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Abstract

Approximate probabilistic inference algorithms are central to many fields. Exam-
ples include sequential Monte Carlo inference in robotics, variational inference
in machine learning, and Markov chain Monte Carlo inference in statistics. A
key problem faced by practitioners is measuring the accuracy of an approximate
inference algorithm on a specific data set. This paper introduces the auxiliary
inference divergence estimator (AIDE), an algorithm for measuring the accuracy of
approximate inference algorithms. AIDE is based on the observation that inference
algorithms can be treated as probabilistic models and the random variables used
within the inference algorithm can be viewed as auxiliary variables. This view leads
to a new estimator for the symmetric KL divergence between the approximating
distributions of two inference algorithms. The paper illustrates application of AIDE
to algorithms for inference in regression, hidden Markov, and Dirichlet process
mixture models. The experiments show that AIDE captures the qualitative behavior
of a broad class of inference algorithms and can detect failure modes of inference
algorithms that are missed by standard heuristics.

1 Introduction

Approximate probabilistic inference algorithms are central to diverse disciplines, including statistics,
robotics, machine learning, and artificial intelligence. Popular approaches to approximate inference
include sequential Monte Carlo, variational inference, and Markov chain Monte Carlo. A key problem
faced by practitioners is measuring the accuracy of an approximate inference algorithm on a specific
data set. The accuracy is influenced by complex interactions between the specific data set in question,
the model family, the algorithm tuning parameters such as the number of iterations, and any associated
proposal distributions and/or approximating variational family. Unfortunately, practitioners assessing
the accuracy of inference have to rely on heuristics that are either brittle or specialized for one type
of algorithm [1f], or both. For example, log marginal likelihood estimates can be used to assess
the accuracy of sequential Monte Carlo and variational inference, but these estimates can fail to
significantly penalize an algorithm for missing a posterior mode. Expectations of probe functions do
not assess the full approximating distribution, and they require design specific to each model.

This paper introduces an algorithm for estimating the symmetrized KL divergence between the output
distributions of a broad class of exact and approximate inference algorithms. The key idea is that
inference algorithms can be treated as probabilistic models and the random variables used within
the inference algorithm can be viewed as latent variables. We show how sequential Monte Carlo,
Markov chain Monte Carlo, rejection sampling, and variational inference can be represented in a
common mathematical formalism based on two new concepts: generative inference models and
meta-inference algorithms. Using this framework, we introduce the Auxiliary Inference Divergence
Estimator (AIDE), which estimates the symmetrized KL divergence between the output distributions
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Figure 1: Using AIDE to estimate the accuracy of a target inference algorithm relative to a gold-
standard inference algorithm. AIDE is a Monte Carlo estimator of the symmetrized Kullback-Leibler
(KL) divergence between the output distributions of two inference algorithms. AIDE uses meta-
inference: inference over the internal random choices made by an inference algorithm.

Sequential Monte Carlo Metropolis-Hastings Variational Inference
8 - — M;=10° 8 - 8 1
3 =10t | 8 2
£6 — M=10% | E 61 <6
[V] [) [
3 ] 2
© © ©
€44 £ 44 4
a 7] k7]
(V] [ [
82 82 82
< < <
0 T T T 0 T T T 0 T T T
10° 10t 102 10° 10t 102 10° 10t 102 103 104
Number of particles 1 4+ Number of transitions Number of gradient steps

Figure 2: AIDE applies to SMC, variational, and MCMC algorithms. Left: AIDE estimates for
SMC converge to zero, as expected. Right: AIDE estimates for variational inference converge to
a nonzero asymptote that depends on the variational family. Middle: The symmetrized divergence
between MH and the posterior converges to zero, but AIDE over-estimates the divergence in expecta-
tion. Although increasing the number of meta-inference runs M, reduces the bias of AIDE, AIDE is
not yet practical for measuring MH accuracy due to inaccurate meta-inference for MH.

of two inference algorithms that have both been endowed with a meta-inference algorithm. We also
show that the conditional SMC update of Andrieu et al. [2] and the reverse AIS Markov chain of
Grosse et al. [3] are both special cases of a ‘generalized conditional SMC update’, which we use as a
canonical meta-inference algorithm for SMC. AIDE is a practical tool for measuring the accuracy
of SMC and variational inference algorithms relative to gold-standard inference algorithms. Note
that this paper does not provide a practical solution to the MCMC convergence diagnosis problem.
Although in principle AIDE can be applied to MCMC, to do so in practice will require more accurate
meta-inference algorithms for MCMC to be developed.

2 Background

Consider a generative probabilistic model with latent variables X and observed variables Y. We
denote assignments to these variables by z € X and y € ). Let p(z, y) denote the joint distribution of
the generative model. The posterior distribution is p(x|y) := p(x,y)/p(y) where p(y) = > p(z,y)
is the marginal likelihood, or ‘evidence’.

Sampling-based approximate inference strategies including Markov chain Monte Carlo (MCMC,
[4}15]]), sequential Monte Carlo (SMC, [6]), annealed importance sampling (AIS, [7]) and importance
sampling with resampling (SIR, [8l 9]]), generate samples of the latent variables that are approximately
distributed according to p(z|y). Use of a sampling-based inference algorithm is often motivated by



theoretical guarantees of exact convergence to the posterior in the limit of infinite computation (e.g.
number of transitions in a Markov chain, number of importance samples in SIR). However, how well
the sampling distribution approximates the posterior distribution for finite computation is typically
difficult to analyze theoretically or estimate empirically with confidence.

Variational inference [10] explicitly minimizes the approximation error of the approximating dis-
tribution gg(z) over parameters 6 of a variational family. The error is usually quantified using the
Kullback-Leibler (KL) divergence from the approximation gy(x) to the posterior p(z|y), denoted
Dxy.(qo(z) || p(z|y)). Unlike sampling-based approaches, variational inference does not generally
give exact results for infinite computation because the variational family does not include the posterior.
Minimizing the KL divergence is performed by maximizing the ‘evidence lower bound’ (ELBO)
L =logp(y) — Dxr(qo(z) || p(x|y)) over 6. Since log p(y) is usually unknown, the actual error
(the KL divergence) of a variational approximation is also unknown.

3 Estimating the symmetrized KL divergence between inference algorithms

This section defines our mathematical formalism for analyzing inference algorithms; shows how
to represent SMC, MCMC, rejection sampling, and variational inference in this formalism; and
introduces the Auxiliary Inference Divergence Estimator (AIDE), an algorithm for estimating the
symmetrized KL divergence between two inference algorithms.

3.1 Generative inference models and meta-inference algorithms

We define an inference algorithm as a procedure that returns a single approximate posterior sample.
Repeated runs of the algorithm give independent samples. The algorithm has an ‘output distribution’
q(z) that gives the probability of returning x. Note that the dependence of ¢(z) on the observations
y that define the inference problem is suppressed in the notation. The algorithm is accurate when
q(z) =~ p(x|y) for all z. We denote a sample returned from the algorithm by z ~ ¢(z).

A naive simple Monte Carlo estimator of the KL divergence between the output distributions of two
inference algorithms requires evaluating output probabilities for both algorithms. However, it is
typically intractable to compute output probabilities for sampling-based inference algorithms like
MCMC and SMC, because that would require marginalizing over all possible values that the random
variables drawn during the algorithm could possibly take. A similar difficulty arises when computing
the marginal likelihood p(y) of a generative probabilistic model p(x, y). This suggests that we treat
the inference algorithm as a generative model, estimate its output probabilities using ideas from
marginal likelihood estimation, and use these estimates in a Monte Carlo estimator of the divergence.
We begin by making the analogy between an inference algorithm and a generative model explicit:

Definition 3.1 (Generative inference model). A generative inference model is a tuple (U, X, q)
where ¢(u, ) is a joint distribution defined on U4 x X. A generative inference model models an
inference algorithm if the output probability of the inference algorithm is the marginal likelihood
q(x) = >, q(u, ) of the model for all z. An element u € U represents a complete assignment
to the internal random variables within the inference algorithm, and is called a ‘trace’. The ability
to simulate from ¢(u, z) is required, but the ability to compute the probability ¢(u, z) is not. A
simulation, denoted u, x ~ ¢(u, ), may be obtained by running the inference algorithm and recording
the resulting trace u and output x

A generative inference model can be understood as a generative probabilistic model where the u are
the latent variables and the x are the observations. Note that two different generative inference models
may use different representations for the internal random variables of the same inference algorithm. In
practice, constructing a generative inference model from an inference algorithm amounts to defining
the set of internal random variables. For marginal likelihood estimation in a generative inference
model, we use a ‘meta-inference’ algorithm:

Definition 3.2 (Meta-inference algorithm). For a given generative inference model (U, X, q), a
meta-inference algorithm is a tuple (r,£) where r(u; ) is a distribution on traces u € U of the
inference algorithm, indexed by outputs € X of the inference algorithm, and where &(u, x) is the

!The trace data structure could in principle be obtained by writing the inference algorithm in a probabilistic
programming language like Church [11]], but the computational overhead would be high.



following function of » and x for some Z > 0:

q(u, x)
7(u; )

E(u,2) =2 ()
We require the ability to sample u ~ r(u; ) given a value for x, and the ability to evaluate &(u, x)
given u and x. We call a procedure for sampling from r(u; z) a ‘meta-inference sampler’. We do not
require the ability to evaluate the probability r(u; x).

A meta-inference algorithm is considered accurate for a given z if r(u;z) =~ ¢(ulz) for all w.
Conceptually, a meta-inference sampler tries to answer the question ‘how could my inference
algorithm have produced this output 7" Note that if it is tractable to evaluate the marginal likelihood
q(z) of the generative inference model up to a normalizing constant, then it is not necessary to
represent internal random variables for the inference algorithm, and a generative inference model can
define the trace as an empty token v = () with&/ = {()}. In this case, the meta-inference algorithm
has r(u; ) = 1 for all z and {(u, z) = Zq(x).

3.2 Examples

We now show how to construct generative inference models and corresponding meta-inference
algorithms for SMC, AIS, MCMC, SIR, rejection sampling, and variational inference. The meta-
inference algorithms for AIS, MCMC, and SIR are derived as special cases of a generic SMC
meta-inference algorithm.

Sequential Monte Carlo. We consider a general class of SMC samplers introduced by Del Moral
et al. [6l], which can be used for approximate inference in both sequential state space and non-
sequential models. We briefly summarize a slightly restricted variant of the algorithm here, and refer
the reader to the supplement and Del Moral et al. [6] for full details. The SMC algorithm propagates
P weighted particles through T steps, using proposal kernels k; and multinomial resampling based
on weight functions wq(x1) and w¢(xi—1,x¢) for t > 1 that are defined in terms of ‘backwards
kernels’ ¢, fort = 2...T. Let 2, wi and W} denote the value, unnormalized weight, and normalized
weight of particle ¢ at time ¢, respectively. We define the output sample = of SMC as a single draw
from the particle approximation at the final time step, which is obtained by sampling a particle
index I7 ~ Categorical(W}") where W' denotes the vector of weights (W1, ..., W.F), and then
setting = xITT. The generative inference model uses traces of the form u = (x, a, I1), where x
contains the values of all particles at all time steps and where a (for ‘ancestor’) contains the index
ai € {1... P} of the parent of particle =, for each particle ¢ and each time step ¢t = 1...7 — 1.
Algorithm|[T]defines a canonical meta-inference sampler for this generative inference model that takes
as input a latent sample x and generates an SMC trace u ~ 7(u; ) as output. The meta-inference

sampler first generates an ancestral trajectory of particles (x{l , x?, ey xng) that terminates in the

output sample x, by sampling sequentially from the backward kernels ¢;, starting from xé? = .
Next, it runs a conditional SMC update [2] conditioned on the ancestral trajectory. For this choice of

—

r(u; ) and for Z = 1, the function &(u, x) is closely related to the marginal likelihood estimate p(y)
produced by the SMC scheme &(u,x) = p(z,y)/p(y). See supplement for derivation.

Annealed importance sampling. When a single particle is used (P = 1), and when each forward
kernel k, satisfies detailed balance for some intermediate distribution, the SMC algorithm simplifies
to annealed importance sampling (AIS, [[7]), and the canonical SMC meta-inference inference
(Algorithm[I)) consists of running the forward kernels in reverse order, as in the reverse annealing
algorithm of Grosse et al. [3,[12]. The canonical meta-inference algorithm is accurate (r(u;x) ~
q(u; x)) if the AIS Markov chain is kept close to equilibrium at all times. This is achieved if the
intermediate distributions form a sufficiently fine-grained sequence. See supplement for analysis.

Markov chain Monte Carlo. We define each run of an MCMC algorithm as producing a single
output sample x that is the iterate of the Markov chain produced after a predetermined number of burn-
in steps has passed. We also assume that each MCMC transition operator satisfies detailed balance

2 AIDE also applies to approximate inference algorithms for undirected probabilistic models; the marginal
likelihood estimate is replaced with the estimate of the partition function.



Algorithm 1 Generalized conditional SMC (a canonical meta-inference sampler for SMC)
Require: Latent sample x, SMC parameters
It ~ Uniform(1...P)
xng —x
fort< T —1...1do
I ~ Uniform(1...P)
> Sample from backward kernel
wft ~ b ()
fori < 1...Pdo
if ¢ 75 Il then .1311 ~ k}l()
wh < wi (x})
fort < 2...7T do
WA wih /(7 wiia)

Latent sample
(input to meta-inference sampler)

fori <+ 1...Pdo e L =1
ifi=1I,thena;_; <+ I;_1
else
ai_, ~ Categorical(W,5F) =
i . ‘1%—1
Ty~ kt(.v’ Ty ) Member of ancestral

i "
i at—1 i trajectory
wi +— we(z, 7, 1)

u < (x,a,Ir) > Return an SMC trace
return u

with respect to the posterior p(x|y). Then, this is formally a special case of AIS. However, unless the
Markov chain was initialized near the posterior p(x|y), the chain will be far from equilibrium during
the burn-in period, and the AIS meta-inference algorithm will be inaccurate.

Importance sampling with resampling. Importance sampling with resampling, or SIR [8] can be
seen as a special case of SMC if we set the number of steps to one (T = 1). The trace of the SIR
algorithm is then the set of particles % fori € {1,..., P} and output particle index I;. Given output
sample z, the canonical SMC meta-inference sampler then simply samples I; ~ Uniform(1... P),

sets :17{1 + x, and samples the other P — 1 particles from the importance distribution k1 ().

Rejection sampling. To model a rejection sampler for a posterior distribution p(x|y), we assume
it is tractable to evaluate the unnormalized posterior probability p(z,y). We define i = {()} as
described in Section 3.1} For meta-inference, we define Z = p(y) so that £(u, z) = p(y)p(z|y) =
p(z,y). It is not necessary to represent the internal random variables of the rejection sampler.

Variational inference. We suppose a variational approximation gg(x) has been computed through
optimization over the variational parameters #. We assume that it is possible to sample from
the variational approximation, and evaluate its normalized probability distribution. Then, we use
U={(}and Z = 1 and {(u,x) = go(x). This formulation also applies to amortized variational
inference algorithms, which reuse the parameters 6 for inference across observation contexts .

3.3 The auxiliary inference divergence estimator

Consider a probabilistic model p(zx, y), a set of observations y, and two inference algorithms that
approximate p(x|y). One of the two inference algorithms is considered the ‘gold-standard’, and has a
generative inference model (U, X, ¢,) and a meta-inference algorithm (r, §,). The second algorithm
is considered the ‘target’ algorithm, with a generative inference model (V, X, ¢;) (we denote a trace
of the target algorithm by v € V), and a meta-inference algorithm (r, &). This section shows how to
estimate an upper bound on the symmetrized KL divergence between go(x) and g(x), which is:

qg(x) @ ()

D D : ) =E.o log =—|+E,~ 1
la5(0) 1| 6(0)) + Dr (00) | 05(5) = Eamay 108 258 sy [l 202

We take a Monte Carlo approach. Simple Monte Carlo applied to the Equation (2)) requires that g, ()
and ¢,(x) can be evaluated, which would prevent the estimator from being used when either inference
algorithm is sampling-based. Algorithm [2| gives the Auxiliary Inference Divergence Estimator
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(AIDE), an estimator of the symmetrized KL divergence that only requires evaluation of &,(u, =) and
& (v, ) and not gg(x) or ¢ (x), permitting its use with sampling-based inference algorithms.

Algorithm 2 Auxiliary Inference Divergence Estimator (AIDE)

Require: Gold-standard inference model and meta-inference algorithm (U, X', ¢g) and (rg, &)

Target inference model and meta-inference algorithm (W, X, q) and (7, &)
Number of runs of gold-standard algorithm Ng

Number of runs of meta-inference sampler for gold-standard M

Number of runs of target algorithm Ny

Number of runs of meta-inference sampler for target M

forn < 1...Ngdo
Un,1,ZTn ~ gg(u,z) > Run gold-standard algorithm, record trace u,,1 and output z,,
for m <— 2... Mg do
Un,m ~ rg(u; Tn) > Run meta-inference sampler for gold-standard algorithm, on input z,,

form < 1... M; do
Un,m ~ 1t(v; Tn) > Run meta-inference sampler for target algorithm, on input x,,

forn < 1...N;do
Up1,&n ~ q(v,z) > Run target algorithm, record trace vj, ; and output 7,
form < 2... M do
Up,m ~ rt(v;27,) > Run meta-inference sampler for target algorithm, on input z;,

form < 1...Mgdo
u'n m ~ Te(u; m' n) D Run meta-inference sampler for gold-standard algorithm, on input z,,

]\/[g M,
D —_— 1 Mg > met §e(Unym, Tn) M Mt Pomin &ilvn mvxn)
“ Z og o > log
n=1

M, M,
]\4lz t gt(vnmﬂnn) ]Wgz g fg(unm7xn)

return D > D is an estimate of Dy (ge()||qi(x)) + Dkr(qe(x)||ge(x))

The generic AIDE algorithm above is defined in terms of abstract generative inference models and
meta-inference algorithms. For concreteness, the supplement contains the AIDE algorithm specialized
to the case when the gold-standard is AIS and the target is a variational approximation.

Theorem 1. The estimate D produced by AIDE is an upper bound on the symmetrized KL divergence
in expectation, and the expectation is nonincreasing in AIDE parameters M, and M;.

See supplement for proof. Briefly, AIDE estimates an upper bound on the symmetrized divergence in
expectation because it uses unbiased estimates of ¢(z,,) and gg(z,,) ! for z,, ~ gq(x), and unbiased
estimates of gy (/,) and ¢ (z},)~* for 2/, ~ g(z). For M, = 1 and M; = 1, AIDE over-estimates
the true symmetrlzed dlvergence by:

E[D] ~ (Dxe(4:(2) || () + Dre(a() | gs(x))) = Bias of AIDE

( Eo gy (@) [Dre(ge(ul) [| 7(us 2)) + Dye(ri(v; z) || ai(vl2))] ) for Mg=a=1 )
+ Eonqe) [Drula(v]z) || r(v;2)) + Do (re(u; 2) || ga(ulz))]

Note that this expression involves KL divergences between the meta-inference sampling distributions
(rg(u; ) and r(v; )) and the posteriors in their respective generative inference models (g, (u|x) and
qi(v|x)). Therefore, the approximation error of meta-inference determines the bias of AIDE. When
both meta-inference algorithms are exact (ry(u; ) = ¢g(u|x) for all u and z and r(v; z) = ¢ (v|x)
for all v and z), AIDE is unbiased. As M, or M, are increased, the bias decreases (see Flgurel 2|and
Figure [] for examples). If the generative 1nference model for one of the algorithms does not use a
trace (i.e. U = {()} or V = {()}), then that algorithm does not contribute a KL divergence term to
the bias of Equation (3). The analysis of AIDE is equivalent to that of Grosse et al. [12]] when the
target algorithm is AIS and M; = M, = 1 and the gold-standard inference algorithm is a rejection
sampler.

4 Related Work

Diagnosing the convergence of approximate inference is a long-standing problem. Most existing work
is either tailored to specific inference algorithms [[13], designed to detect lack of exact convergence
[L], or both. Estimators of the non-asymptotic approximation error of general approximate inference
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Figure 3: AIDE detects when an inference algorithm misses a posterior mode. Left: A bimodal
posterior density, with kernel estimates of the output densities of importance sampling with resampling
(SIR) using two proposals. The ‘broad’ proposal (blue) covers both modes, and the ‘offset” proposal
(pink) misses the ‘L’ mode. Middle: AIDE detects the missing mode in offset-proposal SIR. Right:
Log marginal likelihood estimates suggest that the offset-proposal SIR is nearly converged.

algorithms have received less attention. Gorham and Mackey [14] propose an approach that applies
to arbitrary sampling algorithms but relies on special properties of the posterior distribution such as
log-concavity. Our approach does not rely on special properties of the posterior distribution.

Our work is most closely related to Bounding Divergences with REverse Annealing (BREAD, [12]))
which also estimates upper bounds on the symmetric KL divergence between the output distribution
of a sampling algorithm and the posterior distribution. AIDE differs from BREAD in two ways: First,
whereas BREAD handles single-particle SMC samplers and annealed importance sampling (AIS),
AIDE handles a substantially broader family of inference algorithms including SMC samplers with
both resampling and rejuvenation steps, AIS, variational inference, and rejection samplers. Second,
BREAD estimates divergences between the target algorithm’s sampling distribution and the posterior
distribution, but the exact posterior samples necessary for BREAD’s theoretical properties are only
readily available when the observations y that define the inference problem are simulated from the
generative model. Instead, AIDE estimates divergences against an exact or approximate gold-standard
sampler on real (non-simulated) inference problems. Unlike BREAD, AIDE can be used to evaluate
inference in both generative and undirected models.

AIDE estimates the error of sampling-based inference using a mathematical framework with roots
in variational inference. Several recent works have treated sampling-based inference algorithms as
variational approximations. The Monte Carlo Objective (MCO) formalism of Maddison et al. [15]
is closely related to our formalism of generative inference models and meta-inference algorithms—
indeed a generative inference model and a meta-inference algorithm with Z = 1 give an MCO defined
by: L(y,p) = Ey zeq(u,2)l0g(p(z,y)/£(u, 2))], where y denotes observed data. In independent
and concurrent work to our own, Naesseth et al. [[16], Maddison et al. [[15] and Le et al. [17]] treat
SMC as a variational approximation using constructions similar to ours. In earlier work, Salimans
et al. [18]] recognized that MCMC samplers can be treated as variational approximations. However,
these works are concerned with optimization of variational objective functions instead of estimation
of KL divergences, and do not involve generating a trace of a sampler from its output.

S Experiments

5.1 Comparing the bias of AIDE for different types of inference algorithms

We used a Bayesian linear regression inference problem where exact posterior sampling is tractable
to characterize the bias of AIDE when applied to three different types of target inference algorithms:
sequential Monte Carlo (SMC), Metropolis-Hastings (MH), and variational inference. For the gold-
standard algorithm we used a posterior sampler with a tractable output distribution g, (), which does
not introduce bias into AIDE, so that AIDE’s bias could be completely attributed to the approximation
error of meta-inference for each target algorithm. Figure [2 shows the results. The bias of AIDE
is acceptable for SMC, and AIDE is unbiased for variational inference, but better meta-inference
algorithms for MCMC are needed to make AIDE practical for estimating the accuracy of MH.



5.2 Evaluating approximate inference in a Hidden Markov model

We applied AIDE to measure the approximation error of SMC algorithms for posterior inference in
a Hidden Markov model (HMM). Because exact posterior inference in this HMM is tractable via
dynamic programming, we used this opportunity to compare AIDE estimates obtained using the exact
posterior as the gold-standard with AIDE estimates obtained using a ‘best-in-class’ SMC algorithm as
the gold-standard. Figure[dshows the results, which indicate AIDE estimates using an approximate
gold-standard algorithm can be nearly identical to AIDE estimates obtained with an exact posterior
gold-standard.

Target algorithms
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Figure 4: Comparing use of an exact posterior as the gold-standard and a ‘best-in-class’ approximate
algorithm as the gold-standard, when measuring accuracy of target inference algorithms with AIDE.
We consider inference in an HMM, so that exact posterior sampling is tractable using dynamic
programming. Left: Ground truth latent states, posterior marginals, and marginals of the the output
of a gold-standard and three target SMC algorithms (A,B,C) for a particular observation sequence.
Right: AIDE estimates using the exact gold-standard and using the SMC gold-standard are nearly
identical. The estimated divergence bounds decrease as the number of particles in the target sampler
increases. The optimal proposal outperforms the prior proposal. Increasing M, tightens the estimated
divergence bounds. We used M, = 1.
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Figure 5: Contrasting AIDE against a heuristic convergence diagnostic for evaluating the accuracy of
approximate inference in a Dirichlet process mixture model (DPMM). The heuristic compares the
expected number of clusters under the target algorithm to the expectation under the gold-standard
algorithm [19]. White circles identify single-particle likelihood-weighting, which samples from the
prior. AIDE clearly indicates that single-particle likelihood-weighting is inaccurate, but the heuristic
suggests it is accurate. Probe functions like the expected number of clusters can be error prone
measures of convergence because they only track convergence along a specific projection of the
distribution. In contrast, AIDE estimates a joint KL divergence. Shaded areas in both plots show the
standard error. The amount of target inference computation used is the same for the two techniques,
although AIDE performs a gold-standard meta-inference run for each target inference run.



5.3 Comparing AIDE to alternative inference evaluation techniques

A key feature of AIDE is that it applies to different types of inference algorithms. We compared AIDE
to two existing techniques for evaluating the accuracy of inference algorithms that share this feature:
(1) comparing log marginal likelihood (LML) estimates made by a target algorithm against LML
estimates made by a gold-standard algorithm, and (2) comparing the expectation of a probe function
under the approximating distribution to the same expectation under the gold-standard distribution
[19]. Figure [3]shows a comparison of AIDE to LML, on a inference problem where the posterior
is bimodal. Figure [5] shows a comparison of AIDE to a ‘number of clusters’ probe function in a
Dirichlet process mixture model inference problem for a synthetic data set. We also used AIDE to
evaluate the accuracy of several SMC algorithms for DPMM inference on a real data set of galaxy
velocities [20] relative to an SMC gold-standard. This experiment is described in the supplement due
to space constraints.

6 Discussion

AIDE makes it practical to estimate bounds on the error of a broad class of approximate inference
algorithms including sequential Monte Carlo (SMC), annealed importance sampling (AILS), sampling
importance resampling (SIR), and variational inference. AIDE’s reliance on a gold-standard inference
algorithm raises two questions that merit discussion:

If we already had an acceptable gold-standard, why would we want to evaluate other inference
algorithms? Gold-standard algorithms such as very long MCMC runs, SMC runs with hundreds of
thousands of particles, or AIS runs with a very fine annealing schedule, are often too slow to use
in production. AIDE make it possible to use gold-standard algorithms during an offline design and
evaluation phase to quantitatively answer questions like “how few particles or rejuvenation steps
or samples can I get away with?” or “is my fast variational approximation good enough?”. AIDE
can thus help practitioners confidently apply Monte Carlo techniques in challenging, performance
constrained applications, such as probabilistic robotics or web-scale machine learning. In future
work we think it will be valuable to build probabilistic models of AIDE estimates, conditioned on
features of the data set, to learn offline what problem instances are easy or hard for different inference
algorithms. This may help practitioners bridge the gap between offline evaluation and production
more rigorously.

How do we ensure that the gold-standard is accurate enough for the comparison with it to be
meaningful? This is an intrinsically hard problem—we are not sure that near-exact posterior inference
is really feasible, for most interesting classes of models. In practice, we think that gold-standard
inference algorithms will be calibrated based on a mix of subjective assumptions and heuristic
testing—much like models themselves are tested. For example, users could initially build confidence
in a gold-standard algorithm by estimating the symmetric KL divergence from the posterior on
simulated data sets (following the approach of Grosse et al. [[12]]), and then use AIDE with the trusted
gold-standard for a focused evaluation of target algorithms on real data sets of interest. We do not
think the subjectivity of the gold-standard assumption is a unique limitation of AIDE.

A limitation of AIDE is that its bias depends on the accuracy of meta-inference, i.e. inference
over the auxiliary random variables used by an inference algorithm. We currently lack an accurate
meta-inference algorithm for MCMC samplers that do not employ annealing, and therefore AIDE is
not yet suitable for use as a general MCMC convergence diagnostic. Research on new meta-inference
algorithms for MCMC and comparisons to standard convergence diagnostics [21} [22]] are needed.
Other areas for future work include understanding how the accuracy of meta-inference depends
on parameters of an inference algorithm, and more generally what makes an inference algorithm
amenable to efficient meta-inference.

Note that AIDE does not rely on asymptotic exactness of the inference algorithm being evaluated.
An interesting area of future work is in using AIDE to study the non-asymptotic error of scalable but
asymptotically biased sampling algorithms [23]]. It also seems fruitful to connect AIDE to results
from theoretical computer science, including the computability [24]] and complexity [25H28] of
probabilistic inference. It should be possible to study the computational tractability of approximate
inference empirically using AIDE estimates, as well as theoretically using a careful treatment of the
variance of these estimates. It also seems promising to use ideas from AIDE to develop Monte Carlo
program analyses for samplers written in probabilistic programming languages.
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