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Abstract

Kernel machines as well as neural networks possess universal function approxima-
tion properties. Nevertheless in practice their ways of choosing the appropriate
function class differ. Specifically neural networks learn a representation by adapt-
ing their basis functions to the data and the task at hand, while kernel methods
typically use a basis that is not adapted during training. In this work, we contrast
random features of approximated kernel machines with learned features of neural
networks. Our analysis reveals how these random and adaptive basis functions
affect the quality of learning. Furthermore, we present basis adaptation schemes
that allow for a more compact representation, while retaining the generalization
properties of kernel machines.

1 Introduction

Recent work on scaling kernel methods using random basis functions has shown that their performance
on challenging tasks such as speech recognition can match closely those by deep neural networks [22]
6,135]]. However, research also highlighted two disadvantages of random basis functions. First, a large
number of basis functions, i.e., features, are needed to obtain useful representations of the data. In a
recent empirical study [22]], a kernel machine matching the performance of a deep neural network
required a much larger number of parameters. Second, a finite number of random basis functions
lead to an inferior kernel approximation error that is data-specific 30,132, 36].

Deep neural networks learn representations that are adapted to the data using end-to-end training.
Kernel methods on the other hand can only achieve this by selecting the optimal kernels to represent
the data — a challenge that persistently remains. Furthermore, there are interesting cases in which
learning with deep architectures is advantageous, as they require exponentially fewer examples [235].
Yet arguably both paradigms have the same modeling power as the number of training examples goes
to infinity. Moreover, empirical studies suggest that for real-world applications the advantage of one
method over the other is somewhat limited [22, 16} [35. 137]].

Understanding the differences between approximated kernel methods and neural networks is crucial
to use them optimally in practice. In particular, there are two aspects that require investigation: (1)
How much performance is lost due to the kernel approximation error of the random basis? (2) What
is the possible gain of adapting the features to the task at hand? Since these effects are expected to be
data-dependent, we argue that an empirical study is needed to complement the existing theoretical
contributions [30, 36, 20, 132, [8]].
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In this work, we investigate these issues by making use of the fact that approximated kernel methods
can be cast as shallow, one-hidden-layer neural networks. The bottom layers of these networks are
random basis functions that are generated in a data-agnostic manner and are not adapted during
training [30, 31} 20, 18]]. This stands in stark contrast to, even the conventional single layer, neural
network where the bottom-layer parameters are optimized with respect to the data distribution and
the loss function. Specifically, we designed our experiments to distinguish four cases:

o Random Basis (RB): we use the (approximated) kernel machine in its traditional formula-
tion [30, (8]

o Unsupervised Adapted Basis (UAB): we adapt the basis functions to better approximate
the true kernel function.

o Supervised Adapted Basis (SAB): we adapt the basis functions using kernel target align-
ment [S]] to incorporate label information.

e Discriminatively Adapted Basis (DAB): we adapt the basis functions with a discriminative
loss function, i.e., optimize jointly over basis and classifier parameters. This corresponds to
conventional neural network optimization.

These experiments allow us to isolate the effect of the randomness of the basis and contrast it to data-
and task-dependent adaptations. We found that adapted bases consistently outperform random ones:
an unsupervised basis adaption leads to a better kernel approximation than a random approximation,
and, when considering the task at hand, a supervised kernel basis leads to a even more compact
model while showing a superior performance compared to the task-agnostic bases. Remarkably, this
performance is retained after transferring the basis to another task and makes this adaption scheme a
viable alternative to a discriminatively adapted basis.

The remainder is structured as follows. After a presentation of related work we explain approximated
kernel machines in context of neural networks and describe our propositions in Sec.[3] In Sec. [d] we
quantify the benefit of adapted basis function in contrast to their random counterparts empirically.
Finally, we conclude in Sec. 5

2 Related work

To overcome the limitations of kernel learning, several approximation methods have been proposed.
In addition to Nystrém methods [34, [7]], random Fourier features [30l 131]] have gained a lot of
attention. Random features or (faster) enhancements [20} 9} 139, [8] were successfully applied in
many applications [6, [22] |14} [35]], and were theoretically analyzed [36,32]]. They inspired scalable
approaches to learn kernels with Gaussian processes [35, 138} [23]]. Notably, [2 24] explore kernels in
the context of neural networks, and, in the field of RBF-networks, basis functions were adapted to the
data by [26, 27].

Our work contributes in several ways: we view kernel machines from a neural network perspective
and delineate the influence of different adaptation schemes. None of the above does this. The related
work [36] compares the data-dependent Nystrom approximation to random features. While our
approach generalizes to structured matrices, i.e., fast kernel machines, Nystrom does not. Most
similar to our work is [37]]. They interpret the Fastfood kernel approximation as a neural network.
Their aim is to reduce the number of parameters in a convolutional neural network.

3 Methods

In this section we will detail the relation between kernel approximations with random basis functions
and neural networks. Then, we discuss the different approaches to adapt the basis in order to perform
our analysis.

3.1 Casting kernel approximations as shallow, random neural networks

Kernels are pairwise similarity functions k(x, z’) : R x R? + R between two data points z, 2’ € R<,
They are equivalent to the inner-products in an intermediate, potentially infinite-dimensional feature



space produced by a function ¢ : R? — R
k(z,2") = ¢(2)" p(a) (1)

Non-linear kernel machines typically avoid using ¢ explicitly by applying the kernel trick. They work
in the dual space with the (Gram) kernel matrix. This imposes a quadratic dependence on the number
of samples n and prevents its application in large scale settings. Several methods have been proposed
to overcome this limitation by approximating a kernel machine with the following functional form

flx) =WwT¢(z) +0b, 2)

where gZA)(;v) is the approximated kernel feature map. Now, we will explain how to obtain this
approximation for the Gaussian and the ArcCos kernel [2]]. We chose the Gaussian kernel because it
is the default choice for many tasks. On the other hand, the ArcCos kernel yields an approximation
consisting of rectified, piece-wise linear units (ReLU) as used in deep learning 28| 11} [19]].

Gaussian kernel To obtain the approximation of the Gaussian kernel, we use the following prop-
erty [30]. Given a smooth, shift-invariant kernel k(z — ') = k(z) with Fourier transform p(w),
then:

k(z) = / p(w)e’™ duw. (3)
Rd

Using the Gaussian distribution p(w) = A(0,0 1), we obtain the Gaussian kernel

=13

k(z) = exp 2.7 .

Thus, the kernel value k(z, ') can be approximated by the inner product between ¢(z) and ¢ ('),
where ¢ is defined as

() = || e (WEa) cos(hi)] @

and Wp € R%¥P/2 a5 a random matrix with its entries drawn from A/ (0, o). The resulting features
are then used to approximate the kernel machine with the implicitly infinite dimensional feature
space,

k(z, ') ~ ¢(z)" p(2). (5)

ArcCos kernel To yield a better connection to state-of-the-art neural networks we use the ArcCos
kernel [2]

1 /
k(z,2') = —|lz| [l"]| J(6)

with J(0) = (sin 6 + (m — @) cos 0) and 0 = cos’l(m), the angle between x and z’. The

approximation is not based on a Fourier transform, but is given by

g{)(x) = \/gmax(O7 ng) (6)

with Wg € R P being a random Gaussian matrix. This makes the approximated feature map of the
ArcCos kernel closely related to ReLUs in deep neural networks.

Neural network interpretation The approximated kernel features (ZAS(I) can be interpreted as the
output of the hidden layer in a shallow neural network. To obtain the neural network interpretation,
we rewrite Eq. [2)as the following

flx) =W h(Wgz) +b, 7

with W € RP*¢ with ¢ number of classes, and b € R¢. Here, the non-linearity h corresponds to
the obtained kernel approximation map. Now, we substitute z = WXz in Eqs. 4 and E] yielding
h(z) = \/1/D[sin(z),cos(z)]* for the Gaussian kernel and h(z) = 1/1/Dmax(0,z) for the
ArcCos kernel.



3.2 Adapting random kernel approximations

Having introduced the neural network interpretation of random features, the key difference between
both methods is which parameters are trained. For the neural network, one optimizes the parameters
in the bottom-layer and those in the upper layers jointly. For kernel machines, however, W is fixed,
i.e., the features are not adapted to the data. Hyper-parameters (such as o defining the bandwidth
of the Gaussian kernel) are selected with cross-validation or heuristics [12, 16, [8]. Consequently, the
basis is not directly adapted to the data, loss, and task at hand.

In our experiments, we consider the classification setting where for the given data X € R"*¢
containing n samples with d input dimensions one seeks to predict the target labels Y € [0, 1]™*¢ with
a one-hot encoding for c classes. We use accuracy as the performance measure and the multinomial-
logistic loss as its surrogate. All our models have the same, generic form shown in Eq.[7] However,
we use different types of basis functions to analyze varying degrees of adaptation. In particular, we
study whether data-dependent basis functions improve over data-agnostic basis functions. On top
of that, we examine how well label-informative, thus task-adapted basis functions can perform in
contrast to the data-agnostic basis. Finally, we use end-to-end learning of all parameters to connect to
neural networks.

Random Basis - RB: For data-agnostic kernel approximation, we use the current state-of-the-art
of random features. Orthogonal random features [8, ORF] improve the convergence properties of the
Gaussian kernel approximation over random Fourier features [30,[31]. Practically, we substitute W
with 1/0 G, sample G € R¥*P /2 from N (0,1) and orthogonalize the matrix as given in [8] to
approximate the Gaussian kernel. The ArcCos kernel is applied as described above.

We also use these features as initialization of the following adaptive approaches. When adapting the
Gaussian kernel we optimize G'p while keeping the scale 1/0 fixed.

Unsupervised Adapted Basis - UAB: While the introduced random bases converge towards the
true kernel with an increasing number of features, it is to be expected that an optimized approximation
will yield a more compact representation. We address this by optimizing the sampled parameters W
w.r.t. the kernel approximation error (KAE):

L(w,2") = 5 (k(@,2") = d(x)" o(a")) ®)
This objective is kernel- and data-dependent, but agnostic to the classification task.

Supervised Adapted Basis - SAB: As an intermediate step between task-agnostic kernel approx-
imations and end-to-end learning, we propose to use kernel target alignment [J5] to inject label
information. This is achieved by a target kernel function ky with ky (x,2’) = 41 if  and 2’
belong to the same class and ky (x,2) = 0 otherwise. We maximize the alignment between the
approximated kernel k and the target kernel ky for a given data set X:

) B (K, Ky)
A(X k, ky) = \/<K,K><Ky,KY>

€))

with (Ko, Kp) = 323 ka(@i, x5)kp (24, 25).

Discriminatively Adapted Basis - DAB: The previous approach uses label information, but is
oblivious to the final classifier. On the other hand, a discriminatively adapted basis is trained jointly
with the classifier to minimize the classification objective, i.e., W, W, b are optimized at the same
time. This is the end-to-end optimization performed in neural networks.

4 Experiments

In the following, we present the empirical results of our study, starting with a description the
experimental setup. Then, we proceed to present the results of using data-dependent and task-
dependent basis approximations. In the end, we bridge our analysis to deep learning and fast kernel
machines.
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Figure 1: Adapting bases. The plots show the relationship between the number of features (X-Axis), the
KAE in logarithmic spacing(left, dashed lines) and the classification error (right, solid lines). Typically, the
KAE decreases with a higher number of features, while the accuracy increases. The KAE for SAB and DAB
(orange and red dotted line) hints how much the adaptation deviates from its initialization (blue dashed line).
Best viewed in digital and color.

4.1 Experimental setup

We used the following seven data sets for our study: Gisette [13]], MNIST [21], CoverType [1],
CIFAR10 features from [4], Adult 18], Letter [[10]], USPS [15]]. The results for the last three can be
found in the supplement. We center the data sets and scale them feature-wise into the range [—1, +1].
We use validation sets of size 1, 000 for Gisette, 10,000 for MNIST, 50, 000 for CoverType, 5, 000
for CIFARI1O0, 3, 560 for Adult, 4, 500 for Letter, and 1,290 for USPS. We repeat every test three
times and report the mean over these trials.

Optimization We train all models with mini-batch stochastic gradient descent. The batch size is
64 and as update rule we use ADAM [17]. We use early-stopping where we stop when the respective
loss on the validation set does not decrease for ten epochs. We use Keras [3], Scikit-learn [29]],
NumPy [33]] and SciPy [16]. We set the hyper-parameter o for the Gaussian kernel heuristically
according to [39}8]].

UAB ans SAB learning problems scale quadratically in the number of samples n. Therefore, to
reduce memory requirements we optimize by sampling mini-batches from the kernel matrix. A batch
for UAB consists of 64 sample pairs = and x’ as input and the respective value of the kernel function
k(xz,x’) as target value. Similarly for SAB, we sample 64 data points as input and generate the



target kernel matrix as target value. For each training epoch we randomly generate 10, 000 training
and 1, 000 validation batches, and, eventually, evaluate the performance on 1, 000 unseen, random
batches.

4.2 Analysis

Tab.[T] gives an overview of the best performances achieved by each basis on each data set.

Gaussian ArcCos
Dataset RB UAB SAB DAB RB UAB SAB DAB
Gisette 98.1 979 981 979 977 978 978 97.8
MNIST 98.2 982 983 983 972 974 977 979
CoverType 919 919 904 952 83.6 83.1 887 929
CIFARIO 764 768 79.0 773 749 763 794 753

Table 1: Best accuracy in % for different bases.

Data-adapted kernel approximations First, we evaluate the effect of choosing a data-dependent
basis (UAB) over a random basis (RB). In Fig. |1} we show the kernel approximation error (KAE)
and the classification accuracy for a range from 10 to 30,000 features (in logarithmic scale). The
first striking observation is that a data-dependent basis can approximate the kernel equally well
with up to two orders of magnitude fewer features compared to the random baseline. This hold for
both the Gaussian and the ArcCos kernel. However, the advantage diminishes as the number of
features increases. When we relate the kernel approximation error to the accuracy, we observe that
initially a decrease in KAE correlates well with an increase in accuracy. However, once the kernel is
approximated sufficiently well, using more feature does not impact accuracy anymore.

We conclude that the choice between a random or data-dependent basis strongly depends on the
application. When a short training procedure is required, optimizing the basis could be too costly. On
the other hand, if the focus lies on fast inference, we argue to optimize the basis to obtain a compact
representation. In settings with restricted resources, e.g., mobile devices, this can be a key advantage.

Task-adapted kernels A key difference between kernel methods and neural networks originates
from the training procedure. In kernel methods the feature representation is fixed while the classifier is
optimized. In contrast, deep learning relies on end-to-end training such that the feature representation
is tightly coupled to the classifier. Intuitively, this allows the representation to be tailor-made for the
task at hand. Therefore, one would expect that this allows for an even more compact representation
than the previously examined data-adapted basis.

In Sec. [3] we proposed a task-adapted kernel (SAB). Fig. [T|shows that the approach is comparable in
terms of classification accuracy to discriminatively trained basis (DAB). Only for CoverType data
set SAB performs significantly worse due to the limited model capabilities, which we will discuss
below. Both task-adapted features improve significantly in accuracy compared to the random and
data-adaptive kernel approximations.

Transfer learning The beauty of kernel methods is, however, that a kernel function can be used
across a wide range of tasks and consistently result in good performance. Therefore, in the next
experiment, we investigate whether the resulting kernel retains this generalization capability when it
is task-adapted. To investigate the influence of task-dependent information, we randomly separate the
classes MNIST into two distinct subsets. The first task is to classify five randomly samples classes
and their respective data points, while the second task is to do the same with the remaining classes.
We train the previously presented model variants on task 1 and transfer their bases to task 2 where we
only learn the classifier. The experiment is repeated with five different splits and the mean accuracy
is reported.

Fig.[2|shows that on the transfer task, the random and the data-adapted bases RB and UAB approx-
imately retain the accuracy achieved on task 1. The performance of the end-to-end trained basis
DAB drops significantly, however, yields still a better performance than the default random basis.
Surprisingly, the supervised basis SAB using kernel-target alignment retains its performance and
achieves the highest accuracy on task 2. This shows that using label information can indeed be
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Figure 2: Transfer learning. We train to discriminate a random subset of 5 classes on the MNIST data set
(left) and then transfer the basis function to a new task (right), i.e., train with the fixed basis from task 1 to
classify between the remaining classes.
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Figure 3: Deep kernel machines. The plots show the classification performance of the ArcCos-kernels with
respect to the kernel (first part) and with respect to the number of layers (second part). Best viewed in digital
and color.

exploited in order to improve the efficiency and performance of kernel approximations without having
to sacrifice generalization. l.e., a target-driven kernel (SAB) can be an efficient and still general
alternative to the universal Gaussian kernel.

Deep kernel machines We extend our analysis and draw a link to deep learning by adding two deep
kernels [2]]. As outlined in the aforementioned paper, stacking a Gaussian kernel is not useful instead
we use ArcCos kernels that are related to deep learning as described below. Recall the ArcCos kernel
from Eq. as k1 (x,2"). Then the kernels ArcCos2 and ArcCos3 are defined by the inductive step
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Figure 4: Fast kernel machines. The plots show how replacing the basis G’z with an fast approximation
influences the performance of a Gaussian kernel. Le., G g is replaced by 1, 2, or 3 structured blocks H D;. Fast
approximations with 2 and 3 blocks might overlap with G . Best viewed in digital and color.

kivi(z,2') = L[ki(z,2)ki (2, )| 712J(6;) with 0; = cos™ ! (k;(x, 2') [k (z, ) ki (27, 2')]~/?).
Similarly, the feature map of the ArcCos kernel is approximated by a one-layer neural network with
the ReLU-activation function and a random weight matrix Wp

qurcCos(zv) = QBB(x) = \/gmax(ou ng)7 (10)

and the feature maps of the ArcCos2 and ArcCos3 kernels are then given by a 2- or 3-layer neu-
ral network with the ReLU-activations, i.e., QBATCCOSQ(I') = gZ)Bl(gZA)BO (z)) and qurCCosg(x) =
éB, (¢, (B, (x))). The training procedure for the ArcCos2 and ArcCos3 kernels remains identical
to the training of the ArcCos kernel, i.e., the random matrices Wp, are simultaneously adapted. Only,
now the basis consists of more than one layer, and, to remain comparable for a given number of
features, we split these features evenly over two layers for a 2-layer kernel and over three layers for a
3-layer kernel.

In the following we describe our results on the MNIST and CoverType data sets. We observed that the
so far described relationship between the cases RB, UAB, SAB, DAB also generalizes to deep models
(see Fig.[3] first part, and Fig.[7]in the supplement). L.e., UAB approximates the true kernel function
up to several magnitudes better than RB and leads to a better resulting classification performance.
Furthermore, SAB and DAB perform similarly well and clearly outperform the task-agnostic bases
RB and UAB.

We now compare the results across the ArcCos-kernels. Consider the third row of Fig. [3] which
depicts the performance of RB and UAB on the CoverType data set. For a limited number of features,
i.e., less than 3, 000, the deeper kernels perform worse than the shallow ones. Only given enough
capacity the deep kernels are able to perform as good as or better than the single-layer bases. On the



other hand for the CoverType data set, task related bases, i.e., SAB and DAB, benefit significantly
from a deeper structure and are thus more efficient. Comparing SAB with DAB, for the ArcCos
kernel with only one layer SAB leads to worse results than DAB. Given two layers the gap diminishes
and vanishes with three layers (see Fig.[3)). This suggests that for this data set the evaluated shallow
models are not expressive enough to extract the task-related kernel information.

Fast kernel machines By using structured matrices one can speed up approximated kernel ma-
chines [20} |8]. We will now investigate how this important technique influences the presented basis
schemes. The approximation is achieved by replacing random Gaussian matrices with an approx-
imation composed of diagonal and structured Hadamard matrices. The advantage of these matrix
types is that they allow for low storage costs as fast multiplications. Recall that the input dimension
is d and the number of features is D. By using the fast Hadamard-transform these algorithms only
need to store O(D) instead of O(dD) parameters and the kernel approximation can be computed in
O(D log d) rather than O(Dd).

We use the approximation from [8]] and replace the random Gaussian matrix Wp = 1/0 G in Eq.
with a chain of random, structured blocks W ~ 1/0 HD; ... HD;. Each block H D; consists of
a diagonal matrix D; with entries sampled from the Rademacher distribution and a Hadamard matrix
H. More blocks lead to a better approximation, but consequently require more computation. We
found that the optimization is slightly more unstable and therefore stop early only after 20 epochs
without improvement. When adapting a basis we will only modify the diagonal matrices.

We re-conducted our previous experiments for the Gaussian kernel on the MNIST and CoverType
data sets (Fig. ). In the first place one can notice that in most cases the approximation exhibits
no decline in performance and that it is a viable alternative for all basis adaption schemes. Two
major exceptions are the following. Consider first the left part of the second row which depicts a
approximated, random kernel machine (RB). The convergence of the kernel approximation stalls
when using a random basis with only one block. As a result the classification performance drops
drastically. This is not the case when the basis is adapted unsupervised, which is given in the right
part of the second row. Here one cannot notice a major difference between one or more blocks. This
means that for fast kernel machines an unsupervised adaption can lead to a more effective model
utilization, which is crucial for resource aware settings. Furthermore, a discriminatively trained basis,
i.e., a neural network, can be effected similarly from this re-parameterization (see Fig. 4] bottom row).
Here an order of magnitude more features is needed to achieve the same accuracy compared to an
exact representation, regardless how many blocks are used. In contrast, when adapting the kernel in
a supervised fashion no decline in performance is noticeable. This shows that this procedure uses
parameters very efficiently.

5 Conclusions

Our analysis shows how random and adaptive bases affect the quality of learning. For random features
this comes with the need for a large number of features and suggests that two issues severely limit
approximated kernel machines: the basis being (1) agnostic to the data distribution and (2) agnostic
to the task. We have found that data-dependent optimization of the kernel approximation consistently
results in a more compact representation for a given kernel approximation error. Moreover, task-
adapted features could further improve upon this. Even with fast, structured matrices, the adaptive
features allow to further reduce the number of required parameters. This presents a promising strategy
when a fast and computationally cheap inference is required, e.g., on mobile device.

Beyond that, we have evaluated the generalization capabilities of the adapted variants on a transfer
learning task. Remarkably, all adapted bases outperform the random baseline here. We have found that
the kernel-task alignment works particularly well in this setting, having almost the same performance
on the transfer task as the target task. At the junction of kernel methods and deep learning, this
shows that incorporating label information can indeed be beneficial for performance without having
to sacrifice generalization capability. Investigating this in more detail appears to be highly promising
and suggests the path for future work.
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