverse covariance estimation, under high-dimensional settings, is the `

1

-
penalized Gaussian MLE studied by [21–28], among others. While, technically, these algorithms can
be used in the first phase of our algorithm to estimate the inverse covariance matrix, in this paper,
we use the method called CLIME, developed by Cai et. al. [29], since its theoretical guarantees do
not require a quite restrictive edge-based mutual incoherence condition as in [24]. Further, CLIME
is computationally attractive because it computes b

⌦ columnwise by solving p independent linear
programs. Even though the CLIME estimator b⌦ is not guaranteed to be positive-definite (it is positive-
definite with high probability) it is suitable for our purpose since we use b

⌦ only for identifying
terminal vertices. Next, we briefly describe the CLIME method for inverse covariance estimation and
instantiate the theoretical results of [29] for our purpose.

The CLIME estimator b
⌦ is obtained as follows. First, we compute a potentially non-symmetric

estimate ¯

⌦ = (!̄i,j) by solving the following:
¯

⌦ = argmin

⌦2Rp⇥p

|⌦|
1

s.t. |⌃n
⌦� I|1  �n, (6)

where �n > 0 is the regularization parameter, ⌃n def

= (

1

/n)XT
X is the empirical covariance matrix.

Finally, the symmetric estimator is obtained by selecting the smaller entry among !̄i,j and !̄j,i, i.e.,
b
⌦ = (b!i,j), where b!i,j = !̄i,j1 [|!̄i,j | < |!̄j,i|] + !̄j,i1 [|!̄j,i|  |!̄i,j |]. It is easy to see that (6) can
be decomposed into p linear programs as follows. Let ¯

⌦ = (

¯!
1

, . . . ,

¯!p), then
¯!i = argmin

!2Rp
k!k

1

s.t. |⌃n! � ei|1  �n, (7)

where ei = (ei,j) such that ei,j = 1 for j = i and ei,j = 0 otherwise. The following lemma which
follows from the results of [29] and [24], bounds the maximum elementwise difference between b

⌦

and the true precision matrix ⌦

⇤.
Lemma 2. Let (G⇤

,P(W⇤
,�

2

)) be a GBN satisfying Assumption 1, with ⌃

⇤
and ⌦

⇤
being the “true”

covariance and inverse covariance matrix over X , respectively. Given a data matrix X 2 Rn⇥p

of n i.i.d. samples drawn from P(W⇤
,�

2

), compute

b
⌦ by solving (6). Then, if the regularization

parameter and number of samples satisfy:

�n � k⌦⇤k
1

q
(

C1
/n) log(4p

2
/�), n � (

(16�4k⌦⇤k4
1C1)

/↵2
) log(

(4p2
)

/�),

with probability at least 1 � � we have that |⌦⇤ � b
⌦|1  ↵

/�2
, where C

1

= 3200

�
maxi(⌃

⇤
i,i)

2

�

and � 2 (0, 1). Further, thresholding

b
⌦ at the level 4k⌦⇤k

1

�n, we have S(⌦⇤
) = S(b⌦).

Remark 2. Note that in each column of the true precision matrix ⌦

⇤
, at most k entries are non-zero,

where k is the maximum Markov blanket size of a node in G. Therefore, the `

1

induced (or operator)

norm k⌦⇤k
1

= O(k), and the sufficient number of samples required for the estimator

b
⌦ to be within

↵ distance from ⌦

⇤
, elementwise, with probability at least 1� � is O((

1

/↵2
)k

4

log(

p
/�)).

Estimating regression coefficients. Given a GBN (G,P(W,�

2

)) with the covariance and precision
matrix over X being ⌃ and ⌦ respectively, the conditional distribution of Xi given the variables
in its Markov blanket is: Xi|(XSi = x) ⇠ N ((✓i)TSi

x,

1

/⌦i,i). Let ✓i
Si

def

= (✓i)Si . This leads to the
following generative model for X⇤,i:

X⇤,i = (X⇤,Si)✓
i
Si

+ "0i, (8)
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where "0i ⇠ N (0,

1

/⌦i,i) and Xl,Si ⇠ N (0,⌃Si,Si) for all l 2 [n]. Therefore, for all i 2 [p], we
obtain the estimator b✓i

Si
of ✓i

Si
by solving the following ordinary least squares (OLS) problem:

b✓i
Si

= argmin

�2R|Si|

1

2n

kX⇤,i � (X⇤,Si)�k22 = (⌃

n
Si,Si

)

�1

⌃

n
Si,i (9)

The following lemma bounds the approximation error between the true regression coefficients and
those obtained by solving the OLS problem. OLS regression has been previously analyzed by
[30] under the random design setting. However, they obtain bounds on the predicion error, i.e.,
(✓i

Si
� b✓i

Si
)

T
⌃

⇤
(✓i

Si
� b✓i

Si
), while the following lemma bounds k✓i

Si
� b✓i

Si
k1.

Lemma 3. Let (G⇤
,P(W⇤

,�

2

)) be a GBN with ⌃

⇤
and ⌦

⇤
being the true covariance and inverse

covariance matrix over X . Let X 2 Rn⇥p
be the data matrix of n i.i.d. samples drawn from

P(W⇤
,�

2

). Let E [Xi|(XSi = x)] = x

T✓i
Si

, and let

b✓i
Si

be the OLS solution obtained by solving (9)
for some i 2 [p]. Then, assuming ⌃

⇤
is non-singular, and if the number of samples satisfy:

n � c|Si|3/2(k✓i
Si
k1 +

1

/|Si|)

�

min

(⌃

⇤
Si,Si

)↵

log

✓
4|Si|
�

◆
,

we have that, k✓i
Si
� b✓i

Si
k1  ↵ with probability at least 1� �, for some � 2 (0, 1), with c being an

absolute constant.

Our algorithm. Algorithm 1 presents our algorithm for learning GBNs. Throughout the algorithm
we use as indices the true label of a node. We first estimate the inverse covariance matrix, b⌦, in line
5. In line 7 we estimate the Markov blanket of each node. Then, we estimate b

✓i,j for all i and j 2 bSi,
and compute the maximum per-node ratios ri = |�b

⌦i,j
/

b✓i,j| in lines 8 – 11. We then identify as
terminal vertex the node for which ri is minimum and remove it from the collection of variables (lines
13 and 14). Each time a variable is removed, we perform a rank-1 update of the precision matrix
(line 15) and also update the regression coefficients of the nodes in its Markov blanket (lines 16 –
20). We repeat this process of identifying and removing terminal vertices until the causal order has
been completely determined. Finally, we compute the DAG structure and parameters by regressing
each variable against variables that are in its Markov blanket which also precede it in the causal order
(lines 23 – 29).

Algorithm 1 Gaussian Bayesian network structure learning algorithm.

Input: Data matrix X 2 Rn⇥p.
Output: (

bG, bW).
1: b

B 0 2 Rp⇥p.
2: z ?, r ?. . z stores the causal order.
3: V [p]. . Remaining vertices.
4: ⌃

n  (

1

/n)XT
X.

5: Compute b
⌦ using the CLIME estimator.

6: b
⌦

0

=

b
⌦.

7: Compute bSi = {j 2 �i | |b⌦i,j |> 0},8i 2 [p].

8: for i 2 1, . . . , p do
9: Compute b✓i

bSi
= (⌃

n
bSi,bSi

)

�1

⌃

n
bSi,i

.

10: ri  max{|�b
⌦i,j

/

b✓i,j| | j 2 bSi}.
11: end for
12: for t 2 1 . . . p� 1 do
13: i argmin(r). . i is a terminal vertex.
14: Append i to z; V V \ {i}; ri  +1.
15: b

⌦ b
⌦�i,�i � (

1

/

b
⌦i,i)(

b
⌦�i,i)(

b
⌦i,�i) .

16: for j 2 bSi do
17: bSj  {l 6= j | |b⌦j,l| > 0}.
18: Compute b✓j

bSj
== (⌃

n
bSj ,bSj

)

�1

⌃

n
bSj ,j

.

19: rj  max{|�b
⌦j,l

/

b✓j,l| | l 2 bSj}.
20: end for
21: end for
22: Append the remaining vertex in V to z.
23: for i 2 2, . . . , p do
24: bSzi  {zj |j 2 [i � 1]}\{j 2 [p] | j 6=

zi ^ |b⌦0

zi,j | > 0}.
25: Compute b✓ = (⌃

n
bSzi ,

bSzi

)

�1

⌃

n
bSzi ,zi

.

26: b⇡(zi) S(b✓).
27: b

Bzi,b⇡(zi)  b✓b⇡(zi).
28: end for
29: bE {(i, j) | bBi,j 6= 0}, bW { bBi,j |(i, j) 2

bE}, and bG ([p],

bE).

In order to obtain our main result for learning GBNs we first derive the following technical lemma
which states that if the data comes from a GBN that satisfies Assumptions 1 – 2, then removing a
terminal vertex results in a GBN that still satisfies Assumptions 1 – 2.
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Lemma 4. Let (G,P(W,�

2

)) be a GBN satisfying Assumptions 1 – 2, and let ⌃, ⌦ be the (non-

singular) covariance and precision matrix respectively. Let X 2 Rn⇥p
be a data matrix of n

i.i.d. samples drawn from P(W,�

2

), and let i be a terminal vertex in G. Denote by G0
= (V0

,E0
)

and W0
= {wi,j 2 W | (i, j) 2 E0} the graph and set of edge weights, respectively, obtained by

removing the node i from G. Then, Xj,�i ⇠ P(W0
,�

2

) 8j 2 [n], and the GBN (G0
,P(W0

,�

2

))

satisfies Assumptions 1 – 2. Further, the inverse covariance matrix ⌦

0
and the covariance matrix ⌃

0

for the GBN (G0
,P(W0

,�

2

)) satisfy (respectively): ⌦

0
= ⌦� (

1

/⌦i,i)⌦⇤,i⌦i,⇤ and ⌃

0
= ⌃�i,�i.

Theorem 1. Let

bG = ([p],

bE) and

bW be the DAG and edge weights, respectively, returned by Algo-

rithm 1. Under the assumption that the data matrix X was drawn from a GBN (G⇤
,P(W⇤

,�

2

)) with

G⇤
= ([p],E⇤

), ⌃

⇤
and ⌦

⇤
being the “true” covariance and inverse covariance matrix respectively,

and satisfying Assumptions 1 – 2; if the regularization parameter is set according to Lemma 2, and if

the number of samples satisfies the condition:

n � c

✓
�

4k⌦⇤k4
1

C

max

↵

2

+

k

(

3/2)
( ew

max

+

1

/k)

C

min

↵

◆
log

✓
24p

2

(p� 1)

�

◆
,

where c is an absolute constant, ew
max

def

= max{| ewi,j ||i 2 V[m, ⌧ ]^j 2 Si[m, ⌧ ]^m 2 [p]^⌧ 2 TG}
with ewi,j being the effective influence between i and j (4), C

max

= maxi2p(⌃
⇤
i,i)

2

, and C

min

=

mini2[p] �min

(⌃

⇤
Si,Si

), then,

bE ◆ E⇤
and 8(i, j) 2 bE, | bwi,j � w

⇤
i,j |  ↵ with probability at least

1� � for some � 2 (0, 1) and ↵ > 0. Further, thresholding

bW at the level ↵ we get

bE = E⇤
.

The CLIME estimator of the precision matrix can be computed in polynomial time and the OLS steps
take O(pk

3

) time. Therefore our algorithm is polynomial time (please see Appendix C.2).

4 Experiments

In this section, we validate our theoretical findings through synthetic experiments. We use a class
of Erdős-Rényi GBNs, with edge weights set to ±1

/2 with probability 1

/2, and noise variance
�

2

= 0.8. For each value of p 2 {50, 100, 150, 200}, we sampled 30 random GBNs and estimated
the probability Pr{G⇤

=

bG} by computing the fraction of times the learned DAG structure bG matched
the true DAG structure G⇤ exactly. The number of samples was set to Ck

2

log p, where C was the
control parameter, and k was the maximum Markov blanket size (please see Appendix B.2 for more
details). Figure 2 shows the results of the structure and parameter recovery experiments. We can see
that the log p scaling as prescribed by Theorem 1 holds in practice.

Our method outperforms various state-of-the-art methods like PC, GES and MMHC on this class
of Erdős-Rényi GBNs (Appendix B.3), works when the noise variables have unequal, but similar,
variance (Appendix B.4), and also works for high-dimensional gene expression data (Appendix B.5).

Concluding Remarks. There are several ways of extending our current work. While the algorithm
developed in the paper is specific to equal noise-variance case, we believe our theoretical analysis can
be extended to the non-identifiable case to show that our algorithm, under some suitable conditions,
can recover one of the Markov-equivalent DAGs. It would be also interesting to explore if some of
the ideas developed herein can be extended to binary or discrete Bayesian networks.

Figure 2: (Left) Probability of cor-
rect structure recovery vs. number
of samples, where the latter is set
to Ck2

log p with C being the con-
trol parameter and k being the max-
imum Markov blanket size. (Right)
The maximum absolute difference
between the true parameters and the
learned parameters vs. number of
samples.
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