
A Decomposition of Forecast Error in
Prediction Markets

Miroslav Dudík
Microsoft Research, New York, NY

mdudik@microsoft.com

Sébastien Lahaie
Google, New York, NY
slahaie@google.com

Ryan Rogers
University of Pennsylvania, Philadelphia, PA

rrogers386@gmail.com

Jennifer Wortman Vaughan
Microsoft Research, New York, NY

jenn@microsoft.com

Abstract

We analyze sources of error in prediction market forecasts in order to bound
the difference between a security’s price and the ground truth it estimates. We
consider cost-function-based prediction markets in which an automated market
maker adjusts security prices according to the history of trade. We decompose the
forecasting error into three components: sampling error, arising because traders
only possess noisy estimates of ground truth; market-maker bias, resulting from
the use of a particular market maker (i.e., cost function) to facilitate trade; and
convergence error, arising because, at any point in time, market prices may still be
in flux. Our goal is to make explicit the tradeoffs between these error components,
influenced by design decisions such as the functional form of the cost function
and the amount of liquidity in the market. We consider a specific model in which
traders have exponential utility and exponential-family beliefs representing noisy
estimates of ground truth. In this setting, sampling error vanishes as the number
of traders grows, but there is a tradeoff between the other two components. We
provide both upper and lower bounds on market-maker bias and convergence error,
and demonstrate via numerical simulations that these bounds are tight. Our results
yield new insights into the question of how to set the market’s liquidity parameter
and into the forecasting benefits of enforcing coherent prices across securities.

1 Introduction

A prediction market is a marketplace in which participants can trade securities with payoffs that
depend on the outcomes of future events [19]. Consider the simple setting in which we are interested
in predicting the outcome of a political election: whether the incumbent or challenger will win.
A prediction market might issue a security that pays out $1 per share if the incumbent wins, and
$0 otherwise. The market price p of this security should always lie between 0 and 1, and can be
construed as an event probability. If a trader believes that the likelihood of the incumbent winning is
greater than p, she will buy shares with the expectation of making a profit. Market prices increase
when there is more interest in buying and decrease when there is more interest in selling. By this
process, the market aggregates traders’ information into a consensus forecast, represented by the
market price. With sufficient activity, prediction markets are competitive with alternative forecasting
methods such as polls [4], but while there is a mature literature on sources of error and bias in polls,
the impact of prediction market structure on forecast accuracy is still an active area of research [17].

We consider prediction markets in which all trades occur through a centralized entity known as a
market maker. Under this market structure, security prices are dictated by a fixed cost function and
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the current number of outstanding shares [6]. The basic conditions that a cost function should satisfy
to correctly elicit beliefs, while bounding the market maker’s loss, are now well-understood, chief
among them being convexity [1]. Nonetheless, the class of allowable cost functions remains broad,
and the literature so far provides little formal guidance on the specific form of cost function to use in
order to achieve good forecast accuracy, including how to set the liquidity parameter which controls
price responsiveness to trade. In practice, the impact of the liquidity parameter is difficult to quantify
a priori, so implementations typically resort to calibrations based on market simulations [8, 18].
Prior work also suggests that maintaining coherence among prices of logically related securities has
informational advantages [8], but there has been little work aimed at understanding why.

This paper provides a framework to quantify the impact of the choice of cost function on forecast
accuracy. We introduce a decomposition of forecast error, in analogy with the bias-variance decom-
position familiar from statistics or the approximation-estimation-optimization decomposition for
large-scale machine learning [5]. Our decomposition consists of three components. First, there is the
sampling error resulting from the fact that the market consists of a finite population of traders, each
holding a noisy estimate of ground truth. Second, there is a market-maker bias which stems from the
use of a cost function to provide liquidity and induce trade. Third, there is convergence error due to
the fact that the market prices may not have fully converged to their equilibrium point.

The central contribution of this paper is a theoretical characterization of the market-maker bias and
convergence error, the two components of this decomposition that depend on market structure as
defined by the form of the cost function and level of liquidity. We consider a tractable model of agent
behavior, originally studied by Abernethy et al. [2], in which traders have exponential utility functions
and beliefs drawn from an exponential family. Under this model it is possible to characterize
the market’s equilibrium prices in terms of the traders’ belief and risk aversion parameters, and
thereby quantify the discrepancy between current market prices and ground truth. To analyze market
convergence, we consider the trader dynamics introduced by Frongillo and Reid [9], under which
trading can be viewed as randomized block-coordinate descent on a suitable potential function.

Our analysis is local in that the bounds depend on the market equilibrium prices. This allows us to
exactly identify the main asymptotic terms of error. We demonstrate via numerical experiments that
these asymptotic bounds are accurate early on and therefore can be used to compare market designs.

We make the following specific contributions:

1. We precisely define the three components of the forecasting error.

2. We show that the market-maker bias equals cb ± O(b2) as b → 0, where b is the liquidity
parameter, and c is an explicit constant that depends on the cost function and trader beliefs.

3. We show that the convergence error decreases with the number of trades t as γt with γ = 1−Θ(b).
We provide explicit upper and lower bounds on γ that depend on the cost function and trader
beliefs. In the process, we prove a new local convergence bound for block-coordinate descent.

4. We use our explicit formulas for bias and convergence error to compare two common cost
functions: independent markets (IND), under which security prices vary independently, and
the logarithmic market scoring rule (LMSR) [10], which enforces logical relationships between
security prices. We show that at the same value of the market-maker bias, IND requires at least
half-as-many and at most twice-as-many trades as LMSR to achieve the same convergence error.

We consider a specific utility model (exponential utility), but our bias and convergence analysis
immediately carry over if we assume that each trader is optimizing a risk measure (rather than an
exponential utility function) similar to the setup of Frongillo and Reid [9]. Exponential utility was
chosen because it was previously well studied and allowed us to focus on the analysis of the cost
function and liquidity. The role of the liquidity parameter in trading off the bias and convergence error
has been informally recognized in the literature [7, 10, 13], but our precise definition of market-maker
bias and explicit formulas for the bias and convergence error are novel. Abernethy et al. [2] provide
results that can be used to derive the bias for LMSR, but not for generic cost functions, so they do not
enable comparison of biases of different costs. Frongillo and Reid [9] observe that the convergence
error can be locally bounded as γt, but they only provide an upper bound and do not show how γ
is related to the liquidity or cost function. Our analysis establishes both upper and lower bounds
on convergence and relates γ explicitly to the liquidity and cost function. This is necessary for a
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meaningful comparison of cost function families. Thus our framework provides the first meaningful
way to compare the error tradeoffs inherent in different choices of cost functions and liquidity levels.

2 Preliminaries

We use the notation [N ] to denote the set {1, . . . , N}. Given a convex function f : Rd → R ∪ {∞},
its effective domain, denoted dom f , is the set of points where f is finite. Whenever dom f is
non-empty, the conjugate f∗ : Rd → R ∪ {∞} is defined by f∗(v) := supu∈Rd [vᵀu− f(u)]. We
write ‖·‖ for the Euclidean norm. A centralized mathematical reference is provided in Appendix A.1

Cost-function-based market makers We study cost-function-based prediction markets [1]. Let
Ω be a finite set of mutually exclusive and exhaustive states of the world. A market administrator,
known as market maker, wishes to elicit information about the likelihood of various states ω ∈ Ω,
and to that end offers to buy and sell any number of shares of K securities. Securities are associated
with coordinates of a payoff function φ : Ω → RK , where each share of the kth security is worth
φk(ω) in the event that the true state of the world is ω ∈ Ω. Traders arrive in the market sequentially
and trade with the market maker. The market price is fully determined by a convex potential function
C called the cost function. In particular, if the market maker has previously sold sk ∈ R shares of
each security k and a trader would like to purchase a bundle consisting of δk ∈ R shares of each, the
trader is charged C(s+ δδδ)− C(s). The instantaneous price of security k is then ∂C(s)/∂sk. Note
that negative values of δk are allowed and correspond to the trader (short) selling security k.

LetM := conv{φ(ω) : ω ∈ Ω} be the convex hull of the set of payoff vectors. It is exactly the set
of expectations E [φ(ω)] across all possible probability distributions over Ω, which we call beliefs.
We refer to elements ofM as coherent prices. Abernethy et al. [1] characterize the conditions that a
cost function must satisfy in order to guarantee important properties such as bounded loss for the
market maker and no possibility of arbitrage. To start, we assume only that C : RK → R is convex
and differentiable and thatM⊆ domC∗, which corresponds to the bounded loss property.
Example 2.1 (Logarithmic Market Scoring Rule: LMSR [10]). Consider a complete market with a
single security for each outcome worth $1 if that outcome occurs and $0 otherwise, i.e., Ω = [K] and
φk(ω) = 1{k = ω} for all k. The LMSR cost function and instantaneous security prices are given by

C(s) = log
(∑K

k=1 e
sk
)

and
∂C(s)

∂sk
=

esk∑K
`=1 e

s`
, ∀k ∈ [K]. (1)

Its conjugate is the entropy function, C∗(µ) =
∑
k µk logµk + I{µ ∈ ∆K}, where ∆K is the

simplex in RK and I{·} is the convex indicator, equal to zero if its argument is true and infinity if
false. Thus, in this caseM = ∆K = domC∗.

Notice that the LMSR security prices are coherent because they always sum to one. This prevents
arbitrage opportunities for traders. Our second running example does not have this property.
Example 2.2 (Sum of Independent LMSRs: IND). Let Ω = [K] and φk(ω) = 1{k = ω} for all k.
The cost function and instantaneous security prices for the sum of independent LMSRs are given by

C(s) =
∑K
k=1 log (1 + esk) and

∂C(s)

∂sk
=

esk

1 + esk
, ∀k ∈ [K], (2)

C∗(µ) =
∑
k[µk logµk+(1−µk) log(1−µk)]+I{µ ∈ [0, 1]K},M = ∆K , and domC∗ = [0, 1]K .

When choosing a cost function, one important consideration is liquidity, that is, how quickly prices
change in response to trades. Any cost function C can be viewed as a member of a parametric family
of cost functions of the form Cb(s) := bC(s/b) across all b > 0. With larger values of b, larger trades
are required to move market prices by some fixed amount, and the worst-case loss of the market
maker is larger; with smaller values, small purchases can result in big changes to the market price.

Basic model In our analysis of error we assume that there exists an unknown true probability
distribution ptrue ∈ ∆|Ω| over the outcome set Ω. The true expected payoffs of the K market
securities are then given by the vector µtrue := Eω∼ptrue [φ(ω)].

1A longer version of this paper containing the appendix is available on arXiv and the authors’ websites.
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We assume that there are N traders and that each trader i ∈ [N ] has a private belief p̃i over
outcomes. We additionally assume that each trader i has a utility function ui : R → R for wealth
and would like to maximize expected utility subject to her beliefs. For now we assume that ui
is differentiable and concave, meaning that each trader is risk averse, though later we focus on
exponential utility. The expected utility of trader i owning a security bundle ri ∈ RK and cash ci is
Ui(ri, ci) := Eω∼p̃i

[
ui
(
ci + φ(ω) · ri

)]
. We assume that each trader begins with zero cash. This

is without loss of generality because we could incorporate any initial cash holdings into ui.

3 A Decomposition of Error

In this section, we decompose the market’s forecast error into three major components. The first is
sampling error, which arises because traders have only noisy observations of the ground truth. The
second is market-maker bias, which arises because the shape of the cost function impacts the traders’
willingness to invest. Finally, convergence error arises due to the fact that at any particular point in
time the market prices may not have fully converged. To formalize our decomposition, we introduce
two new notions of equilibrium.

Our first notion of equilibrium, called a market-clearing equilibrium, does not assume the existence
of a market maker, but rather assumes that traders trade only among themselves, and so no additional
securities or cash are available beyond the traders’ initial allocations. This equilibrium is described by
security prices µ̄ ∈ RK and allocations (r̄i, c̄i) of security bundles and cash to each trader i such that,
given her allocation, no trader wants to buy or sell any bundle of securities at those prices. Trader
bundles and cash are summarized as r̄ = (r̄i)i∈[N ] and c̄ = (c̄i)i∈[N ].

Definition 3.1 (Market-clearing equilibrium). A triple (r̄, c̄, µ̄) is a market-clearing equilibrium if∑N
i=1 r̄i = 0,

∑N
i=1 c̄i = 0, and for all i ∈ [N ], 0 ∈ argmaxδ∈RK Ui(r̄i + δ, c̄i − δ · µ̄). We call

µ̄ market-clearing prices if there exist r̄ and c̄ such that (r̄, c̄, µ̄) is a market-clearing equilibrium.
Similarly, we call r̄ a market-clearing allocation if there exists a corresponding equilibrium.

The requirements on
∑N
i=1 r̄i and

∑N
i=1 c̄i guarantee that no additional securities or cash have

been created. In other words, there exists some set of trades among traders that would lead to the
market-clearing allocation, although the definition says nothing about how the equilibrium is reached.

Since we rely on a market maker to orchestrate trade, our markets generally do not reach the market-
clearing equilibrium. Instead, we introduce the notion of market-maker equilibrium. This equilibrium
is again described by a set of security prices µ? and trader allocations (r?i , c

?
i ), summarized as

(r?, c?), such that no trader wants to trade at these prices given her allocation. The difference is that
we now require r? and c? to be reachable via some sequence of trade with the market maker instead
of via trade among only the traders, and µ? must be the market prices after such a sequence of trade.

Definition 3.2 (Market-maker equilibrium). A triple (r?, c?,µ?) is a market-maker equilibrium
for cost function Cb if, for the market state s? =

∑N
i=1 r

?
i , we have

∑N
i=1 c

?
i = Cb(0) − Cb(s?),

µ?= ∇Cb(s?), and for all i ∈ [N ], 0 ∈ argmaxδ∈RK Ui
(
r?i + δ, c?i− Cb(s?+ δ) + Cb(s

?)
)
. We

call µ? market-maker equilibrium prices if there exist r? and c? such that (r?, c?,µ?) is a market-
maker equilibrium. Similarly, we call r? a market-maker equilibrium allocation if there exists a
corresponding equilibrium. We sometimes write µ?(b;C) to show the dependence of µ? on C and b.

The market-clearing prices µ̄ and the market-maker equilibrium prices µ?(b;C) are not unique in
general, but are unique for the specific utility functions that we study in this paper.

Using these notions of equilibrium, we can formally define our error components. Sampling error is
the difference between the true security values and the market-clearing equilibrium prices. The bias
is the difference between the market-clearing equilibrium prices and the market-maker equilibrium
prices. Finally, the convergence error is the difference between the market-maker equilibrium prices
and the market prices µt(b;C) at a particular round t. Putting this together, we have that

µtrue − µt(b;C) = µtrue − µ̄︸ ︷︷ ︸
Sampling Error

+ µ̄− µ?(b;C)︸ ︷︷ ︸
Bias

+µ?(b;C)− µt(b;C)︸ ︷︷ ︸
Convergence Error

. (3)
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4 The Exponential Trader Model

For the remainder of the paper, we work with the exponential trader model introduced by Abernethy
et al. [2] in which traders have exponential utility functions and exponential-family beliefs. Under
this model, both the market-clearing prices and market-maker equilibrium prices are unique and can
be expressed cleanly in terms of potential functions [9], yielding a tractable analysis. The results of
this section are immediate consequences of prior work [2, 9], but our equilibrium concepts bring
them into a common framework.

We consider a specific exponential family [3] of probability distributions over Ω defined as p(ω;θ) =
eφ(ω)·θ−T (θ), where θ ∈ RK is the natural parameter of the distribution, and T is the log partition
function, T (θ) := log

(∑
ω∈Ω e

φ(ω)·θ). The gradient ∇T (θ) coincides with the expectation of φ
under p(·;θ), and domT ∗ = conv{φ(ω) : ω ∈ Ω} =M.

Following Abernethy et al. [2], we assume that each trader i has exponential-family beliefs with
natural parameter θ̃i. From the perspective of trader i, the expected payoffs of theK market securities
can then be expressed as the vector µ̃i with µ̃i,k :=

∑
ω∈Ω φk(ω)p(ω; θ̃i).

As in Abernethy et al. [2], we also assume that traders are risk averse with exponential utility for
wealth, so the utility of trader i for wealthW is ui(W ) = −(1/ai)e

−aiW , where ai is the the trader’s
risk aversion coefficient. We assume that the traders’ risk aversion coefficients are fixed.

Using the definitions of the expected utility Ui, the exponential family distribution p(·; θ̃i), the log
partition function T , and the exponential utility ui, it is straightforward to show [2] that

Ui(ri, ci) = − 1

ai
e−T (θ̃i)−aici∑

ω∈Ω e
φ(ω)·(θ̃i−airi) = − 1

ai
eT (θ̃i−airi)−T (θ̃i)−aici . (4)

Under this trader model, we can use the techniques of Frongillo and Reid [9] to construct potential
functions which yield alternative characterizations of the equilibria as solutions of minimization
problems. Consider first a market-clearing equilibrium. Define Fi(s) := 1

ai
T (θ̃i + ais) for each

trader i. From Eq. (4) we can observe that −Fi(−ri) + ci is a monotone transformation of trader i’s
utility. Since each trader’s utility is locally maximized at a market-clearing equilibrium, the sum
of traders’ utilities is also locally maximized, as is

∑N
i=1(−Fi(−ri) + ci). Since the equilibrium

conditions require that
∑N
i=1 ci = 0, the security allocation associated with any market-clearing

equilibrium must be a local minimum of
∑N
i=1 Fi(−ri). This idea is formalized in the following

theorem. The proof follows from an analysis of the KKT conditions of the equilibrium. (See the
appendix for all omitted proofs.)
Theorem 4.1. Under the exponential trader model, a market-clearing equilibrium always exists and
market-clearing prices are unique. Market-clearing allocations and prices are exactly the solutions
of the following optimization problems:

r̄ ∈ argmin
r:

∑N
i=1 ri=0

[∑N
i=1 Fi(−ri)

]
, µ̄ = argmin

µ∈RK

[∑N
i=1 F

∗
i (µ)

]
. (5)

Using a similar argument, we can show that the allocation associated with any market-maker equilib-
rium is a local minimum of the function F (r) :=

∑N
i=1 Fi(−ri) + Cb

(∑N
i=1 ri

)
.

Theorem 4.2. Under the exponential trader model, a market-maker equilibrium always exists and
equilibrium prices are unique. Market-maker equilibrium allocations and prices are exactly the
solutions of the following optimization problems:

r? ∈ argmin
r

F (r) , µ? = argmin
µ∈RK

[∑N
i=1 F

∗
i (µ) + bC∗(µ)

]
. (6)

Sampling error We finish this section with an analysis of the first component of error identified in
Section 3: the sampling error. We begin by deriving a more explicit form of market-clearing prices:
Theorem 4.3. Under the exponential trader model, the unique market-clearing equilibrium prices
can be written as µ̄ = Eθ̄ [φ(ω)], where θ̄ :=

(∑N
i=1 θ̃i/ai

)
/
(∑N

i=1 1/ai
)

is the risk-aversion-
weighted average belief and Eθ̄ is the expectation under p(·; θ̄).
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The sampling error arises because the beliefs θ̃i are only noisy signals of the ground truth. From
Theorem 4.3 we see that this error may be compounded by the weighting according to risk aversions,
which can skew the prices. To obtain a concrete bound on the error term ‖µtrue− µ̄‖, we need to make
some assumptions about risk aversion coefficients, the true distribution of the outcome, and how this
distribution is related to trader beliefs. For instance, suppose risk aversion coefficients are bounded
both from below and above, the true outcome is drawn from an exponential-family distribution with
natural parameter θtrue, and the beliefs θ̃i are independent samples with mean θtrue and a bounded
covariance matrix. Under these assumptions, one can show using standard concentration bounds
that with high probability, ‖µtrue − µ̄‖ = O(

√
1/N) as N →∞. In other words, market-clearing

prices approach the ground truth as the number of traders increases. In Appendix B.4 we make
the dependence on risk aversion and belief noise more explicit. The analysis of other information
structures (e.g., biased or correlated beliefs) is beyond the scope of this paper; instead, we focus on
the two error components that depend on the market design.

5 Market-maker Bias

We now analyze the market-maker bias—the difference between the marker-maker equilibrium prices
µ? and market-clearing prices µ̄. We first state a global bound that depends on the liquidity b and cost
function C, but not on trader beliefs, and show that µ? → µ̄ with the rate O(b) as b→ 0. The proof
builds on Theorems 4.1 and 4.2 and uses the facts that C∗ is bounded onM (by our assumptions on
C), and conjugates F ∗i are strongly convex onM (from properties of the log partition function).
Theorem 5.1 (Global Bias Bound). Under the exponential trader model, for any C, there exists a
constant c such that ‖µ?(b;C)− µ̄‖ ≤ cb for all b ≥ 0.

This result makes use of strong convexity constants that are valid over the entire setM, which can
be overly conservative when µ? is close to µ̄. Furthermore, it gives us only an upper bound, which
cannot be used to compare different cost function families. In the rest of this section we pursue
a tighter local analysis, based on the properties of F ∗i and C∗ at µ̄. Our local analysis requires
assumptions that go beyond convexity and differentiability of the cost function. We call the class of
functions that satisfy these assumptions convex+ functions. (See Appendix A.3 for their complete
treatment and a more general definition than provided here.) These functions are related to functions
of Legendre type (see Sec. 26 of Rockafellar [15]). Informally, they are smooth functions that are
strictly convex along directions in a certain space (the gradient space) and linear in orthogonal
directions. For cost functions, strict convexity means that prices change in response to arbitrarily
small trades, while the linear directions correspond to bundles with constant payoffs, whose prices
are therefore fixed.
Definition 5.2. Let f : Rd → R be differentiable and convex. Its gradient space is the linear space
parallel to the affine hull of its gradients, denoted as G(f) := span{∇f(u)−∇f(u′) :u,u′∈ Rd}.
Definition 5.3. We say that a convex function f : Rd → R is convex+ if it has continuous third
derivatives and range(∇2f(u)) = G(f) for all u ∈ Rd.

It can be checked that if P is a projection on G(f) then there exists some a such that f(u) =
f(Pu) + aᵀu, so f is up to a linear term fully described by its values on G(f). The condition on
the range of the Hessian ensures that f is strictly convex over G(f), so its gradient map is invertible
over G(f). This means that the Hessian can be expressed as a function of the gradient, i.e., there
exists a matrix-valued function Hf such that∇2f(u) = Hf (∇f(u)) (see Proposition A.8). The cost
functions C for both the LMSR and the sum of independent LMSRs (IND) are convex+.
Example 5.4 (LMSR as a convex+ function). For LMSR, the gradient space of C is parallel to
the simplex: G(C) = {u : 1ᵀu = 0}. The gradients of C are points in the relative interior of
the simplex. Given such a point µ = ∇C(s), the corresponding Hessian is ∇2C(s) = HC(µ) =
(diagk∈[K] µk) − µµᵀ, where diagk∈[K] µk denotes the diagonal matrix with values µk on the
diagonal. The null space of HC(µ) is {c1 : c ∈ R}, so C is linear in the all-ones direction (buying
one share of each security always has cost one), but strictly convex in directions from G(C).
Example 5.5 (IND as a convex+ function). For IND, the gradient space is RK and the gradients are
the points in (0, 1)K . In this case, HC(µ) = diagk[µk(1− µk)]. This matrix has full rank.

Our next theorem shows that for an appropriate vector u, which depends on µ̄ and C, we have
µ?(b;C) = µ̄+ bu+ εb, where ‖εb‖ = O(b2). Here, the O(·) is taken as b→ 0, so the error term
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εb goes to zero faster than the term bu, which we call the asymptotic bias. Our analysis is local in
the sense that the constants hiding within O(·) may depend on µ̄. This analysis fully uncovers the
main asymptotic term and therefore allows comparison of cost families. In our experiments, we show
that the asymptotic bias is an accurate estimate of the bias even for moderately large values of b.
Theorem 5.6 (Local Bias Bound). Assume that the cost function C is convex+. Then

µ?(b;C) = µ̄− b(ā/N)HT (µ̄)∂C∗(µ̄) + εb , where ‖εb‖ = O(b2).

In the expression above, ā = N/(
∑N
i=1 1/ai) is the harmonic mean of risk-aversion coefficients and

HT (µ̄)∂C∗(µ̄) is guaranteed to consist of a single point even when ∂C∗(µ̄) is a set.

The theorem is proved by a careful application of Taylor’s Theorem and crucially uses properties of
conjugates of convex+ functions, which we derive in Appendix A.3. It gives us a formula to calculate
the asymptotic bias for any cost function for a particular value of µ̄, or evaluate the worst-case bias
against some set of possible market-clearing prices. It also constitutes an important step in comparing
cost function families. To compare the convergence error of two costs C and C ′ in the next section,
we require that their liquidities b and b′ be set so that they have (approximately) the same bias, i.e.,
‖µ?(b′;C ′)− µ̄‖ ≈ ‖µ?(b;C)− µ̄‖. Theorem 5.6 tells us that this can be achieved by the linear
rule b′ = b/η where η = ‖HT (µ̄)∂C ′

∗
(µ̄)‖ / ‖HT (µ̄)∂C∗(µ̄)‖. For C = LMSR and C ′ = IND, we

prove that the corresponding η ∈ [1, 2]. Equivalently, this means that for the same value of b the
asymptotic bias of IND is at least as large as that of LMSR, but no more than twice as large:
Theorem 5.7. For any µ̄ there exists η ∈ [1, 2] such that for all b, ‖µ?(b/η; IND) − µ̄‖ =
‖µ?(b; LMSR)−µ̄‖±O(b2). For this same η, also ‖µ?(b; IND)−µ̄‖ = η‖µ?(b; LMSR)−µ̄‖±O(b2).

Theorem 5.6 also captures an intuitive relationship which can guide the market maker in adjusting the
market liquidity b as the number of traders N and their risk aversion coefficients ai vary. In particular,
holding µ̄ and the cost function fixed, we can maintain the same amount of bias by setting b ∝ N/ā.
Note that 1/ai plays the role of the budget of trader i in the sense that at fixed prices, the trader
will spend an amount of cash proportional to 1/ai. Thus N/ā =

∑
i(1/ai) corresponds to the total

amount of available cash among the traders in the market. Similarly, the market maker’s worst-case
loss, amounting to the market maker’s cash, is proportional to b, so setting b ∝

∑
i(1/ai) is natural.

6 Convergence Error

We now study the convergence error, namely the difference between the prices µt at round t and the
market-maker equilibrium prices µ?. To do so, we must posit a model of how the traders interact with
the market. Following Frongillo and Reid [9], we assume that in each round, a trader i ∈ [N ], chosen
uniformly at random, buys a bundle δ ∈ RK that optimizes her utility given the current market state s
and her existing security and cash allocations, ri and ci. The resulting updates of the allocation vector
r = (ri)

N
i=1 correspond to randomized block-coordinate descent on the potential function F (r) with

blocks ri (see Appendix D.1 and Frongillo and Reid [9]). We refer to this model as the all-security
(trader) dynamics (ASD).2 We apply and extend the analysis of block-coordinate descent to this setting.
We focus on convex+ functions and conduct local convergence analysis around the minimizer of F .
Our experiments demonstrate that the local analysis accurately estimates the convergence rate.

Let r? denote an arbitrary minimizer of F and let F ? be the minimum value of F . Also, let rt denote
the allocation vector and µt the market price vector after the tth trade. Instead of directly analyzing
the convergence error ‖µt − µ?‖, we bound the suboptimality F (rt) − F ? since ‖µt − µ?‖2 =
Θ(F (rt)− F ?) for convex+ costs C under ASD (see Appendix D.7.1).

Convex+ functions are locally strongly convex and have a Lipschitz-continuous gradient, so the
standard analysis of block-coordinate descent [9, 11] implies linear convergence, i.e., E [F (rt)]−
F ? ≤ O(γt) for some γ < 1, where the expectation is under the randomness of the algorithm. We
refine the standard analysis by (1) proving not only upper, but also lower bounds on the convergence
rate, and (2) proving an explicit dependence of γ on the cost function C and the liquidity b. These
two refinements are crucial for comparison of cost families, as we demonstrate with the comparison
of LMSR and IND. We begin by formally defining bounds on local convergence of any randomized
iterative algorithm that minimizes a function F (r) via a sequence of iterates rt.

2In Appendix D, we also analyze the single-security (trader) dynamics (SSD), in which a randomly chosen
trader randomly picks a single security to trade, corresponding to randomized coordinate descent on F .
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Definition 6.1. We say that γhigh is an upper bound on the local convergence rate of an algorithm
if, with probability 1 under the randomness of the algorithm, the algorithm reaches an iteration t0
such that for some c > 0 and all t ≥ t0, E

[
F (rt)

∣∣ rt0]− F ? ≤ cγt−t0high . We say that γlow is a lower
bound on the local convergence rate if γhigh ≥ γlow holds for all upper bounds γhigh.

To state explicit bounds, we use the notation D := diagi∈[N ] ai and P := IN − 11ᵀ/N , where IN
is the N ×N identity matrix and 1 is the all-ones vector. We write M+ for the pseudoinverse of a
matrix M and λmin(M) and λmax(M) for its smallest and largest positive eigenvalues.

Theorem 6.2 (Local Convergence Bound). Assume that C is convex+. Let HT := HT (µ̄) and
HC := HC(µ̄). For the all-securities dynamics, the local convergence rate is bounded between

γASDhigh = 1− 2b
N · λmin(PDP ) · λmin

(
H

1/2
T H+

CH
1/2
T

)
+O(b2) ,

γASDlow = 1− 2b
N · λmax(PDP ) · λmax

(
H

1/2
T H+

CH
1/2
T

)
−O(b2) .

In our proof, we first establish both lower and upper bounds on convergence of a generic block-
coordinate descent that extend the results of Nesterov [11]. We then analyze the behavior of the
algorithm for the specific structure of our objective to obtain explicit lower and upper bounds. Our
bounds prove linear convergence with the rate γ = 1−Θ(b). Since the convergence gets worse as
b→ 0, there is a trade-off with the bias, which decreases as b→ 0.

Theorems 5.6 and 6.2 enable systematic quantitative comparisons of cost families. For simplicity,
assume that N ≥ 2 and all risk aversions are a, so λmin(PDP ) = λmax(PDP ) = a. To compare
convergence rates of two costs C and C ′, we need to control for bias. As discussed after Theorem 5.6,
their biases are (asymptotically) equal if their liquidities are linearly related as b′ = b/η for a suitable
η. Theorem 6.2 then states thatC ′b′ requires (asymptotically) at most a factor of ρ as many trades asCb
to achieve the same convergence error, where ρ := η · λmax(H

1/2
T H+

CH
1/2
T )/λmin(H

1/2
T H+

C′H
1/2
T ).

Similarly, Cb requires at most a factor of ρ′ as many trades as C ′b′ , with ρ′ defined symmetrically to ρ.
For C = LMSR and C ′ = IND, we can show that ρ ≤ 2 and ρ′ ≤ 2, yielding the following result:

Theorem 6.3. Assume that N ≥ 2 and all risk aversions are equal to a. Consider running LMSR with
liquidity b and IND with liquidity b′ = b/η such that their asymptotic biases are equal. Denote the
iterates of the two runs of the market as µtLMSR and µtIND and the respective market-maker equilibria
as µ?LMSR and µ?IND. Then, with probability 1, there exist t0 and t1 ≥ t0 such that for all t ≥ t1 and
sufficiently small b

Et0
[∥∥µ2t(1+ε)

LMSR − µ?LMSR
∥∥2] ≤ Et0

[∥∥µtIND − µ?IND∥∥2] ≤ Et0
[∥∥µ(t/2)(1−ε)

LMSR − µ?LMSR
∥∥2]

,

where ε = O(b) and Et0 [·] = E[· | rt0 ] conditions on the t0th iterate of a given run.

This result means that LMSR and IND are roughly equivalent (up to a factor of two) in terms of the
number of trades required to achieve a given accuracy. This is somewhat surprising as this implies
that maintaining price coherence does not offer strong informational advantages (at least when traders
are individually coherent, as assumed here). However, while there is little difference between the
two costs in terms of accuracy, there is a difference in terms of the worst-case loss. For K securities,
the worst-case loss of LMSR with the liquidity b is b logK, and the worst-case loss of IND with the
liquidity b′ is b′K log 2. If liquidities are chosen as in Theorem 6.3, so that b′ is up to a factor-of-two
smaller than b, then the worst-case loss of IND is at least (bK/2) log 2, which is always worse than
the LMSR’s loss of b logK, and the ratio of the two losses increases as K grows.

When all risk aversion coefficients are equal to some constant a, then the dependence of Theorem 6.2
on the number of traders N and their risk aversion is similar to the dependence in Theorem 5.6. For
instance, to guarantee that γ stays below a certain level for varying N and a requires b = Ω(N/a).

7 Numerical Experiments

We evaluate the tightness of our theoretical bounds via numerical simulation. We consider a complete
market over K = 5 securities and simulate N = 10 traders with risk aversion coefficients equal
to 1. These values of N and K are large enough to demonstrate the tightness of our results, but
small enough that simulations are tractable. While our theory comprehensively covers heterogeneous
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Figure 1: (Left) The tradeoff between market-maker bias and convergence. Solid lines are for LMSR,
dashed for IND, the color indicates the number of trades. (Center) Market-maker bias as a function
of b. (Right) Convergence in the objective. Shading indicates 95% confidence based on 20 trading
sequences.

risk aversions and the dependence on the number of traders and securities, we have chosen to
keep these values fixed, so that we can more cleanly explore the impact of liquidity and number
of trades. We consider the two most commonly studied cost functions: LMSR and IND. We fix the
ground-truth natural parameter θtrue and independently sample the belief θ̃i of each trader from
Normal(θtrue, σ2IK), with σ = 5. We consider a single-peaked ground truth distribution with
θtrue

1 = log(1 − ν(K − 1)) and θtrue
k = log ν for k 6= 1, with ν = 0.02. Trading is simulated

according to the all-security dynamics (ASD) as described at the start of Section 6. In Appendix E,
we show qualitatively similar results using a uniform ground truth distribution and single-security
dynamics (SSD).

We first examine the tradeoff that arises between market-maker bias and convergence error as the
liquidity parameter is adjusted. Fig. 1 (left) shows the combined bias and convergence error, ‖µt−µ̄‖,
as a function of liquidity and the number of trades t (indicated by the color of the line) for the two
cost functions, averaged over twenty random trading sequences. The minimum point on each curve
tells us the optimal value of the liquidity parameter b for the particular cost function and particular
number of trades. When the market is run for a short time, larger values of b lead to lower error. On
the other hand, smaller values of b are preferable as the number of trades grows, with the combined
error approaching 0 for small b.

In Fig. 1 (center) we plot the bias ‖µ?(b;C) − µ̄‖ as a function of b for both LMSR and IND. We
compare this with the theoretical approximation ‖µ?(b;C)− µ̄‖ ≈ b(ā/N)‖HT (µ̄)∂C∗(µ̄)‖ from
Theorem 5.6. Although Theorem 5.6 only gives an asymptotic guarantee as b→ 0, the approximation
is fairly accurate even for moderate values of b. In agreement with Theorem 5.7, the bias of IND is
higher than that of LMSR at any fixed value of b, but by no more than a factor of two.

In Fig. 1 (right) we plot the log of Ê[F (rt)]− F ? as a function of the number of trades t for our two
cost functions and several liquidity levels. Even for small t the curves are close to linear, showing
that the local linear convergence rate kicks in essentially from the start of trade in our simulations.
In other words, there exist some ĉ and γ̂ such that, empirically, we have Ê[F (rt)]− F ? ≈ ĉγ̂t, or
equivalently, log(Ê[F (rt)]−F ?) ≈ log ĉ+ t log γ̂. Plugging the belief values into Theorem 6.2, the
slope of the curve for LMSR should be log10 γ̂ ≈ −0.087b for sufficiently small b, and the slope for
IND should be between −0.088b and −0.164b. In Appendix E, we verify that this is the case.

8 Conclusion

Our theoretical framework provides a meaningful way to quantitatively evaluate the error tradeoffs
inherent in different choices of cost functions and liquidity levels. We find, for example, that to
maintain a fixed amount of bias, one should set the liquidity parameter b proportional to a measure of
the amount of cash that traders are willing to spend. We also find that, although the LMSR maintains
coherent prices while IND does not, the two are equivalent up to a factor of two in terms of the
number of trades required to reach any fixed accuracy, though LMSR has lower worst-case loss.

We have assumed that traders’ beliefs are individually coherent. Experimental evidence suggests that
LMSR might have additional informational advantages over IND when traders’ beliefs are incoherent
or each trader is informed about only a subset of events [12]. We touch on this in Appendix C.2, but
leave a full exploration of the impact of different assumptions on trader beliefs to future work.
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