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Abstract

In this paper, we introduce a robust algorithm, TranSync, for the 1D translation
synchronization problem, in which the aim is to recover the global coordinates of a
set of nodes from noisy measurements of relative coordinates along an observation
graph. The basic idea of TranSync is to apply truncated least squares, where the
solution at each step is used to gradually prune out noisy measurements. We analyze
TranSync under both deterministic and randomized noisy models, demonstrating
its robustness and stability. Experimental results on synthetic and real datasets
show that TranSync is superior to state-of-the-art convex formulations in terms of
both efficiency and accuracy.

1 Introduction

In this paper, we are interested in solving the 1D translation synchronization problem, where the
input is encoded as an observation graph G = (V, E) with n nodes (i.e. V = {1, · · · , n}). Each node
is associated with a latent coordinate x?i ∈ R, 1 ≤ i ≤ n, and each edge (i, j) ∈ E is associated with
a noisy measurement tij = x?i − x?j +N (εij) of the coordinate difference xi − xj under some noise
model N (εij). The goal of translation synchronization is to recover the latent coordinates (up to a
global shift) from these noisy pairwise measurements. Translation synchronization is a fundamental
problem that arises in many application domains, including joint alignment of point clouds [7] and
ranking from relative comparisons [8, 16].

A standard approach to translation synchronization is to solve the following linear program:

minimize
∑

(i,j)∈E

|tij − (xi − xj)|, subject to
n∑
i=1

xi = 0, (1)

Where the constraint ensures that the solution is unique. The major drawback of the linear pro-
gramming formulation is that it can only tolerate up to 50% of measurements coming from biased
noise models (e.g., uniform samples with non-zero mean). Moreover, it is challenging to solve (1)
efficiently at scale. Solving (1) using interior point method becomes impractical for large-scale
datasets, while more scalable methods such as coordinate descent usually exhibit slow convergence.
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In this paper, we introduce a robust and scalable algorithm, TranSync, for translation synchronization.
The algorithm is rather simple, we solve a truncated least squares at each iteration k:

{x(k)i } = argmin
{xi}

∑
(i,j)∈E

wij |tij − (xi − xj)|2, subject to
n∑
i=1

√
dixi = 0, di :=

∑
j∈N (i)

wij .

(2)
where the weights wij = Id(|tij − (x

(k−1)
i − x(k−1)j )| < δk) are obtained from the solution at

the previous iteration using a geometrically decaying truncation parameter δk. Although TranSync
requires solving a linear system at each step, these linear systems are fairly similar to each other,
meaning that the solution at the previous iteration provides an excellent warm-start for solving the
linear system at the current iteration. As a result, the computational efficiency of TranSync is superior
to state-of-the-art methods for solving the linear programming formulation. We analyze TranSync
under both deterministic and randomized noise models, demonstrating its robustness and stability. In
particular, we show that TranSync is able to handle biased noisy measurements.

We have evaluated TranSync on both synthetic datasets and real datasets used in the applications of
joint alignment of point clouds and ranking from pair-wise measurements. Experimental results show
that TranSync is superior to state-of-the-art solvers for the linear programming formulation in terms
of both computational efficiency and accuracy.

1.1 Related Work

Translation synchronization falls into the general problem of map synchronization, which takes maps
computed between pairs of objects as input, and outputs consistent maps across all the objects. Map
synchronization appears as a crucial step in many scientific problems, including fusing partially
overlapping range scans [15], assembling fractured surfaces [14], solving jigsaw puzzles [5, 11],
multi-view structure from motion [25], data-driven shape analysis and processing [17], and structure
from motion [27].

Early methods for map synchronization focused on applying greedy algorithms [14, 15, 18] or
combinatorial optimization [20, 23, 27]. Although these methods exhibit certain empirical success,
they lack theoretical understanding (e.g. we do not know under what conditions can the underlying
ground-truth maps be exactly recovered).

Recent methods for map synchronization apply modern optimization techniques such as convex
optimization and non-convex optimization. In [13], Huang and Guibas introduce a semidefinite
programming formulation for permutation synchronization and its variants. Chen et al. [4] generalize
the method to partial maps. In [26], Wang and Singer introduce a method for rotation synchronization.
Although these methods provide tight, exact recovery conditions, the computational cost of the convex
optimizations provide an obstruction for applying these methods to large-scale data sets.

In contrast to convex optimization, very recent map synchronization methods leverage non-convex
optimization approaches such as spectral techniques and gradient-based optimization. In [21, 22],
Pachauri et al. study map synchronization from the perspective of spectral decomposition. Recently,
Shen et al. [24] provide an analysis of spectral techniques for permutation synchronization. Beyond
spectral techniques, Zhou et al. [28] apply alternating minimization for permutation synchronization.
Finally, Chen and Candes [3] introduce a method for the generalized permutation synchronization
problem using the projected power method. To the best of our knowledge, we are the first to
develop and analyze continuous map synchronizations (e.g., translations or rotations) beyond convex
optimization.

Our approach can be considered as a special case of reweighted least squares (or RLS) [9, 12], which
is a powerful method for solving convex and non-convex optimizations. The general RLS framework
has been applied for map synchronization (e.g. see [1, 2]). Despite the empirical success of these
approaches, the theoretical understanding of RLS remains rather limited. The analysis in this paper
provides a first step towards the understanding of RLS for map synchronization.

1.2 Notation

Before proceeding to the technical part of this paper, we introduce some notation that will be used
later. The unnormalized graph Laplacian of a graph G is denoted as LG. If it is obvious from the
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Algorithm 1 TranSync(c, kmax)

1. x(−1) ← 0. δ−1 ←∞.
for k = 0, 1, 2, kmax do

2. Obtain the truncated graph G(k) using x(k−1) and δk−1.
3. Break if G(k) is disconnected
4. Solve (2) using (4) to obtain x(k).
5. δk = min

(
max
(i,j)∈E

|tij − (x
(0)
i − x

(0)
j )|, cδk−1

)
.

end for
Output: x(k).

context, we will always shorten LG as L to make the notation uncluttered. Similarly, we will use
D = diag(d1, · · · , dn) to collect the vertex degrees and denote the vertex adjacency and vertex-edge
adjacency matrices as A and B respectively. The peusdo-inverse of a matrix X is given by X+. In
addition, we always sort the eigenvalues of a symmetric matrix X ∈ Rn×n in increasing order (i.e.
λ1(X) ≤ λ2(X) ≤ · · · ≤ λn(X)). Moreover, we will consider several matrix norms ‖ · ‖, ‖ · ‖1,∞
and ‖ · ‖F , which are defined as follows:

‖X‖ = σmax(X), ‖X‖1,∞ = max
1≤i≤n

n∑
j=1

|xij |, ‖X‖F =
(∑
i,j

x2ij
) 1

2 .

Note that ‖X‖1,∞ is consistent with the L∞-norm of vectors.

2 Algorithm

In this section, we provide the algorithmic details of TranSync. The iterative scheme (1) requires an
initial solution x(0), an initial truncation parameter δ0, and a stopping condition. The initial solution
can be determined by solving for x(0) from (2) w.r.t. wij = 1. We set the initial truncation parameter
δ0 = max

(i,j)∈E
|tij − (x

(0)
i − x

(0)
j )|, so that the edge with the biggest residual is removed. We stop

TranSync either after the maximum number of iterations is reached, or the truncated graph becomes
disconnected. Algorithm 1 provides the pseudo code of TranSync.

Clearly, the performance of TranSync is driven by the efficiency of solving (2) at each iteration.
TranSync takes an iterative approach, in which we utilize a warm-start x(k−1) provided by the
solution obtained at the previous iteration. When the truncated graph is non-bipartite, we find
a simple weighted average scheme delivers satisfactory computational efficiency. Specifically, it
generates a series of vectors xk,0 = x(k−1), xk,1, · · · , xk,nmax via the following recursion:

xk,l+1
i = (1− ε)

∑
j∈N (i)

wij(x
k,l
j + tij)/

∑
j∈N (i)

wij + εxk,li (3)

xk,l+1
i = xk,l+1

i − 1∑n
i′=1

√
di

n∑
i′=1

√
di′x

k,l+1
i′ , (4)

which may be written in the following matrix form:

xk,l+1 = (In −
1

n
D−

1
2 11TD

1
2 )[(1− ε)D−1

(
Axk,l +Bt(k)

)
+ εxk,l], (5)

Here we add the parameter ε to create a small perturbation to avoid the special case of bipartite graphs.
For non-bipartite graphs, ε can be set to zero.

Remark 2.1 The corresponding normalization constraint in (4), i.e.,
∑
i

√
dixi = 0, only changes

the solution to (2) by a constant factor. We utilize this modification for the purpose of obtaining a
concise convergence property of the iterative scheme detailed below.

The following proposition states that (4) admits a geometric convergence rate:
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Proposition 2.1 xk,l geometrically converges to x(k+1). Specifically, ∀l ≥ 0,

‖D 1
2

(
xk,l − x(k)shift

)
‖ ≤ (1− (1− ε)ρ)l‖D 1

2

(
xk,0 − x(k)

shift

)
‖, x(k)shift = x(k) −

∑
i

√
dix

(k)
i∑

i

√
di

1.

where ρ < 1 is the spectral gap of the normalized Graph Laplacian of the truncated graph.

Proof. See Appendix A.

Since the intermediate solutions are mainly used to prune outlier observations, it is clear that
O(log(n)) iterations of (5), which induce a O(1/n) error for solving (2), are sufficient. The com-
plexity of checking if the graph is non-bapriatite is O(|E|). The total running time for solving (2) is
thus O

(
|E| log(n)

)
. This means the total running time of TranSync is O(|E| log(n)kmax), making it

scalable to large-scale datasets.

3 Analysis of TranSync

In this section, we provide exact recovery conditions of TranSync. We begin with describing an exact
recovery condition under a deterministic noise model in Section 3.1. We then study an exact recovery
condition to demonstrate that TranSync can handle biased noisy samples in Section 3.2.

3.1 Deterministic Exact Recovery Condition

We consider the following deterministic noisy model: We are given the ground-truth location xgt .
Then, for each correct measurement tij , (i, j) ∈ G, |tij − (xgti − x

gt
j )| ≤ σ for a threshold σ. In

contrast, each incorrect measurement tij , (i, j) ∈ G could take any real number. The following
theorem provides an exact recovery condition under this noisy model.

Theorem 3.1 Let dbad be the maximum number of incorrect measurements per node. Define

α = max
k

L†G,kk + max
i 6=j

L†G,ij +
n

2
max
i,j,k

pairwisely different

|L†G,ki − L
†
G,kj |,

and

h = αdbad, p =
dbadα

1− 2h
, q =

(n− dbad)α
1− 2h

.

Suppose h < 1
6 (or p < 1

4 ), then starting from any initial solution x(0), and for any large enough
initial truncation threshold ε ≥ 2‖x(0)‖∞ + σ and iterative step size c satisfying 4p < c < 1, we
have

‖x(k) − xgt‖∞ ≤ qσ + 2pεck−1,

where

k ≤ − log

(
ε(c− 4p)

(1 + 2q)σ

)
/ log c+ 1.

Moreover, we can eventually reach an x(k) such that

‖x(k)‖∞ ≤
2p+ cq

c− 4p
σ

which is independent of the initial solution x(0), initial truncation threshold ε, and values of all wrong
measurements tG\Ggood

.

Proof: See Appendix B. �

Theorem 3.1 essentially says that TransSync can tolerate a constant fraction of arbitrary noise. To
understand how strong this condition is, we consider the case where G = Kn is given by a clique.
Moreover, we assume the nodes are divided into two clusters of equal size, where all the measurements
within each cluster are correct. For measurements between different clusters, half of them are correct
and the other half are wrong. In this case, 25% of all measurements are wrong. However, we cannot
recover the original xgt in this case. In fact, we can set the wrong measurements in a consistent
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manner, i.e tij = xgti − x
gt
j + b for a constant b 6= 0, leading to two competing clusters (one correct

and the other one incorrect) with equal strength. Hence, in the worst case, any algorithm can only
tolerate at most 25% of measurements being wrong.

We now try to use Theorem 3.1 to analyze the case where the observation graph is a clique. In
this case, it is clear that α = 1

n , and p = dbad

n , i.e the fraction of wrong measurements out of all
measurements. Hence, in the clique case, we have shown that TranSync converges to a neighborhood
of the ground truth from any initial solution if the fraction of wrong measurements is less that 1

6 (i.e.,
2/3 of the upper bound).

3.2 Biased Random Noisy Model

We proceed to provide an exact recovery condition of TranSync under a biased random noisy model.
To simplify the discussion, we assume the observation graph G = Kn is a clique. However, our
analysis framework can be extended to handle arbitrary graphs.

Assume σ << a + b. We consider the following noise model, where the noisy measurements are
independent, and they follow

tij =

{
xgti − x

gt
j + U [−σ, σ] with probability p

xgti − x
gt
j + U [−a, b] with probability 1− p (6)

It is easy to check that the linear programming formulation is unable to recover the ground-truth
solution if b

a+b (1− p) >
1
2 . The following theorem shows that TranSync achieves a sub-constant

recovery rate instead.

Theorem 3.2 There exists a constant c so that if p > c/
√

log(n), then w.h.p,

‖x(k) − xgt‖∞ ≤ (1− p/2)k(b− a), ∀ k = 0, · · · , [− log(
b+ a

2σ
)/log(1− p/2)].

The major difficulty of proving Theorem 3.2 is that x(k) is dependent on tk, making it hard to
control x(k) using existing concentration bounds. We address this issue by showing that the solutions
x(k), k = 0, · · · , stay close to the segment between xgt and xgt + (1 − p)a+b2 1. Specifically, for
points on this segment, we can leverage the independence of tij to derive the following concentration
bound for one step of TranSync:

Lemma 3.1 Consider a fixed observation graph G. Let r = (a+b)p
(a+b)p+2(1−p)δ and dmin be the

minimum degree of G. Suppose dmin = Ω(log2(n)), and p + r(1 − p) = Ω(log2(n)/dmin) .
Consider an initial point x(0) (independent from tij) and a threshold parameter δ such that −a+ δ ≤
mini x

(0)
i ≤ maxi x

(0)
i ≤ b− δ. Then w.h.p., one step of TranSync outputs x(1) which satisfies

‖x(1) − (1− r)x(0) + rxgt)‖∞

= O

(√
log(n)

(p+ r(1− p))dminλ2(LG)
)

)
·
√

max(‖x(0)‖2d,∞, r
2) +O

(p
r
σ2
)
,

where ‖x(0)‖d,∞ = max
1≤i,j≤n

|x(0)i − x
(0)
j |, and LG is the normalized graph Laplacian of G.

Proof: See Appendix C.1. �

Remark 3.1 Note that when G is a clique or a graph sampled from the standard Erdős-Rényi model

G(n, q), then O(
√

ρ log(n)
(p+r(1−p))λ2(LG) ) = O(

√
log(n)

(p+r(1−p))n ).

To prove Theorem 3.2, we show that when k = O(log
3
4 (n)), the L∞ distance between x(k) to the

line segment between xgt and xgt + (1− p)a+b2 1 only grows geometrically, and this distance is in
the order of o(p). On the other hand, (1− p/2)k = o(p). So when k ≥ k, that distance decays with
a geometrical rate that is small than c. The details are deferred to Appendix C.2.
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Improving recovery rate via sample splitting. Note that Lemma 3.1 enables us to apply standard
sampling tricks to improve the recovery rate. To simplify the discussion, we will assume σ is
sufficiently small. First of all, it is clear that if re-sampling is allowed at each iteration, then TranSync
admits a recovery rate of O( log(n)√

dmin
). When re-sampling is not allowed, we can improve the recovery

rate by dividing the observations into O( log(n)√
n

) independent sets, and apply one set of observations

at each iteration. In this case, the recovery rate is O( log2(n)√
n

). These recovery rates suggest that the
recovery rate in Theorem 3.2 could potentially be improved. Nevertheless, Theorem 3.2 still shows
that TranSync can tolerate a sub-constant recovery rate, which is superior to the linear programming
formulation.

4 Experimental Results

In this section, we provide a detailed experimental evaluation of the proposed translation synchro-
nization (TranSync) method. We begin with describing the experimental setup in Section 4.1. We
then perform evaluations on synthetic and real datasets in Section 4.2 and Section 4.3 respectively.

4.1 Experimental Setup

Datasets. We employ both synthetic datasets and real datasets for evaluation. The synthetic data is
generated following the noisy model described in (6). In the following, we encode the noisy model
asM(G, p, σ), where G is the observation graph, p is the fraction of correct measurements, and σ
describes the interval of correct measurements. Besides the synthetic data, we also consider two real
datasets coming from the applications of joint alignment of point clouds and global ranking from
relative rankings.

Baseline comparison. We choose coordinate descent for solving (1) as the baseline algorithm.
Specifically, denote the solution of xi, 1 ≤ i ≤ n at iteration k as x(k)i . Then {x(k)i } are given by the
following recursion:

x
(k)
i = arg min

xi

∑
j∈N (i)

|xi − (x
(k−1)
j − tij)|

= median
j∈N (i)

{x(k−1)j − tij}, 1 ≤ i ≤ n, k = 1, 2, · · · , (7)

We use the same initial starting point as TranSync. We also tested interior point methods, and all the
datasets used in our experiments are beyond their reach.

Evaluation protocol. We report the min, median, and max of the coordinate-wise difference between
the solution of each algorithm and the underlying ground-truth. We also report the total running time
of each algorithm on each dataset (See Table 1).

4.2 Experimental Evaluation on Synthetic Datasets

We generate the synthetic datasets by sampling from four kinds of observation graphs and two values
of σ, i.e. σ ∈ {0.01, 0.04}. The graphs are generated according to two modes: 1) dense graphs
versus sparse graphs, and 2) regular graphs versus irregular graphs. To illustrate the strength of
TranSync, we choose p ∈ {0.4, 0.8} for dense graphs and p ∈ {0.8, 1.0} for sparse graphs. Below is
a detailed descriptions for all kinds of observation graphs generated.

• Gdr (dense, regular): The first graph contains n = 2000 nodes. Independently, we connect
an edge between a pair of vertices vi, vj with a fixed probability p = 0.1. The expected
degree of each vertex is 200.

• Gdi (dense, irregular): The second graph contains n = 2000 nodes. Independently, we
connect an edge between a pair of vertices vi, vj with probability p = 0.4sisj , where
si = 0.2+0.6 i−1n−1 , 1 ≤ i ≤ n are scalar values associated the vertices. The expected degree
of each vertex is about 200.
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Coordinate Descent TranSync
G p σ min median max time min median max time
Gdr 0.4 0.01 0.95e-2 1.28e-2 11.40e-2 0.939s 0.30e-2 0.37e-2 0.60e-2 0.178s
Gdr 0.4 0.04 3.87e-2 4.73e-2 18.59e-2 1.325s 1.04e-2 1.22e-2 1.59e-2 0.155s
Gdr 0.8 0.01 0.30e-2 0.34e-2 0.41e-2 0.781s 0.16e-2 0.18e-2 0.28e-2 0.149s
Gdr 0.8 0.04 1.19e-2 1.35e-2 1.78e-2 1.006s 0.57e-2 0.70e-2 0.87e-2 0.133s
Gdi 0.4 0.01 2.17e-2 17.59e-2 50.51e-2 0.865s 0.39e-2 0.52e-2 0.93e-2 0.179s
Gdi 0.4 0.04 5.46e-2 19.40e-2 53.88e-2 1.043s 1.25e-2 1.55e-2 2.42e-2 0.169s
Gdi 0.8 0.01 0.34e-2 0.42e-2 0.58e-2 0.766s 0.17e-2 0.24e-2 0.33e-2 0.159s
Gdi 0.8 0.04 1.39e-2 1.66e-2 2.30e-2 0.972s 0.68e-2 0.86e-2 1.16e-2 0.141s
Gsr 0.8 0.01 0.58e-2 0.65e-2 0.79e-2 10.062s 0.38e-2 0.45e-2 0.61e-2 1.852s
Gsr 0.8 0.04 2.35e-2 2.62e-2 3.54e-2 12.375s 1.35e-2 1.55e-2 2.05e-2 1.577s
Gsr 1.0 0.01 0.45e-2 0.50e-2 0.58e-2 9.798s 0.28e-2 0.32e-2 0.39e-2 0.188s
Gsr 1.0 0.04 1.84e-2 1.99e-2 2.36e-2 11.626s 1.14e-2 1.29e-2 1.60e-2 0.179s
Gsi 0.8 0.01 0.72e-2 0.85e-2 75.85e-2 10.236s 0.52e-2 0.64e-2 1.10e-2 1.835s
Gsi 0.8 0.04 2.88e-2 3.38e-2 11.48e-2 12.350s 1.79e-2 2.16e-2 3.59e-2 1.610s
Gsi 1.0 0.01 0.53e-2 0.62e-2 0.77e-2 9.388s 0.37e-2 0.43e-2 0.57e-2 0.180s
Gsi 1.0 0.04 2.24e-2 2.52e-2 3.12e-2 12.200s 1.44e-2 1.72e-2 2.47e-2 0.187s

Table 1: Experimental results comparing TranSync and Coordinate Descent (CD) under different
settings. All statistics (min, median, max) and mean running time are computed among 100 indepen-
dent experiments with the same setting. As observed, TranSync outperforms Coordinate Descent in
all experiments.

• Gsr (sparse, regular): The third graph is generated in a similar fashion as the first graph,
except that the number of nodes n = 20K, and the connecting probability is set to p = 0.003.
The expected degree of each vertex is 60.
• Gsi (sparse, irregular): The fourth graph is generated in a similar fashion as the second

graph, except that the number of nodes n = 20K, and the connecting probability between a
pair of vertices is p = 0.1sisj , where si = 0.07 + 0.21 i−1n−1 , 1 ≤ i ≤ n are scalar values
associated the vertices. The expected degree of each vertex is about 60.

For this experiment, instead of using kmax as stopping condition as in Algorithm 1, we stop when we
observe δk < δmin. Here δmin does not need to be close to σ. In fact, we choose δmin = 0.05, 0.1 for
σ = 0.01, 0.04, respectively. We also claim that if a small validation set (with size significantly less
than n) of correct observations is available, our performance could be further improved.

As illustrated in Table 1, TranSync dominates coordinate descent in terms of both accuracy and
prediction. In particular, TranSync is significantly better than coordinate descent on dense graphs in
terms of accuracy. In particular, on dense but irregular graphs, coordinate descent did not converge
at all when p = 0.8. The main advantage of TranSync on sparse graphs is the computational cost,
although the accuracy is still considerably better than coordinate descent.

4.3 Experimental Evaluation on Real Datasets

Translation synchronization for joint alignment of point clouds. In the first application, we
consider the problem of joint alignment of point clouds from pair-wise alignment [10]. To this end,
we utilize the Patriot Circle Lidar dataset1. We uniformly subsampled the dataset to 6K scans. We
applied Super4PCS [19] to match each scan to 300 randomly selected scans, where each match
returns a pair-wise rigid transformation and a score. We then pick the top-30 matches for each scan,
this results in a graph with 140K edges. To create the input data for translation synchronization, we
run the state-of-the-art rotation synchronization algorithm described in [2] to estimate a global pose
Ri for each scan. The pair-wise measurement tij from node i to node j is then given by RTi tlocal

ij ,
where tlocal

ij is the translation vector obtained in pair-wise matching. The average outlier ratio of the
pair-wise matches per node is 35%, which is relatively high since the observation graph is fairly
sparse. Since tij is a 3D vector, we run TranSync three times, one for each coordinate. As illustrated
in Figure 1, TranSync is able to recover the the global shape of the underlying scanning trajectory. In
contrast, coordinate descent completely fails on this dataset.

1http://masc.cs.gmu.edu/wiki/MapGMU
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Figure 1: The application of TranSync in joint alignment of 6K Lidar scans around a city block. (a)
Snapshot of the underlying scanning trajectory. (b) Reconstruction using TranSync (c) Reconstruction
using Coordinate Descent.

Global ranking (score)
Movie MRQE Hodge-Diff. Hodge-Ratio Hodge-Binary TS-Init TS-Final

Shakespeare in Love 1(85) 1(0.247) 2(0.078) 1 (0.138) 1(0.135) 1(0.219)
Witness 2(77) 2(0.217) 1(0.088) 3(0.107) 3(0.076) 2(0.095)

October Sky 3(76) 3(0.213) 3(0.078) 2(0.111) 2(0.092) 3(0.0714)
The Waterboy 4(66) 6(-0.464) 6(-0.162) 6(-0.252) 5(-0.134) 4(-0.112)

Interview with the Vampire 5(65) 4(-0.031) 4(-0.012) 4(-0.120) 4 (-0.098) 5(-0.140)
Dune 6(44) 5(-0.183) 5(-0.069) 5(-0.092) 6(-0.216) 6(-0.281)

Table 2: Global ranking of selected six movies via different methods: MRQE, HodgeRank[16] with
1) arithmetic mean score difference, 2) geometric mean score ratio and 3) and binary comparisons,
and the initial and final predictions of TranSync. TranSync results in the most consistent result with
MRQE.

Ranking from relative comparisons. In the second application, we apply TranSync to predict
global rankings of Netflix movies from their relative comparisons provided by users. The Netflix
dataset contains 17070 movies that were rated between October, 1998 and December, 2005. We adapt
the procedure described in [16] to generate the input data. Specifically, for each pair of movies, we
average the relative ratings from the same users within the same month. We only consider a relative
measurement if we collect more than 10 such relative ratings. We then apply TranSync to predict
the global rankings of all the movies. We report the initial prediction obtained by the first step of
TranSync (i.e., all the relative comparisons are used) and the final prediction suggested by TranSync
(i.e., after removing inconsistent relative comparisons).

Table 2 compares TranSync with HodgeRank [16] on six representative movies that are studied
in [16]. The experimental results show that both predictions appear to be more consistent with
MRQE2 (the largest online directory of movie reviews on the internet) than HodgeRank [16] and its
variants, which were only applied on these six movies in isolation. Moreover, the final prediction is
superior to the initial prediction. These observations indicate two key advantages of TranSync, i.e.,
scalability on large-scale datasets and robustness to noisy relative comparisons.

5 Conclusions and Future Work

In this paper, we have introduced an iterative algorithm for solving the translation synchronization
problem, which estimates the global locations of objects from noisy measurements of relative
locations. We have justified the performance of our approach both experimentally and theoretically
under both deterministic and randomized conditions. Our approach is more scalable and accurate
than the standard linear programming formulation. In particular, when the pair-wise measurement

2http://www.mrqe.com

8



is biased, our approach can still achieve sub-constant recovery rate, while the linear programming
approach can tolerate no more than 50% of the measurements being biased.

In the future, we plan to extend this iterative scheme to other synchronization problems, such as
synchronizing rotations and point-based maps. Moreover, it would also be interesting to study
variants of the iterative scheme such as re-weighted least squares. We would also like to close the
gap between the current recovery rate and the lower bound, which exhibits a poly-log factor. This
requires developing new tools for analyzing the iterative algorithm.
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