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Abstract

Discovering statistical structure from links is a fundamental problem in the anal-
ysis of social networks. Choosing a misspecified model, or equivalently, an incor-
rect inference algorithm will result in an invalid analysis or even falsely uncover
patterns that are in fact artifacts of the model. This work focuses on unifying two
of the most widely used link-formation models: the stochastic blockmodel (SBM)
and the small world (or latent space) model (SWM). Integrating techniques from
kernel learning, spectral graph theory, and nonlinear dimensionality reduction, we
develop the first statistically sound polynomial-time algorithm to discover latent
patterns in sparse graphs for both models. When the network comes from an SBM,
the algorithm outputs a block structure. When it is from an SWM, the algorithm
outputs estimates of each node’s latent position.

1 Introduction
Discovering statistical structures from links is a fundamental problem in the analysis of social

networks. Connections between entities are typically formed based on underlying feature-based
similarities; however these features themselves are partially or entirely hidden. A question of great
interest is to what extent can these latent features be inferred from the observable links in the net-
work. This work focuses on the so-called assortative setting, the principle that similar individuals
are more likely to interact with each other. Most stochastic models of social networks rely on this as-
sumption, including the two most famous ones – the stochastic blockmodel [1] and the small-world
model [2, 3], described below.

Stochastic Blockmodel (SBM). In a stochastic blockmodel [4, 5, 6, 7, 8, 9, 10, 11, 12, 13], nodes
are grouped into disjoint “communities” and links are added randomly between nodes, with a higher
probability if nodes are in the same community. In its simplest incarnation, an edge is added between
nodes within the same community with probability p, and between nodes in different communities
with probability q, for p > q. Despite arguably naı̈ve modelling choices, such as the independence
of edges, algorithms designed with SBM work well in practice [14, 15].

Small-World Model (SWM). In a small-world model, each node is associated with a latent variable
xi, e.g., the geographic location of an individual. The probability that there is a link between two
nodes is proportional to an inverse polynomial of some notion of distance, dist(xi, xj), between
them. The presence of a small number of “long-range” connections is essential to some of the most
intriguing properties of these networks, such as small diameter and fast decentralized routing algo-
rithms [3]. In general, the latent position may reflect geographic location as well as more abstract
concepts, e.g., position on a political ideology spectrum.

The Inference Problem. Without observing the latent positions, or knowing which model generates
the underlying graph, the adjacency matrix of a social graph typically looks like the one shown in
∗Currently at Google.
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Fig. 5(a) (App. A.1). However, if the model generating the graph is known, it is then possible to
run a suitable “clustering algorithm” [14, 16] that reveals the hidden structure. When the vertices
are ordered suitably, the SBM’s adjacency matrix looks like the one shown in Fig. 5(b) (App. A.1)
and that of the SWM looks like the one shown in Fig. 5(c) (App. A.1). Existing algorithms typically
depend on knowing the “true” model and are tailored to graphs generated according to one of these
models, e.g., [14, 16, 17, 18].

Our Contributions. We consider a latent space model that is general enough to include both these
models as special cases. In our model, an edge is added between two nodes with a probability
that is a decreasing function of the distance between their latent positions. This model is a fairly
natural one, and it is quite likely that a variant has already been studied; however, to the best of
our knowledge there is no known statistically sound and computationally efficient algorithm for
latent-position inference on a model as general as the one we consider.

1. A unified model. We propose a model that is a natural generalization of both the stochastic
blockmodel and the small-world model that captures some of the key properties of real-world social
networks, such as small out-degrees for ordinary users and large in-degrees for celebrities. We focus
on a simplified model where we have a modest degree graph only on “celebrities”; the full paper
material contains an analysis of the more realistic model using somewhat technical machinery [19].

2. A provable algorithm. We present statistically sound and polynomial-time algorithms for inferring
latent positions in our model(s). Our algorithm approximately infers the latent positions of almost all
“celebrities” (1− o(1)-fraction), and approximately infers a constant fraction of the latent positions
of ordinary users. We show that it is statistically impossible to err on at most o(1) fraction of
ordinary users by using standard lower bound arguments.

3. Proof-of-concept experiments. We report several experiments on synthetic and real-world data
collected on Twitter from Oct 1 and Nov 30, 2016. Our experiments demonstrate that our model and
inference algorithms perform well on real-world data and reveal interesting structures in networks.

Additional Related Work. We briefly review the relevant published literature. 1. Graphon &
Latent-space techniques. Studies using graphons and latent-space models have focused on the sta-
tistical properties of the estimators [20, 21, 22, 23, 24, 25, 26, 27, 28], with limited attention paid
to computational efficiency. The “USVT” technique developed recently [29] estimates the kernel
well when the graph is dense. Xu et al. [30] consider a polynomial time algorithm for a sparse
model similar to ours, but focus on edge classification rather than latent position estimation. 2.
Correspondence analysis in political science. Estimating the ideology scores of politicians is an im-
portant research topic in political science [31, 32, 33, 34, 35, 36, 17, 18]. High accuracy heuristics
developed to analyze dense graphs include [17, 18].

Organization. Section 2 describes background, our model and results. Section 3 describes our
algorithm and an gives an overview of its analysis. Section 4 contains the experiments.

2 Preliminaries and Summary of Results

Basic Notation. We use c0, c1, etc. to denote constants which may be different in each case. We
use whp to denote with high probability, by which we mean with probability larger 1 − 1

nc for any
c. All notation is summarized in Appendix B for quick reference.

Stochastic Blockmodel. Let n be the number of nodes in the graph with each node assigned a label
from the set {1, . . . , k} uniformly at random. An edge is added between two nodes with the same
label with probability p and between the nodes with different labels with probability q, with p > q
(assortative case). In this work, we focus on the k = 2 case, where p, q = Ω ((log n)c/n) and the
community sizes are exactly the same. (Many studies of the regimes where recovery is possible have
been published [37, 9, 5, 8].)

Let A be the adjacency matrix of the realized graph and let M = E[A] =
(

P Q
Q P

)
, where

P and Q ∈ Rn
2×

n
2 with every entry equal to p and q, respectively. We next explain the inference

algorithm, which uses two key observations. 1. Spectral Properties of M . M has rank 2 and the
non-trivial eigenvectors are (1, . . . , 1)T and (1, . . . , 1,−1, . . . ,−1) corresponding to eigenvalues
n(p+ q)/2 and n(p− q)/2, respectively. If one has access to M , the hidden structure in the graph
is revealed merely by reading off the second eigenvector. 2. Low Discrepancy between A and
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M . Provided the average degree n(p + q)/2 and the gap p − q are large enough, the spectrum
and eigenspaces of the matrices A and M can be shown to be close using matrix concentration
inequalities and the Davis-Kahan theorem [38, 39]. Thus, it is sufficient to look at the projection of
the columns of A onto the top two eigenvectors of A to identify the hidden latent structure.

Small-World Model (SWM). In a 1-dim. SWM, each node vi is associated with an independent
latent variable xi ∈ [0, 1] that is drawn from the uniform distribution on [0, 1]. The probability of a
link between two nodes is Pr[{vi, vj} ∈ E] ∝ 1

|xi−xj |∆+c0
, where ∆ > 1 is a hyper-parameter.

The inference algorithm for small-world models uses different ideas. Each edge in the graph
is considered as either “short-range” or “long-range.” Short-range edges are those between nodes
that are nearby in latent space, while long-range edges have end-points that are far away in latent
space. After removing the long-range edges, the shortest path distance between two nodes scales
proportionally to the corresponding latent space distance (see Fig. 6 in App. A.2). After obtaining
estimates for pairwise distances, standard buidling blocks are used to find the latent positions xi [40].
The key observation used to remove the long-range edges is: an edge {vi, vj} is a short-range edge
if and only if vi and vj will share many neighbors.

A Unified Model. Both SBM and SWM are special cases of our unified latent space model. We
begin by describing the full-fledged bipartite (heterogeneous) model that is a better approximation
of real-world networks, but requires sophisticated algorithmic techniques (see [19] for a detailed
analysis). Next, we present a simplified (homogeneous) model to explain the key ideas.

Bipartite Model. We use latent-space model to characterize the stochastic interactions between
users. Each individual is associated with a latent variable in [0, 1]. The bipartite graph model
consists of two types of users: the left side of the graph Y = {y1, . . . , ym} are the followers
(ordinary users) and the right side X = {x1, . . . , xn} are the influencers (celebrities). Both yi and
xi are i.i.d. random variables from a distribution D. This assumption follows the convention of
existing heterogeneous models [41, 42]. The probability that two individuals yi and xj interact is
κ(yi, xj)/n, where κ : [0, 1]× [0, 1]→ (0, 1] is a kernel function. Throughout this paper we assume
that κ is a small-world kernel, i.e., κ(x, y) = c0/(‖x − y‖∆ + c1) for some ∆ > 1 and suitable
constants c0, c1, and that m = Θ(n · polylog(n)). Let B ∈ Rm×n be a binary matrix that Bi,j = 1
if and only if there is an edge between yi and xj . Our goal is to estimate {xi}i∈[n] based on B for
suitably large n.

Simplified Model. The graph only has the node set is X = {x1, ..., xn} of celebrity users. Each
xi is again an i.i.d. random variable from D. The probability that two users vi and vj interact
is κ(xi, xj)/C(n). The denominator is a normalization term that controls the edge density of the
graph. We assume C(n) = n/polylog(n), i.e., the average degree is polylog(n). Unlike the SWM
where the xi are drawn uniformly from [0, 1], in the unified model D can be flexible. When D is the
uniform distribution, the model is the standard SWM. When D has discrete support (e.g., xi = 0
with prob. 1/2 and xi = 1 otherwise), then the unified model reduces to the SBM. Our distribution-
agnostic algorithm can automatically select the most suitable model from SBM and SWM, and infer
the latent positions of (almost) all the nodes.

Bipartite vs. Simplified Model. The simplified model suffers from the following problem: If the
average degree is O(1), then we err on estimating every individual’s latent position with a constant
probability (e.g., whp the graph is disconnected), but in practice we usually want a high prediction
accuracy on the subset of nodes corresponding to high-profile users. Assuming that the average
degree is ω(1) mismatches empirical social network data. Therefore, we use a bipartite model that
introduces heterogeneity among nodes: By splitting the nodes into two classes, we achieve high
estimation accuracy on the influencers and the degree distribution more closely matches real-world
data. For example, in most online social networks, nodes have O(1) average degree, and a small
fraction of users (influencers) account for the production of almost all “trendy” content while most
users (followers) simply consume the content.

Additional Remarks on the Bipartite Model. 1. Algorithmic contribution. Our algorithm com-
putes BTB and then regularizes the product by shrinking the diagonal entries before carrying out
spectral analysis. Previous studies of the bipartite graph in similar settings [43, 44, 45] attempt to
construct a regularized product using different heuristics. Our work presents the first theoretically
sound regularization technique for spectral algorithms. In addition, some studies have suggested run-
ning SVD on B directly (e.g., [28]). We show that the (right) singular vectors of B do not converge
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to the eigenvectors of K (the matrix with entries κ(xi, xj)). Thus, it is necessary to take the product
and use regularization. 2. Comparison to degree-corrected models (DCM). In DCM, each node vi is
associated with a degree parameterD(vi). Then we have Pr[{vi, vj} ∈ E] ∝ D(vi)κ(xi, xj)D(vj).
The DCM model implies the subgraph induced by the highest degree nodes is dense, which is incon-
sistent with real-world networks. There is a need for better tools to analyze the asymptotic behavior
of such models and we leave this for future work (see, e.g., [41, 42]).

Theoretical Results. Let F be the cdf of D. We say F and κ are well-conditioned if:
(1) F has finitely many points of discontinuity, i.e., the closure of the support of F can be expressed
as the union of non-overlapping closed intervals I1, I2, ..., Ik for a finite number k.
(2) F is near-uniform, i.e., for any interval I that has non-empty overlap with F ’s support,∫
I
dF (x) ≥ c0|I|, for some constant c0.

(3) Decay Condition: The eigenvalues of the integral operator based on κ and F decay sufficiently
fast. We define the Kf(x) =

∫
κ(x, x′)f(x′)dF (x′) and let (λi)i≥1 denote the eigenvalues of K.

Then, it holds that λi = O(i−2.5).

If we use the small-word kernel κ(x, y) = c0/(|x − y|∆ + c1) and choose F that gives rise
to SBM or SWM, in each case the pair F and κ are well-conditioned, as described below. As the
decay condition is slightly more invoved, we comment upon it. The condition is a mild one. When
F is uniformly distributed on [0, 1], it is equivalent to requiring K to be twice differentiable, which
is true for the small world kernel. When F has a finite discrete support, there are only finitely many
non-zero eigenvalues, i.e., this condition also holds. The decay condition holds in more general
settings, e.g., when F is piecewise linear [46] (see [19]). Without the decay condition, we would
require much stronger assumptions: Either the graph is very dense or ∆ � 2. Neither of these
assumptions is realistic, so effectively our algorithm fails to work. In practice, whether the decay
condition is satisfied can be checked by making a log-log plot and it has been observed that for
several real-world networks, the eigenvalues follow a power-law distribution [47].

Next, we define the notion of latent position recovery for our algorithms.

Definition 2.1 ((α, β, γ)-Aproximation Algorithm). Let Ii, F , and K be defined as above, and let
Ri = {xj : xj ∈ Ii}. An algorithm is called an (α, β, γ)-approximation algorithm if
1. It outputs a collection of disjoint points C1, C2, . . . , Ck such that Ci ⊆ Ri, which correspond to
subsets of reconstructed latent variables.
2. For each Ci, it produces a distance matrix D(i). Let Gi ⊆ Ci be such that for any ij , ik ∈ Gi

D
(i)
ij ,ik
≤ |xij − xik | ≤ (1 + β)D

(i)
ij ,ik

+ γ. (1)

3. |
⋃
iGi| ≥ (1− α)n.

In bipartite graphs, Eq.(1) is required only for influencers.

We do not attempt to optimize constants in this paper. We set α = o(1), β a small constant,
and γ = o(1). Definition 2.1 allows two types of errors: Cis are not required to form a partition
i.e., some nodes can be left out, and a small fraction of estimation errors is allowed in each Ci,
e.g., if xj = 0.9 but x̂j = 0.2, then the j-th “row” in D(i) is incorrect. To interpret the definition,
consider the blockmodel with 2 communities. Condition 1 means that our algorithm will output two
disjoint groups of points. Each group corresponds to one block. Condition 2 means that there are
pairwise distance estimates within each group. Since the true distances for nodes within the same
block are zero, our estimates must also be zero to satisfy Eq.1. Condition 3 says that the proportion
of misclassified nodes is α = o(1). We can also interpret the definition when we consider a small-
world graph, in which case k = 1. The algorithm outputs pairwise distances for a subset C1. We
know that there is a sufficiently large G1 ⊆ C1 such that the pairwise distances are all correct in C1.

Our algorithm does not attempt to estimate the distance between Ci and Cj for i 6= j. When
the support contains multiple disjoint intervals, e.g., in the SBM case, it first pulls apart the nodes in
different communities. Estimating the distance between intervals, given the output of our algorithm
is straightforward. Our main result is the following.

Theorem 2.2. Using the notation above, assume F and κ are well-conditioned, and C(n) and
m/n are Ω(logc n) for some suitably large c. The algorithm for the simplified model shown in
Figure 1 and that for the bipartite model (appears in [19]) give us an (1/ log2 n, ε,O(1/ log n))-
approximation algorithm w.h.p. for any constant ε. Furthermore, the distance estimates D(i) for
each Ci are constructed using the shortest path distance of an unweighted graph.
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LATENT-INFERENCE(A)

1 // Step 1. Estimate Φ .
2 Φ̂ = SM-EST(A).
3 // Step 2. Execute isomap algo.
4 D = ISOMAP-ALGO(Φ̂)
5 // Step 3. Find latent variables.
6 Run a line embedding algorithm [48, 49].

ISOMAP-ALGO(Φ̂, `)

1 Execute S ← DENOISE(Φ̂) (See Section 3.2)
2 // S is a subset of [n].
3 Build G = {S,E} s.t. {i, j} ∈ E iff
4 |(Φ̃d)i − (Φ̃d)j | ≤ `/ logn (` a constant).
5 Compute D such D(i, j) is the shortest
6 path distance between i and j when i, j ∈ S.
7 return D

SM-EST(A, t)

1 [ŨA, S̃A, ṼA] = svd(A).
2 Let also λi be i-th singular value of A.
3 // let t be a suitable parameter.
4 d = DECIDETHRESHOLD(t, ρ(n)).
5 SA: diagonal matrix comprised of {λi}i≤d
6 UA, VA: the singular vectors
7 corresponding to SA.
8 Let Φ̂ =

√
C(n)UAS

1/2
A .

9 return Φ̂

DECIDETHRESHOLD(t, ρ(n))

1 // This procedure decides d the number
2 of Eigenvectors to keep.
3 // t is a tunable parameter. See Proposition 3.1.
4 d = arg maxd{λd( A

ρ(n)
)− λd+1( A

ρ(n)
) ≥ θ}.

5 where θ = 10(t/ρ(n))24/59

Figure 1: Subroutines of our Latent Inference Algorithm.

Pairwise Estimation to Line-embedding and High-dimensional Generalization. Our algo-
rithm builds estimates on pairwise latent distance and uses well-studied metric-embedding meth-
ods [48, 49] as blackboxes to infer latent positions. Our inference algorithm can be generalized to
d-dimensional space with d being a constant. But the metric-embedding on `dp becomes increasingly
difficult, e.g., when d = 2, the approximation ratio for embedding a graph is Ω(

√
n) [50].

3 Our algorithms

As previously noted, SBM and SWM are special cases of our unified model and both require
different algorithmic techniques. Given that it is not surprising that our algorithm blends ingredients
from both sets of techniques. Before proceeding, we review basics of kernel learning.

Notation. Let A be the adjacency matrix of the observed graph (simplified model) and let ρ(n) ,
n/C(n). Let K be the matrix with entries κ(xi, xj). Let ŨK S̃K Ṽ T

K (ŨAS̃AṼ T
A ) be the SVD of K

(A). Let d be a parameter to be chosen later. Let SK (SA) be a d×d diagonal matrix comprising the
d-largest eigenvalues of K (A). Let UK (UA) and VK (VA) be the corresponding singular vectors of
K (A). Finally, let K̄ = UKSKV

T
K (Ā = UASAV

T
A ) be the low-rank approximation ofK (A). Note

that when a matrix is positive definite and symmetric SVD coincides with eigen-decomposition; as
a consequence UK = VK and UA = VA.

Kernel Learning. Define an integral operator K as Kf(x) =
∫
κ(x, x′)f(x′)dF (x′). Let

ψ1, ψ2, . . . be the eigenfunctions of K and λ1, λ2, . . . be the corresponding eigenvalues such that
λ1 ≥ λ2 ≥ · · · and λi ≥ 0 for each i. Also let NH be the number of eigenfunctions/eigenvalues
of K, which is either finite or countably infinite. We recall some important properties of K [51, 25].
For x ∈ [0, 1], define the feature map Φ(x) = (

√
λjψj(x) : j = 1, 2, ...), so that 〈Φ(x),Φ(x′)〉 =

κ(x, x′). We also consider a truncated feature Φd(x) = (
√
λjψj(x) : j = 1, 2, ..., d). Intuitively,

if λj is too small for sufficiently large j, then the first d coordinates (i.e., Φd) already approximate
the feature map well. Finally, let Φd(X) ∈ Rn×d such that its (i, j)-th entry is

√
λjψj(xi). Let’s

further write (Φd(X)):,i be the i-th column of Φd(X). Let Φ(X) = limd→∞Φd(X). When the
context is clear, shorten Φd(X) and Φ(X) to Φd and Φ, respectively.

There are two main steps in our algorithm which we explain in the following two subsections.

3.1 Estimation of Φ through K and A

The mapping Φ : [0, 1] → RNH is bijective so a (reasonably) accurate estimate of Φ(xi) can
be used to recover xi. Our main result is the design of a data-driven procedure to choose a suitable
number of eigenvectors and eigenvalues of A to approximate Φ (see SM-EST(A) in Fig. 1).
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Proposition 3.1. Let t be a tunable parameter such that t = o(ρ(n)) and t2/ρ(n) = ω(log n).
Let d be chosen by DECIDETHRESHOLD(·). Let Φ̂ ∈ RNH be such that its first d-coordinates are
equal to

√
C(n)UAS

1/2
A , and its remaining entries are 0. If ρ(n) = ω(log n) and K (F and κ) is

well-conditioned, then with high probability:

‖Φ̂− Φ‖F = O
(√

n (t/(ρ(n)))
2
29

)
(2)

Specifically, by letting t = ρ2/3(n), we have ‖Φ̂−Φ‖F = O
(√
nρ−2/87(n)

)
. We remark that

our result is stronger than an analogous result for sparse graphs in [25] as our estimate is close to Φ
rather than the truncated Φd.

Remark on the Eigengap. In our analysis, there are three groups of eigenvalues: the eigenvalues
of K, those of K, and those of A. They are in different scales: λi(K) ≤ 1 (resulting from the
fact that κ(x, y) ≤ 1 for all x and y), and λi(A/ρ(n)) ≈ λi(K/n) ≈ λi(K) if n and ρ(n) are
sufficiently large. Thus, λd(K) are independent of n for a fixed d and should be treated as Θ(1).
Also δd , λd(K)− λd+1(K)→ 0 as d→∞. Since the procedure of choosing d depends on C(n)
(and thus also on n), δd depends on n and can be bounded by a function in n. This is the reason why
Proposition 3.1 does not explicitly depend on the eigengap. We also note that we cannot directly
find δd based on the input matrixA. But standard interlacing results can give δd = Θ(λd(A/ρ(n))−
λd+1(A/ρ(n))) (cf. [19]).

Intuition of the algorithm. Using Mercer’s theorem, we have 〈Φ(xi),Φ(xj)〉 =
limd→∞〈Φd(xi),Φd(xj)〉 = κ(xi, xj). Thus, limd→∞ΦdΦ

T
d = K. On the other hand, we have

(ŨK S̃
1/2
K )(ŨK S̃

1/2
K )T = K. Thus, Φd(X) and ŨK S̃

1/2
K are approximately the same, up to a uni-

tary transformation. We need to identify different sources of errors to understand the approximation
quality.

Error source 1. Finite samples to learn the kernel. We want to infer about “continuous objects” κ
and D (specifically the eigenfunctions of K) but K only contains the kernel values of a finite set of
pairs. From standard results in Kernel PCA [52, 25], we have with probability ≥ 1− ε,

‖UKS
1/2
K W − Φd(X)‖F ≤ 2

√
2

√
log ε−1

λd(K)− λd+1(K)
= 2
√

2

√
log ε−1

δd
.

Error source 2. Only observe A. We observe only the realized graph A and not K, though it holds
that EA = K/C(n). Thus, we can only use singular vectors of C(n)A to approximate ŨK S̃

1/2
K .

We have:
∥∥∥√C(n)UAS

1/2
A W − UKS1/2

K

∥∥∥
F

= O
(
t
√
dn

δ2
dρ(n)

)
. When A is dense (i.e., C(n) = O(1)),

the problem is analyzed in [25]. We generalize the results in [25] for the sparse graph case. See [19]
for a complete analysis.

Error source 3. Truncation error. When i is large, the noise in λi(A)(ŨA):,i “outweighs” the
signal. Thus, we need to choose a d such that only the first d eigenvectors/eigenvalues of A are
used to approximate Φd. Here, we need to address the truncation error: the tail {

√
λiψi(xj)}i>d is

thrown away.

Next we analyze the magitude of the tail. We abuse notation so that Φd(x) refers to both a
d-dimensional vector and a NH-dimensional vector in which all entries after the d-th one are 0.
We have E‖Φ(x) − Φd(x)‖2 =

∑
i>d E[(

√
λiψi(x))2] =

∑
i>d λi

∫
|ψi(x)|2dF (x) =

∑
i>d λi.

(A Chernoff bound is used to obtain that ‖Φ − Φd‖F = O(
√
n/(
√∑

i>d λi))). Using the decay
condition, we show that a d can be identified so that the tail can be bounded by a polynomial in δd.
The details are technical and are provided in [19].

3.2 Estimating Pairwise Distances from Φ̂(xi) through Isomap

See ISOMAP-ALGO(·) in Fig. 1 for the pseudocode. After we construct our estimate Φ̂d, we
estimate K by letting K̂ = Φ̂dΦ̂

T
d . Recalling Ki,j = c0/(|xi − xj |∆ + c1), a plausible approach is

to estimate |xi − xj | = (c0/K̂i,j − c1)1/∆. However, κ(xi, xj) is a convex function in |xi − xj |.
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(a) True features (b) Estimated features (c) Isomap w/o denoising (d) Isomap + denoising

Figure 2: Using the Isomap Algorithm to recover pairwise distances. (a) The true curve C = {Φ(x)}x∈[0,1]
(b) Estimate Φ̂ (c) Shows that an undesirable short-cut may exist when we run the Isomap algorithm and (d)
Shows the result of running the Isomap algorithm after removal of the corrupted nodes.

Thus, when Ki,j is small, a small estimation error here will result in an amplified estimation error
in |xi − xj | (see also Fig. 7 in App. A.3). But when |xi − xj | is small, Ki,j is reliable (see the
“reliable” region in Fig. 7 in App. A.3).

Thus, our algorithm only uses large values ofKi,j to construct estimates. The isomap technique
introduced in topological learning [53, 54] is designed to handle this setting. Specifically, the set
C = {Φ(x)}x∈[0,1] forms a curve in RNH (Fig. 2(a)). Our estimate {Φ̂(xi)}i∈[n] will be a noisy
approximation of the curve (Fig. 2(b)). Thus, we build up a graph on {Φ(xi)}i≤n so that xi and xj
are connected if and only if Φ̂(xi) and Φ̂(xj) are close (Fig. 2(c-d)). Then the shortest path distance
on G approximates the geodesic distance on C. By using the fact that κ is a radial basis kernel, the
geodesic distance will also be proportional to the latent distance.

Corrupted nodes. Excessively corrupted nodes may help build up “undesirable bridges” and inter-
fere with the shortest-path based estimation (cf.Fig. 2(c)). Here, the shortest path between two green
nodes “jumps through” the excessively corrupted nodes (labeled in red) so the shortest path distance
is very different from the geodesic distance.

Below, we describe a procedure to remove excessively corrupted nodes and then explain how
to analyze the isomap technique’s performance after their removal. Note that d in this section mostly
refers to the shortest path distance.

Step 1. Eliminate corrupted nodes. Recall that x1, x2, ..., xn are the latent variables. Let zi =

Φ(xi) and ẑi = Φ̂(xi). For any z ∈ RNH and r > 0, we let Ball(z, r) = {z′ : ‖z′−z‖ ≤ r}. Define
projection Proj(z) = arg minz′∈C ‖z′ − z‖, where C is the curve formed by {φ(x)}x∈[0,1]. Finally,
for any point z ∈ C, define Φ−1(z) such that Φ(Φ−1(z)) = z (i.e., z’s original latent position). For
the points that fall outside of C, define Φ−1(z) = Φ−1(Proj(z)). Let us re-parametrize the error
term in Propostion 3.1. Let f(n) be such that ‖Φ̂ − Φ‖F ≤

√
n/f(n), where f(n) = ρ2/87(n) =

Ω(log2 n) for sufficiently large ρ(n). By Markov’s inequality, we have Pri[‖Φ̂(xi) − Φ(xi)‖2 ≥
1/
√
f(n)] ≤ 1/f(n). Intuitively, when ‖Φ̂(xi)−Φ(xi)‖2 ≥ 1/

√
f(n), i becomes a candidate that

can serve to build up undesirable shortcuts. Thus, we want to eliminate these nodes.

Looking at a ball of radius O(1/
√
f(n)) centered at a point ẑi, consider two cases.

Case 1. If ẑi is close to Proj(ẑi), i.e., corresponding to the blue nodes in Figure 2(c). For the purpose
of exposition, let us assume ẑi = zi. Now for any point zj , if |xi − xj | = O(f−1/∆(n)), then we
have ‖ẑi − ẑj‖ = O(1/

√
f(n)), which means zj is in Ball(zi, O(1/

√
f(n))). The total number

of such nodes will be in the order of Θ(n/f1/∆(n)), by using the near-uniform density assumption.
Case 2. If ẑi is far away from any point in C, i.e., corresponding to the red ball in Figure 2(c), any
points in Ball(ẑi, O(1/

√
f(n))) will also be far from C. Then the total number of such nodes will

be O(n/f(n)).

As n/f1/∆(n) = ω(n/f(n)) for ∆ > 1, there is a phase-transition phenomenon: When ẑi
is far from C, then a neighborhood of ẑi contains O(n/f(n)) nodes. When ẑi is close to C, then a
neighborhood of ẑi contains ω(n/f(n)) nodes. We can leverage this intuition to design a counting-
based algorithm to eliminate nodes that are far from C:

DENOISE(ẑi) : If |Ball(ẑi, 3/
√
f(n))| < n/f(n), remove ẑi. (3)
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Algo. ρ Slope of β S.E. p-value
Ours 0.53 9.54 0.28 < 0.001

Mod. [55] 0.16 1.14 0.02 < 0.001
CA [18] 0.20 0.11 7e-4 < 0.001
Maj [56] 0.13 0.09 0.02 < 0.001
RW [54] 0.01 1.92 0.65 < 0.001

MDS [49] 0.05 30.91 120.9 0.09

Figure 3: Latent Estimates vs. Ground-truth.

(a) Inferred kernel (b) SWM (c) SBM

Figure 4: Visualization of real and synthetic networks. (a) Our inferred kernel matrix, which is “in-between”
(b) the small-world model and (c) the stochastic blockmodel.

Theoretical result. We classify a point i into three groups:

1. Good: Satisfying ‖ẑi − Proj(ẑi)‖ ≤ 1/
√
f(n). We further partition the set of good points into

two parts. Good-I are points such that ‖ẑi−zi‖ ≤ 1/
√
f(n), while Good-II are points that are good

but not in Good-I.
2. Bad: when ‖zi − Proj(zi)‖ > 4/

√
f(n).

3. Unclear: otherwise.
Lemma 3.2. (cf. [19] ) After running DENOISE that uses the counting-based decision rule, all good
points are kept, all bad points are eliminated, and all unclear points have no performance guarantee.
The total number of eliminated nodes is ≤ n/f(n).

Step 2. An isomap-based algorithm. Wlog assume there is only one closed interval for
support(F ). We build a graph G on [n] so that two nodes ẑi and ẑj are connected if and only
if ‖ẑi− ẑj‖ ≤ `/

√
f(n), where ` is a sufficiently large constant (say 10). Consider the shortest path

distance between arbitrary pairs of nodes i and j (that are not eliminated.) Because the corrupted
nodes are removed, the whole path is around C. Also, by the uniform density assumption, walking
on the shortest path in G is equivalent to walking on C with “uniform speed”, i.e., each edge on the
path will map to an approximately fixed distance on C. Thus, the shortest path distance scales with

the latent distance, i.e., (d−1)
(
c
2

)1/∆( `−3√
f(n)

)2/∆

≤ |xi−xj | ≤ d
(
c
2

)1/∆( `+8√
f(n)

)2/∆

, which

implies Theorem 2.2 (cf. [19] for details).

Discussion: “Gluing together” two algorithms? The unified model is much more flexible than
SBM and SWM. We were intrigued that the generalized algorithm needs only to “glue together”
important techniques used in both models: Step 1 uses the spectral technique inspired by SBM
inference methods, while Step 2 resembles techniques used in SWM: the isomap G only connects
between two nodes that are close, which is akin to throwing away the long-range edges.

4 Experiments
We apply our algorithm to a social interaction graph from Twitter to construct users’ ideology

scores. We assembled a dataset by tracking keywords related to the 2016 US presidential election for
10 million users. First, we note that as of 2016 the Twitter interaction graph behaves “in-between”
the small-world and stochastic blockmodels (see Figure 4), i.e., the latent distributions are bi-modal
but not as extreme as the SBM.

Ground-truth data. Ideology scores of the US Congress (estimated by third parties [57]) are usu-
ally considered as a “ground-truth” dataset, e.g., [18]. We apply our algorithm and other baselines
on Twitter data to estimate the ideology score of politicians (members of the 114th Congress), and

8



observe that our algorithm has the highest correlation with ground-truth. See Fig. 3. Beyond corre-
lation, we also need to estimate the statistical significance of our estimates. We set up a linear model
y ∼ β1x̂ + β0, in which x̂’s are our estimates and y’s are ground-truth. We use bootstrapping to
compute the standard error of our estimator, and use the standard error to estimate the p-value of our
estimator. The details of this experiment and additional empirical evaluation are available in [19].
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