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Abstract

Hypergraph partitioning is an important problem in machine learning, computer
vision and network analytics. A widely used method for hypergraph partitioning
relies on minimizing a normalized sum of the costs of partitioning hyperedges
across clusters. Algorithmic solutions based on this approach assume that different
partitions of a hyperedge incur the same cost. However, this assumption fails
to leverage the fact that different subsets of vertices within the same hyperedge
may have different structural importance. We hence propose a new hypergraph
clustering technique, termed inhomogeneous hypergraph partitioning, which as-
signs different costs to different hyperedge cuts. We prove that inhomogeneous
partitioning produces a quadratic approximation to the optimal solution if the
inhomogeneous costs satisfy submodularity constraints. Moreover, we demonstrate
that inhomogenous partitioning offers significant performance improvements in
applications such as structure learning of rankings, subspace segmentation and
motif clustering.

1 Introduction
Graph partitioning or clustering is a ubiquitous learning task that has found many applications in
statistics, data mining, social science and signal processing [1, 2]. In most settings, clustering is
formally cast as an optimization problem that involves entities with different pairwise similarities
and aims to maximize the total “similarity” of elements within clusters [3, 4, 5], or simultaneously
maximize the total similarity within cluster and dissimilarity between clusters [6, 7, 8]. Graph
partitioning may be performed in an agnostic setting, where part of the optimization problem is to
automatically learn the number of clusters [6, 7].

Although similarity among entities in a class may be captured via pairwise relations, in many real-
world problems it is necessary to capture joint, higher-order relations between subsets of objects. From
a graph-theoretic point of view, these higher-order relations may be described via hypergraphs, where
objects correspond to vertices and higher-order relations among objects correspond to hyperedges.
The vertex clustering problem aims to minimize the similarity across clusters and is referred to as
hypergraph partitioning. Hypergraph clustering has found a wide range of applications in network
motif clustering, semi-supervised learning, subspace clustering and image segmentation. [8, 9, 10,
11, 12, 13, 14, 15].

Classical hypergraph partitioning approaches share the same setup: A nonnegative weight is assigned
to every hyperedge and if the vertices in the hyperedge are placed across clusters, a cost proportional
to the weight is charged to the objective function [9, 11]. We refer to this clustering procedure
as homogenous hyperedge clustering and refer to the corresponding partition as a homogeneous
partition (H-partition). Clearly, this type of approach prohibits the use of information regarding
how different vertices or subsets of vertices belonging to a hyperedge contribute to the higher-order
relation. A more appropriate formulation entails charging different costs to different cuts of the
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Figure 1: Clusters obtained using homogenous and inhomogeneous hypergraph partitioning and
graph partitioning (based on pairwise relations). Left: Each reaction is represented by a hyperedge.
Three different cuts of a hyperedge are denoted by c(M3), c(M1), and c(M2), based on which vertex
is “isolated” by the cut. The graph partition only takes into account pairwise relations between
reactants, corresponding to w(c(M3)) = 0. The homogenous partition enforces the three cuts to
have the same weight, w(c(M3)) = w(c(M1)) = w(c(M2)), while an inhomogenous partition is
not required to satisfy this constraint. Right: Three different clustering results based on optimally
normalized cuts for a graph partition, a homogenous partition (H-partition) and an inhomogenous
partition (InH-partition) with 0.01w(c(M1)) ≤ w(c(M3)) ≤ 0.44w(c(M1)).

hyperedges, thereby endowing hyperedges with vector weights capturing these costs. To illustrate
the point, consider the example of metabolic networks [16]. In these networks, vertices describe
metabolites while edges describe transformative, catalytic or binding relations. Metabolic reactions
are usually described via equations that involve more than two metabolites, such as M1 +M2 →M3.
Here, both metabolites M1 and M2 need to be present in order to complete the reaction that leads
to the creation of the product M3. The three metabolites play different roles: M1,M2 are reactants,
while M3 is the product metabolite. A synthetic metabolic network involving reactions with three
reagents as described above is depicted in Figure 1, along with three different partitions induced by a
homogeneous, inhomogeneous and classical graph cut. As may be seen, the hypergraph cuts differ in
terms of how they split or group pairs of reagents. The inhomogeneous clustering preserves all but
one pairing, while the homogenous clustering splits two pairings. The graph partition captures only
pairwise relations between reactants and hence, the optimal normalized cut over the graph splits six
reaction triples. The differences between inhomogenous, homogenous, and pairwise-relation based
cuts are even more evident for large graphs and they may lead to significantly different partitioning
performance in a number of important partitioning applications.

The problem of inhomogeneous hypergraph clustering has not been previously studied in the literature.
The main results of the paper are efficient algorithms for inhomogenous hypergraph partitioning
with theoretical performance guarantees and extensive testing of inhomogeneous partitioning in
applications such as hierarchical biological network studies, structure learning of rankings and
subspace clustering1 (All proofs and discussions of some applications are relegated to the Supple-
mentary Material). The algorithmic methods are based on transforming hypergraphs into graphs
and subsequently performing spectral clustering based on the normalized Laplacian of the derived
graph. A similar approach for homogenous clustering has been used under the name of Clique
Expansion [14]. However, the projection procedure, which is the key step of Clique Expansion,
differs significantly from the projection procedure used in our work, as the inhomogenous clustering
algorithm allows non-uniform expansion of one hyperedge while Clique Expansion only allows
for uniform expansions. A straightforward analysis reveals that the normalized hypergraph cut
problem [11] and the normalized Laplacian homogeneous hypergraph clustering algorithms [9, 11]
are special cases of our proposed algorithm, where the costs assigned to the hyperedges take a very
special form. Furthermore, we show that when the costs of the proposed inhomogeneous hyperedge
clustering are submodular, the projection procedure is guaranteed to find a constant-approximation
solution for several graph-cut related entities. Hence, the inhomogeneous clustering procedure has
the same quadratic approximation properties as spectral graph clustering [17].

2 Preliminaries and Problem Formulation
A hypergraph H = (V,E) is described in terms of a vertex set V = {v1, v2, ..., vn} and a set of
hyperedges E. A hyperedge e ∈ E is a subset of vertices in V . For an arbitrary set S, we let |S|
stand for the cardinality of the set, and use δ(e) = |e| to denote the size of a hyperedge. If for all
e ∈ E, δ(e) equals a constant ∆, the hypergraph is called a ∆-uniform hypergraph.

1The code for experiments can be found at https://github.com/lipan00123/InHclustering.
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Let 2e denote the power set of e. An inhomogeneous hyperedge (InH-hyperedge) is a hyperedge
with an associated weight function we : 2e → R≥0. The weight we(S) indicates the cost of
cutting/partitioning the hyperedge e into two subsets, S and e/S. A consistent weight we(S) satisfies
the following properties: we(∅) = 0 and we(S) = we(e/S). The definition also allows we(·) to
be enforced only for a subset of 2e. However, for singleton sets S = {v} ∈ e, we({v}) has to be
specified. The degree of a vertex v is defined as dv =

∑
e: v∈e we({v}), while the volume of a subset

of vertices S ⊆ V is defined as

volH(S) =
∑
v∈S

dv. (1)

Let (S, S̄) be a partition of the vertices V . Define the hyperedge boundary of S as ∂S = {e ∈
E|e ∩ S 6= ∅, e ∩ S̄ 6= ∅} and the corresponding set volume as

volH(∂S) =
∑
e∈∂S

we(e ∩ S) =
∑
e∈E

we(e ∩ S), (2)

where the second equality holds since we(∅) = we(e) = 0. The task of interest is to minimize the
normalized cut NCut of the hypergraph with InH-hyperedges, i.e., to solve the following optimization
problem

arg min
S

NCutH(S) = arg min
S

volH(∂S)

(
1

volH(S)
+

1

volH(S̄)

)
. (3)

One may also extend the notion of InH hypergraph partitioning to k-way InH-partition. For this pur-
pose, we let (S1, S2, ..., Sk) be a k-way partition of the vertices V , and define the k-way normalized
cut for inH-partition according to

NCutH(S1, S2, ..., Sk) =

k∑
i=1

volH(∂Si)

volH(Si)
. (4)

Similarly, the goal of a k-way inH-partition is to minimize NCutH(S1, S2, ..., Sk). Note that if
δ(e) = 2 for all e ∈ E, the above definitions are consistent with those used for graphs [18].

3 Inhomogeneous Hypergraph Clustering Algorithms

Motivated by the homogeneous clustering approach of [14], we propose an inhomogeneous clustering
algorithm that uses three steps: 1) Projecting each InH-hyperedge onto a subgraph; 2) Merging
the subgraphs into a graph; 3) Performing classical spectral clustering based on the normalized
Laplacian (described in the Supplementary Material, along with the complexity of all algorithmic
steps). The novelty of our approach is in introducing the inhomogenous clustering constraints via the
projection step, and stating an optimization problem that provides the provably best weight splitting
for projections. All our theoretical results are stated for the NCut problem, but the proposed methods
may be used as heuristics for k-way NCuts.

Suppose that we are given a hypergraph with inhomogeneous hyperedge weights, H = (V,E,w).
For each InH-hyperedge (e, we), we aim to find a complete subgraph Ge = (V (e), E(e), w(e))
that “best” represents this InH-hyperedge; here, V (e) = e, E(e) = {{v, ṽ}|v, ṽ ∈ e, v 6= ṽ}, and
w(e) : E(e) → R denotes the hyperedge weight vector. The goal is to find the graph edge weights
that provide the best approximation to the split hyperedge weight according to:

min
w(e),β(e)

β(e) s.t. we(S) ≤
∑

v∈S,ṽ∈e/S

w
(e)
vṽ ≤ β(e) we(S), for all S ∈ 2e s.t. we(S) is defined. (5)

Upon solving for the weights w(e), we construct a graph G = (V,Eo, w), where V are the vertices of
the hypergraph, Eo is the complete set of edges, and where the weights wvṽ, are computed via

wvṽ ,
∑
e∈E

w
(e)
vṽ , ∀{v, ṽ} ∈ Eo. (6)

3



This step represents the projection weight merging procedure, which simply reduces to the sum of
weights of all hyperedge projections on a pair of vertices. Due to the linearity of the volumes (1) and
boundaries (2) of sets S of vertices, for any S ⊂ V , we have

VolH(∂S) ≤ VolG(∂S) ≤ β∗VolH(∂S), VolH(S) ≤ VolG(S) ≤ β∗VolH(S), (7)

where β∗ = maxe∈E β
(e). Applying spectral clustering on G = (V,Eo, w) produces the desired

partition (S∗, S̄∗). The next result is a consequence of combining the bounds of (7) with the
approximation guarantees of spectral graph clustering (Theorem 1 [17]).
Theorem 3.1. If the optimization problem (5) is feasible for all InH-hyperedges and the weights
wvṽ obtained from (6) are nonnegative for all {v, ṽ} ∈ Eo, then α∗ = NCutH(S∗) satisfies

(β∗)3αH ≥
(α∗)2

8
≥ α2

H
8
. (8)

where αH is the optimal value of normalized cut of the hypergraphH.

There are no guarantees that the wvṽ will be nonnegative: The optimization problem (5) may result
in solutions w(e) that are negative. The performance of spectral methods in the presence of negative
edge weights is not well understood [19, 20]; hence, it would be desirable to have the weights
wvṽ generated from (6) be nonnegative. Unfortunately, imposing nonngativity constraints in the
optimization problem may render it infeasible. In practice, one may use (wvṽ)+ = max{wvṽ, 0} to
remove negative weights (other choices, such as (wvṽ)+ =

∑
e(w

(e)
vṽ )+ do not appear to perform

well). This change invalidates the theoretical result of Theorem 3.1, but provides solutions with very
good empirical performance. The issues discussed are illustrated by the next example.
Example 3.1. Let e = {1, 2, 3}, (we({1}), we({2}), we({3})) = (0, 0, 1). The solution to the
weight optimization problem is (β(e), w

(e)
12 , w

(e)
13 , w

(e)
23 ) = (1,−1/2, 1/2, 1/2). If all components

w(e) are constrained to be nonnegative, the optimization problem is infeasible. Nevertheless, the above
choice of weights is very unlikely to be encountered in practice, as we({1}), we({2}) = 0 indicates
that vertices 1 and 2 have no relevant connections within the given hyperedge e, while we({3}) = 1
indicates that vertex 3 is strongly connected to 1 and 2, which is a contradiction. Let us assume
next that the negative weight is set to zero. Then, we adjust the weights ((w

(e)
12 )+, w

(e)
13 , w

(e)
23 ) =

(0, 1/2, 1/2), which produce clusterings ((1,3)(2)) or ((2,3)(1)); both have zero costs based on we.

Another problem is that arbitrary choices for we may cause the optimization problem to be infeasi-
ble (5) even if negative weights of w(e) are allowed, as illustrated by the following example.
Example 3.2. Let e = {1, 2, 3, 4}, with we({1, 4}) = we({2, 3}) = 1 and we(S) = 0 for all other
choices of sets S. To force the weights to zero, we require w(e)

vṽ = 0 for all pairs vṽ, which fails to
work for we({1, 4}), we({2, 3}). For a hyperedge e, the degrees of freedom for we are 2δ(e)−1 − 1,
as two values of we are fixed, while the other values are paired up by symmetry. When δ(e) > 3, we
have

(
δ(e)

2

)
< 2δ(e)−1 − 1, which indicates that the problem is overdetermined/infeasible.

In what follows, we provide sufficient conditions for the optimization problem to have a feasible
solution with nonnegative values of the weights w(e). Also, we provide conditions for the weights
we that result in a small constant β∗ and hence allow for quadratic approximations of the optimum
solution. Our results depend on the availability of information about the weights we: In practice, the
weights have to be inferred from observable data, which may not suffice to determine more than the
weight of singletons or pairs of elements.

Only the values of we({v}) are known. In this setting, we are only given information about how
much each node contributes to a higher-order relation, i.e., we are only given the values of we({v}),
v ∈ V . Hence, we have δ(e) costs (equations) and δ(e) ≥ 3 variables, which makes the problem
underdetermined and easy to solve. The optimal βe = 1 is attained by setting for all edges {v, ṽ}

w
(e)
vṽ =

1

δ(e)− 2
[we({v}) + we({ṽ})]−

1

(δ(e)− 1)(δ(e)− 2)

∑
v′∈e

we({v′}). (9)

The components of we(·) with positive coefficients in (3) are precisely those associated with the
endpoints of edges vṽ. Using simple algebraic manipulations, one can derive the conditions under
which the values w(e)

vṽ are nonnegative, and these are presented in the Supplementary Material.
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The solution to (9) produces a perfect projection with β(e) = 1. Unfortunately, one cannot guarantee
that the solution is nonnegative. Hence, the question of interest is to determine for what types of
cuts can one can deviate from a perfect projection but ensure that the weights are nonnegative. The
proposed approach is to set the unspecified values of we(·) so that the weight function becomes
submodular, which guarantees nonnegative weights wevṽ that can constantly approximate we(·),
although with a larger approximation constant β.

Submodular weights we(S). As previously discussed, when δ(e) > 3, the optimization problem (5)
may not have any feasible solutions for arbitrary choices of weights. However, we show next that if
the weights we are submodular, then (5) always has a nonnegative solution. We start by recalling the
definition of a submodular function.
Definition 3.2. A function we : 2e → R≥0 that satisfies

we(S1) + we(S2) ≥ we(S1 ∩ S2) + we(S1 ∪ S2) for all S1, S2 ∈ 2e,

is termed submodular.
Theorem 3.3. If we is submodular, then

w
∗(e)
vṽ =

∑
S∈2e/{∅,e}

[
we(S)

2|S|(δ(e)− |S|)1|{v,ṽ}∩S|=1 (10)

− we(S)

2(|S|+ 1)(δ(e)− |S| − 1)
1|{v,ṽ}∩S|=0 −

we(S)

2(|S| − 1)(δ(e)− |S|+ 1)
1|{v,ṽ}∩S|=2

]
is nonnegative. For 2 ≤ δ(e) ≤ 7, the function above is a feasible solution for the optimization
problem (5) with parameters β(e) listed in Table 1.

Table 1: Feasible values of β(e) for δ(e)

|δ(e)| 2 3 4 5 6 7
β 1 1 3/2 2 4 6

Theorem 3.3 also holds when some weights in the set we are not specified, but may be completed to
satisfy submodularity constraints (See Example 3.3).
Example 3.3. Let e = {1, 2, 3, 4}, (we({1}), we({2}), we({3}), we({4})) = (1/3, 1/3, 1, 1). Solv-
ing (9) yields w(e)

12 = −1/9 and β(e) = 1. By completing the missing components in we as
(we({1, 2}), we({1, 3}), we({1, 4})) = (2/3, 1, 1) leads to submodular weights (Observe that com-
pletions are not necessarily unique). Then, the solution of (10) gives w(e)

12 = 0 and β(e) ∈ (1, 2/3],
which is clearly larger than one.
Remark 3.1. It is worth pointing out that β = 1 when δ(e) = 3, which asserts that homogeneous
triangle clustering may be performed via spectral methods on graphs without any weight projection
distortion [9]. The above results extend this finding to the inhomogeneous case whenever the weights
are submodular. In addition, triangle clustering based on random walks [21] may be extended to the
inhomogeneous case.

Also, (10) lead to an optimal approximation ratio β(e) if we restrict w(e) to be a linear mapping of
we, which is formally stated next.

Theorem 3.4. Suppose that for all pairs of {v, ṽ} ∈ Eo, w(e)
vṽ is a linear function of we, denoted by

w
(e)
vṽ = fvṽ(we), where {fvṽ}{vṽ∈E(e)} depends on δ(e) but not on we. Then, when δ(e) ≤ 7, the

optimal values of β for the following optimization problem depend only on δ(e), and are equal to
those listed in Table 1.

min
{fvṽ}{v,ṽ}∈Eo ,β

max
submodular we

β (11)

s.t. we(S) ≤
∑

v∈S,ṽ∈e/S

fvṽ(we) ≤ βwe(S), for all S ∈ 2e.

Remark 3.2. Although we were able to prove feasibility (Theorem 3.3) and optimality of linear
solutions (Theorem 3.4) only for small values of δ(e), we conjecture the results to be true for all δ(e).
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The following theorem shows that if the weights we of hyperedges in a hypergraph are generated
from graph cuts of a latent weighted graph, then the projected weights of hyperedges are proportional
to the corresponding weights in the latent graph.

Theorem 3.5. Suppose that Ge = (V (e), E(e), w(e)) is a latent graph that generates hyperedge
weights we according to the following procedure: for any S ⊆ e, we(S) =

∑
v∈S,ṽ∈e/S w

(e)
vṽ . Then,

equation (10) establishes that w∗(e)vṽ = β(e)w
(e)
vṽ , for all vṽ ∈ E(e), with β(e) = 2δ(e)−2

δ(e)(δ(e)−1) .

Theorem 3.5 establishes consistency of the linear map (10), and also shows that the min-max optimal
approximation ratio for linear functions equals Ω(2δ(e)/δ(e)2). An independent line of work [22],
based on Gomory-Hu trees (non-linear), established that submodular functions represent nonnegative
solutions of the optimization problem (5) with β(e) = δe − 1. Therefore, an unrestricted solution of
the optimization problem (5) ensures that β(e) ≤ δe − 1.

As practical applications almost exclusively involve hypergraphs with small, constant δ(e), the
Gomory-Hu tree approach in this case is suboptimal in approximation ratio compared to (10). The
expression (10) can be rewritten as w∗(e) = M we, where M is a matrix that only depends on δ(e).
Hence, the projected weights can be computed in a very efficient and simple manner, as opposed
to constructing the Gomory-Hu tree or solving (5) directly. In the rare case that one has to deal
with hyperedges for which δ(e) is large, the Gomory-Hu tree approach and a solution of (5) may be
preferred.

4 Related Work and Discussion

One contribution of our work is to introduce the notion of an inhomogenous partition of hyperedges
and a new hypergraph projection method that accompanies the procedure. Subsequent edge weight
merging and spectral clustering are standardly used in hypergraph clustering algorithms, and in
particular in Zhou’s normalized hypergraph cut approach [11], Clique Expansion, Star Expansion and
Clique Averaging [14]. The formulation closest to ours is Zhou’s method [11]. In the aforementioned
hypergraph clustering method for H-hyperedges, each hyperedge e is assigned a scalar weight wH

e .
For the projection step, Zhou used wH

e /δ(e) for the weight of each pair of endpoints of e. If we
view the H-hyperedge as an InH-hyperedge with weight function we, where we(S) = wH

e |S|(δ(e)−
|S|)/δ(e) for all S ∈ 2e, then our definition of the volume/cost of the boundary (2) is identical to
that of Zhou’s. With this choice of we, the optimization problem (5) outputs w(e)

vṽ = wH
e /δ(e), with

β(e) = 1, which are the same values as those obtained via Zhou’s projection. The degree of a vertex
in [11] is defined as dv =

∑
e∈E h(e, v)wH

e =
∑
e∈E

δ(e)
δ(e)−1we({v}), which is a weighted sum of

the we({v}) and thus takes a slightly different form when compared to our definition. As a matter of
fact, for uniform hypergraphs, the two forms are same. Some other hypergraph clustering algorithms,
such as Clique expansion and Star expansion, as shown by Agarwal et al. [23], represent special cases
of our method for uniform hypergraphs as well.

The Clique Averaging method differs substantially from all the aforedescribed methods. Instead
of projecting each hyperedge onto a subgraph and then combining the subgraphs into a graph, the
algorithm performs a one-shot projection of the whole hypergraph onto a graph. The projection
is based on a `2-minimization rule, which may not allow for constant-approximation solutions. It
is unknown if the result of the procedure can provide a quadratic approximation for the optimum
solution. Clique Averaging also has practical implementation problems and high computational
complexity, as it is necessary to solve a linear regression with n2 variable and nδ(e) observations.

In the recent work on network motif clustering [9], the hyperedges are deduced from a graph where
they represent so called motifs. Benson et. al [9] proved that if the motifs have three vertices, resulting
in a three-uniform hypergraph, their proposed algorithm satisfies the Cheeger inequality for motifs2.
In the described formulation, when cutting an H-hyperedge with weight wH

e , one is required to pay
wH
e . Hence, recasting this model within our setting, we arrive at inhomogenous weights we(S) =

wH
e , for all S ∈ 2e, for which (5) yields w(e)

vṽ = wH
e /(δ(e) − 1) and β(e) = b δ

2(e)
4 c/(δ(e) − 1),

2The Cheeger inequality [17] arises in the context of minimizing the conductance of a graph, which is related
to the normalized cut.
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identical to the solution of [9]. Furthermore, given the result of our Theorem 3.1, one can prove that
the algorithm of [9] offers a quadratic-factor approximation for motifs involving more than three
vertices, a fact that was not established in the original work [9].

All the aforementioned algorithms essentially learn the spectrum of Laplacian matrices obtained
through hypergraph projection. The ultimate goal of projections is to avoid solving the NP-hard
problem of learning the spectrum of certain hypergraph Laplacians [24]. Methods that do not rely on
hypergraph projection, including optimization with the total variance of hypergraphs [12, 13], tensor
spectral methods [25] and nonlinear Laplacian spectral methods [26], have also been reported in the
literature. These techniques were exclusively applied in homogeneous settings, and they typically
have higher complexity and smaller spectral gaps than the projection-based methods. A future line
of work is to investigate whether these methods can be extended to the inhomogeneous case. Yet
another relevant line of work pertains to the statistical analysis of hypergraph partitioning methods
for generalized stochastic block models [27, 28].

5 Applications
Network motif clustering. Real-world networks exhibit rich higher-order connectivity patterns
frequently referred to as network motifs [29]. Motifs are special subgraphs of the graph and may be
viewed as hyperedges of a hypergraph over the same set of vertices. Recent work has shown that
hypergraph clustering based on motifs may be used to learn hidden high-order organization patterns
in networks [9, 8, 21]. However, this approach treats all vertices and edges within the motifs in the
same manner, and hence ignores the fact that each structural unit within the motif may have a different
relevance or different role. As a result, the vertices of the motifs are partitioned with a uniform
cost. However, this assumption is hardly realistic as in many real networks, only some vertices of
higher-order structures may need to be clustered together. Hence, inhomogenous hyperedges are
expected to elucidate more subtle high-order organizations of network. We illustrate the utility of
InH-partition on the Florida Bay foodweb [30] and compare our findings to those of [9].

The Florida Bay foodweb comprises 128 vertices corresponding to different species or organisms
that live in the Bay, and 2106 directed edges indicating carbon exchange between two species. The
Foodweb essentially represents a layered flow network, as carbon flows from so called producers
organisms to high-level predators. Each layer of the network consists of “similar” species that play
the same role in the food chain. Clustering of the species may be performed by leveraging the
layered structure of the interactions. As a network motif, we use a subgraph of four species, and
correspondingly, four vertices denoted by vi, for i = 1, 2, 3, 4. The motif captures, among others,
relations between two producers and two consumers: The producers v1 and v2 both transmit carbons
to v3 and v4, and all types of carbon flow between v1 and v2, v3 and v4 are allowed (see Figure 2
Left). Such a motif is the smallest structural unit that captures the fact that carbon exchange occurs in
uni-direction between layers, while is allowed freely within layers. The inhomogeneous hyperedge
costs are assigned according to the following heuristics: First, as v1 and v2 share two common
carbon recipients (predators) while v3 and v4 share two common carbon sources (preys), we set
we({vi}) = 1 for i = 1, 2, 3, 4, and we({v1, v2}) = 0, we({v1, v3}) = 2, and we({v1, v4}) = 2.
Based on the solution of the optimization problem (5), one can construct a weighted subgraph whose
costs of cuts match the inhomogeneous costs, with β(e) = 1. The graph is depicted in Figure 2 (left).

Our approach is to perform hierarchical clustering via iterative application of the InH-partition
method. In each iteration, we construct a hypergraph by replacing the chosen motif subnetwork by an
hyperedge. The result is shown in Figure 2. At the first level, we partitioned the species into three
clusters corresponding to producers, primary consumers and secondary consumers. The producer
cluster is homogeneous in so far that it contains only producers, a total of nine of them. At the second
level, we partitioned the obtained primary-consumer cluster into two clusters, one of which almost
exclusively comprises invertebrates (28 out of 35), while the other almost exclusively comprises
forage fishes. The secondary-consumer cluster is partitioned into two clusters, one of which comprises
top-level predators, while the other cluster mostly consists of predatory fishes and birds. Overall,
we recovered five clusters that fit five layers ranging from producers to top-level consumers. It is
easy to check that the producer, invertebrate and top-level predator clusters exhibit high functional
similarity of species (> 80%). An exact functional classification of forage and predatory fishes is not
known, but our layered network appears to capture an overwhelmingly large number of prey-predator
relations among these species. Among the 1714 edges, obtained after removing isolated vertices and
detritus species vertices, only five edges point in the opposite direction from a higher to a lower-level
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Figure 2: Motif clustering in the Florida Bay food web. Left: InHomogenous case. Left-top: Hy-
peredge (network motif) & the weighted induced subgraph; Left-bottom: Hierarchical clustering
structure and five clusters via InH-partition. The vertices belonging to different clusters are distin-
guished by the colors of vertices. Edges with a uni-direction (right to left) are colored black while
other edges are kept blue. Right: Homogenous partitioning [9] with four clusters. Grey vertices are
not connected by motifs and thus unclassified.

cluster, two of which go from predatory fishes to forage fishes. Detailed information about the species
and clusters is provided in the Supplementary Material.

In comparison, the related work of Benson et al. [9] which used homogenous hypergraph clustering
and triangular motifs reported a very different clustering structure. The corresponding clusters
covered less than half of the species (62 out of 128) as many vertices were not connected by the
triangle motif; in contrast, 127 out of 128 vertices were covered by our choice of motif. We attribute
the difference between our results and the results of [9] to the choices of the network motif. A triangle
motif, used in [9] leaves a large number of vertices unclustered and fails to enforce a hierarchical
network structure. On the other hand, our fan motif with homogeneous weights produces a giant
cluster as it ties all the vertices together, and the hierarchical decomposition is only revealed when the
fan motif is used with inhomogeneous weights. In order to identify hierarchical network structures,
instead of hypergraph clustering, one may use topological sorting to rank species based on their
carbon flows [31]. Unfortunately, topological sorting cannot use biological side information and
hence fails to automatically determine the boundaries of the clusters.

Learning the Riffled Independence Structure of Ranking Data. Learning probabilistic models
for ranking data has attracted significant interest in social and political sciences as well as in machine
learning [32, 33]. Recently, a probabilistic model, termed the riffled-independence model, was shown
to accurately describe many benchmark ranked datasets [34]. In the riffled independence model, one
first generates two rankings over two disjoint sets of element independently, and then riffle shuffles
the rankings to arrive at an interleaved order. The structure learning problem in this setting reduces to
distinguishing the two categories of elements based on limited ranking data. More precisely, let Q
be the set of candidates to be ranked, with |Q| = n. A full ranking is a bijection σ : Q→ [n], and
for an a ∈ Q, σ(a) denotes the position of candidate a in the ranking σ. We use σ(a) < (>)σ(b)
to indicate that a is ranked higher (lower) than b in σ. If S ⊆ Q, we use σS : S → [|S|] to denote
the ranking σ projected onto the set S. We also use S(σ) , {σ(a)|a ∈ S} to denote the subset of
positions of elements in S. Let P(E) denote the probability of the event E. Riffled independence
asserts that there exists a riffled-independent set S ⊂ Q, such that for a fixed ranking σ′ over [n],

P(σ = σ′) = P(σS = σ′S)P(σQ/S = σ′Q/S)P(S(σ) = S(σ′)).

Suppose that we are given a set of rankings Σ = {σ(1), σ(2), ..., σ(m)} drawn independently according
to some probability distribution P. If P has a riffled-independent set S∗, the structure learning problem
is to find S∗. In [34], the described problem was cast as an optimization problem over all possible
subsets of Q, with the objective of minimizing the Kullback-Leibler divergence between the ranking
distribution with riffled independence and the empirical distribution of Σ [34]. A simplified version
of the optimization problem reads as

arg min
S⊂Q
F(S) ,

∑
(i,j,k)∈Ωcross

S,S̄

Ii;j,k +
∑

(i,j,k)∈Ωcross
S̄,S

Ii;j,k, (12)

where ΩcrossA,B , {(i, j, k)|i ∈ A, j, k ∈ B}, and where Ii;j,k denotes the estimated mutual informa-
tion between the position of the candidate i and two “comparison candidates” j, k. If 1σ(j)<σ(k)
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Figure 3: Election dataset. Left-top: parties and candidates; Left-bottom: hierarchical partitioning
structure of Irish election detected by InH-Par; Middle: Success rate vs Sample Complexity; Right:
Success rate vs Triple-sampling Rate.

denotes the indicator function of the underlying event, we may write

Ii;j,k , Î(σ(i); 1σ(j)<σ(k)) =
∑
σ(i)

∑
1σ(j)<σ(k)

P̂(σ(i), 1σ(j)<σ(k)) log
P̂(σ(i), 1σ(j)<σ(k))

P̂(σ(i))P(1σ(j)<σ(k))
, (13)

where P̂ denotes an estimate of the underlying probability. If i and j, k are in different riffled-
independent sets, the estimated mutual information Î(σ(i); 1σ(j)<σ(k)) converges to zero as the
number of samples increases. When the number of samples is small, one may use mutual information
estimators described in [35, 36, 37].

One may recast the above problem as an InH-partition problem over a hypergraph where each
candidate represents a vertex in the hypergraph, and Ii;j,k represents the inhomogeneous cost we({i})
for the hyperedge e = {i, j, k}. Note that as mutual information Î(σ(i); 1σ(j)<σ(k)) is in general
asymmetric, one would not have been able to use H-partitions. The optimization problem reduces to
minS volH(∂S). The two optimization tasks are different, and we illustrate next that the InH-partition
outperforms the original optimization approach AnchorsPartition (Apar) [34] both on synthetic data
and real data. Due to space limitations, synthetic data and a subset of the real dataset results are listed
in the Supplementary Material.

Here, we analyzed the Irish House of Parliament election dataset (2002) [38]. The dataset consists
of 2490 ballots fully ranking 14 candidates. The candidates were from a number of parties, where
Fianna Fáil (F.F.) and Fine Gael (F.G.) are the two largest (and rival) Irish political parties. Using InH-
partition (InH-Par), one can split the candidates iteratively into two sets (See Figure 3) which yields
to meaningful clusters that correspond to large parties: {1, 4, 13} (F.F.), {2, 5, 6} (F.G.), {7, 8, 9}
(Ind.). We compared InH-partition with Apar based on their performance in detecting these three
clusters using a small training set: We independently sampled m rankings 100 times and executed
both algorithms to partition the set of candidates iteratively. During the partitioning procedure,
“party success” was declared if one exactly detected one of the three party clusters (“F.F.”, “F.G.” &
“Ind.”). “All” was used to designate that all three party clusters were detected completely correctly.
InH-partition outperforms Apar in recovering the cluster Ind. and achieved comparable performance
for cluster F.F., although it performs a little worse than Apar for cluster F.G.; InH-partition also
offers superior overall performance compared to Apar. We also compared InH-partition with APar
in the large sample regime (m = 2490), using only a subset of triple comparisons (hyperedges)
sampled independently with probability r (This strategy significantly reduces the complexity of both
algorithms). The average is computed over 100 independent runs. The results are shown in Figure 3,
highlighting the robustness of InH-partition with respect to missing triples. Additional test on ranking
data are described in the Supplementary Material, along with new results on subspace clustering,
motion segmentation and others.
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