
Integration Methods and Optimization Algorithms

Damien Scieur
INRIA, ENS,

PSL Research University,
Paris France

damien.scieur@inria.fr

Vincent Roulet
INRIA, ENS,

PSL Research University,
Paris France

vincent.roulet@inria.fr

Francis Bach
INRIA, ENS,

PSL Research University,
Paris France

francis.bach@inria.fr

Alexandre d’Aspremont
CNRS, ENS

PSL Research University,
Paris France

aspremon@ens.fr

Abstract

We show that accelerated optimization methods can be seen as particular instances
of multi-step integration schemes from numerical analysis, applied to the gradient
flow equation. Compared with recent advances in this vein, the differential equation
considered here is the basic gradient flow, and we derive a class of multi-step
schemes which includes accelerated algorithms, using classical conditions from
numerical analysis. Multi-step schemes integrate the differential equation using
larger step sizes, which intuitively explains the acceleration phenomenon.

Introduction

Applying the gradient descent algorithm to minimize a function f has a simple numerical interpreta-
tion as the integration of the gradient flow equation, written

ẋ(t) = −∇f(x(t)), x(0) = x0 (Gradient Flow)

using Euler’s method. This appears to be a somewhat unique connection between optimization and
numerical methods, since these two fields have inherently different goals. On one hand, numerical
methods aim to get a precise discrete approximation of the solution x(t) on a finite time interval. On
the other hand, optimization algorithms seek to find the minimizer of a function, which corresponds
to the infinite time horizon of the gradient flow equation. More sophisticated methods than Euler’s
were developed to get better consistency with the continuous time solution but still focus on a
finite time horizon [see e.g. Süli and Mayers, 2003]. Similarly, structural assumptions on f lead to
more sophisticated optimization algorithms than the gradient method, such as the mirror gradient
method [see e.g. Ben-Tal and Nemirovski, 2001; Beck and Teboulle, 2003], proximal gradient
method [Nesterov, 2007] or a combination thereof [Duchi et al., 2010; Nesterov, 2015]. Among
them Nesterov’s accelerated gradient algorithm [Nesterov, 1983] is proven to be optimal on the
class of smooth convex or strongly convex functions. This latter method was designed with optimal
complexity in mind, but the proof relies on purely algebraic arguments and the key mechanism behind
acceleration remains elusive, with various interpretations discussed in e.g. [Bubeck et al., 2015;
Allen Zhu and Orecchia, 2017; Lessard et al., 2016].

Another recent stream of papers used differential equations to model the acceleration behavior and
offer another interpretation of Nesterov’s algorithm [Su et al., 2014; Krichene et al., 2015; Wibisono
et al., 2016; Wilson et al., 2016]. However, the differential equation is often quite complex, being

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

reverse-engineered from Nesterov’s method itself, thus losing the intuition. Moreover, integration
methods for these differential equations are often ignored or are not derived from standard numerical
integration schemes.

Here, we take another approach. Rather than using a complicated differential equation, we use
advanced multistep discretization methods on the basic gradient flow equation in (Gradient Flow).
Ensuring that the methods effectively integrate this equation for infinitesimal step sizes is essential
for the continuous time interpretation and leads to a family of integration methods which contains
various well-known optimization algorithms. A full analysis is carried out for linear gradient flows
(quadratic optimization) and provides compelling explanations for the acceleration phenomenon.
In particular, Nesterov’s method can be seen as a stable and consistent gradient flow discretization
scheme that allows bigger step sizes in integration, leading to faster convergence.

1 Gradient flow

We seek to minimize a L-smooth µ-strongly convex function defined on Rd. We discretize the
gradient flow equation (Gradient Flow), given by the following ordinary differential equation

ẋ(t) = g(x(t)), x(0) = x0, (ODE)

where g comes from a potential−f , meaning g = −∇f . Smoothness of f means Lipschitz continuity
of g, i.e.

‖g(x)− g(y)‖ ≤ L‖x− y‖, for every x, y ∈ Rd,
where ‖.‖ is the Euclidean norm. This property ensures existence and uniqueness of the solution
of (ODE) (see [Süli and Mayers, 2003, Theorem 12.1]). Strong convexity of f also means strong
monotonicity of −g, i.e.,

µ‖x− y‖2 ≤ −〈x− y, g(x)− g(y)〉, for every x, y ∈ Rd,
and ensures that (ODE) has a unique point x∗ such that g(x∗) = 0, called the equilibrium. This is the
minimizer of f and the limit point of the solution, i.e. x(∞) = x∗. Finally this assumption allows us
to control the convergence rate of the potential f and the solution x(t) as follows.

Proposition 1.1 Let f be a L-smooth and µ-strongly convex function and x0 ∈ dom(f). Writing
x∗ the minimizer of f , the solution x(t) of (Gradient Flow) satisfies

f(x(t))− f(x∗) ≤ (f(x0)− f(x∗))e−2µt, ‖x(t)− x∗‖ ≤ ‖x0 − x∗‖e−µt. (1)

A proof of this last result is recalled in the Supplementary Material. We now focus on numerical
methods to integrate (ODE).

2 Numerical integration of differential equations

2.1 Discretization schemes

In general, we do not have access to an explicit solution x(t) of (ODE). We thus use integration
algorithms to approximate the curve (t, x(t)) by a grid (tk, xk) ≈ (tk, x(tk)) on a finite interval
[0, tmax]. For simplicity here, we assume the step size hk = tk − tk−1 is constant, i.e., hk = h and
tk = kh. The goal is then to minimize the approximation error ‖xk − x(tk)‖ for k ∈ [0, tmax/h].
We first introduce Euler’s method to illustrate this on a basic example.

Euler’s explicit method. Euler’s (explicit) method is one of the oldest and simplest schemes for
integrating the curve x(t). The idea stems from a Taylor expansion of x(t) which reads

x(t+ h) = x(t) + hẋ(t) +O(h2).

When t = kh, Euler’s method approximates x(t+ h) by xk+1, neglecting the second order term,

xk+1 = xk + hg(xk).

In optimization terms, we recognize the gradient descent algorithm used to minimize f . Approxima-
tion errors in an integration method accumulate with iterations, and as Euler’s method uses only the
last point to compute the next one, it has only limited control over the accumulated error.

2

Linear multistep methods. Multi-step methods use a combination of past iterates to improve
convergence. Throughout the paper, we focus on linear s-step methods whose recurrence can be
written

xk+s = −
s−1∑
i=0

ρixk+i + h

s∑
i=0

σig(xk+i), for k ≥ 0,

where ρi, σi ∈ R are the parameters of the multistep method and h is again the step size. Each new
point xk+s is a function of the information given by the s previous points. If σs = 0, each new point
is given explicitly by the s previous points and the method is called explicit. Otherwise each new
point requires solving an implicit equation and the method is called implicit.

To simplify notations we use the shift operator E, which maps Exk → xk+1. Moreover, if we write
gk = g(xk), then the shift operator also maps Egk → gk+1. Recall that a univariate polynomial is
called monic if its leading coefficient is equal to 1. We now give the following concise definition of
s-step linear methods.

Definition 2.1 Given an (ODE) defined by g, x0, a step size h and x1, . . . , xs−1 initial points, a
linear s-step method generates a sequence (tk, xk) which satisfies

ρ(E)xk = hσ(E)gk, for every k ≥ 0, (2)

where ρ is a monic polynomial of degree s with coefficients ρi, and σ a polynomial of degree s with
coefficients σi.

A linear s−step method is uniquely defined by the polynomials (ρ, σ). The sequence generated by
the method then depends on the initial points and the step size. We now recall a few results describing
the performance of multistep methods.

2.2 Stability

Stability is a key concept for integration methods. First of all, consider two curves x(t) and y(t), both
solutions of (ODE), but starting from different points x(0) and y(0). If the function g is Lipchitz-
continuous, it is possible to show that the distance between x(t) and y(t) is bounded on a finite
interval, i.e.

‖x(t)− y(t)‖ ≤ C‖x(0)− y(0)‖ ∀t ∈ [0, tmax],

where C may depend exponentially on tmax. We would like to have a similar behavior for our
sequences xk and yk, approximating x(tk) and y(tk), i.e.

‖xk − yk‖ ≈ ‖x(tk)− y(tk)‖ ≤ C‖x(0)− y(0)‖ ∀k ∈ [0, tmax/h], (3)

when h → 0, so k → ∞. Two issues quickly arise. First, for a linear s-step method, we need s
starting values x0, ..., xs−1. Condition (3) will therefore depend on all these starting values and
not only x0. Secondly, any discretization scheme introduces at each step an approximation error,
called local error, which accumulates over time. We write this error εloc(xk+s) and define it as
εloc(xk+s) , xk+s − x(tk+s), where xk+s is computed using the real solution x(tk), ..., x(tk+s−1).
In other words, the difference between xk and yk can be described as follows

‖xk − yk‖ ≤ Error in the initial condition + Accumulation of local errors.

We now write a complete definition of stability, inspired by Definition 6.3.1 from Gautschi [2011].

Definition 2.2 (Stability) A linear multistep method is stable iff, for two sequences xk, yk generated
by (ρ, σ) using a sufficiently small step size h > 0, from the starting values x0, ..., xs−1, and
y0, ..., ys−1, we have

‖xk − yk‖ ≤ C
(

max
i∈{0,...,s−1}

‖xi − yi‖+
tmax/h∑
i=1

‖εloc(xi+s)‖+ ‖εloc(yi+s)‖
)
, (4)

for any k ∈ [0, tmax/h]. Here, the constant C may depend on tmax but is independent of h.

When h tends to zero, we may recover equation (3) only if the accumulated local error also tends to
zero. We thus need

lim
h→0

1

h
‖εloc(xi+s)‖ = 0 ∀i ∈ [0, tmax/h].

3

This condition is called consistency. The following proposition shows there exist simple conditions to
check consistency, which rely on comparing a Taylor expansion of the solution with the coefficients
of the method. Its proof and further details are given in the Supplementary Material.

Proposition 2.3 (Consistency) A linear multistep method defined by polynomials (ρ, σ) is consistent
if and only if

ρ(1) = 0 and ρ′(1) = σ(1). (5)

Assuming consistency, we still need to control sensitivity to initial conditions, written

‖xk − yk‖ ≤ C max
i∈{0,...,s−1}

‖xi − yi‖. (6)

Interestingly, analyzing the special case where g = 0 is completely equivalent to the general case
and this condition is therefore called zero-stability. This reduces to standard linear algebra results as
we only need to look at the solution of the homogeneous difference equation ρ(E)xk = 0. This is
captured in the following theorem whose technical proof can be found in [Gautschi, 2011, Theorem
6.3.4].

Theorem 2.4 (Root condition) Consider a linear multistep method (ρ, σ). The method is zero-stable
if and only if all roots of ρ(z) are in the unit disk, and the roots on the unit circle are simple.

2.3 Convergence of the global error

Numerical analysis focuses on integrating an ODE on a finite interval of time [0, tmax]. It studies the
behavior of the global error defined by x(tk)− xk, as a function of the step size h. If the global error
converges to 0 with the step size, the method is guaranteed to approximate correctly the ODE on the
time interval, for h small enough.

We now state Dahlquist’s equivalence theorem, which shows that the global error converges to zero
when h does if the method is stable, i.e. when the method is consistent and zero-stable. This naturally
needs the additional assumption that the starting values x0, . . . , xs−1 are computed such that they
converge to the solution (x(0), . . . , x(ts−1)). The proof of the theorem can be found in Gautschi
[2011].

Theorem 2.5 (Dahlquist’s equivalence theorem) Given an (ODE) defined by g and x0 and a con-
sistent linear multistep method (ρ, σ), whose starting values are computed such that limh→0 xi =
x(ti) for any i ∈ {0, . . . , s − 1}, zero-stability is necessary and sufficient for convergence, i.e. to
ensure x(tk)− xk → 0 for any k when the step size h goes to zero.

2.4 Region of absolute stability

The results above ensure stability and global error bounds on finite time intervals. Solving optimiza-
tion problems however requires looking at infinite time horizons. We start by finding conditions
ensuring that the numerical solution does not diverge when the time interval increases, i.e. that the
numerical solution is stable with a constant C which does not depend on tmax. Formally, for a fixed
step-size h, we want to ensure

‖xk‖ ≤ C max
i∈{0,...,s−1}

‖xi‖ for all k ∈ [0, tmax/h] and tmax > 0. (7)

This is not possible without further assumptions on the function g as in the general case the solution
x(t) itself may diverge. We begin with the simple scalar linear case which, given λ > 0, reads

ẋ(t) = −λx(t), x(0) = x0. (Scalar Linear ODE)

The recurrence of a linear multistep methods with parameters (ρ, σ) applied to (Scalar Linear ODE)
then reads

ρ(E)xk = −λhσ(E)xk ⇔ [ρ+ λhσ](E)xk = 0,

where we recognize a homogeneous recurrence equation. Condition (7) is then controlled by the
step size h and the constant λ, ensuring that this homogeneous recurrent equation produces bounded
solutions. This leads us to the definition of the region of absolute stability, also called A-stability.

4

Definition 2.6 (Absolute stability) The region of absolute stability of a linear multistep method
defined by (ρ, σ) is the set of values λh such that the characteristic polynomial

πλh(z) , ρ(z) + λhσ(z) (8)

of the homogeneous recurrence equation πλh(E)xk = 0 produces bounded solutions.

Standard linear algebra links this condition to the roots of the characteristic polynomial as recalled in
the next proposition (see e.g. Lemma 12.1 of Süli and Mayers [2003]).

Proposition 2.7 Let π be a polynomial and write xk a solution of the homogeneous recurrence
equation π(E)xk = 0 with arbitrary initial values. If all roots of π are inside the unit disk and the
ones on the unit circle have a multiplicity exactly equal to one, then ‖xk‖ ≤ ∞.

Absolute stability of a linear multistep method determines its ability to integrate a linear ODE defined
by

ẋ(t) = −Ax(t), x(0) = x0, (Linear ODE)

where A is a positive symmetric matrix whose eigenvalues belong to [µ,L] for 0 < µ ≤ L. In this
case the step size h must indeed be chosen such that for any λ ∈ [µ,L], λh belongs to the region of
absolute stability of the method. This (Linear ODE) is a special instance of (Gradient Flow) where f
is a quadratic function. Therefore absolute stability gives a necessary (but not sufficient) condition to
integrate (Gradient Flow) on L-smooth, µ-strongly convex functions.

2.5 Convergence analysis in the linear case

By construction, absolute stability also gives hints on the convergence of xk to the equilibrium in the
linear case. More precisiely, it allows us to control the rate of convergence of xk, approximating the
solution x(t) of (Linear ODE) as shown in the following proposition whose proof can be found in
Supplementary Material.

Proposition 2.8 Given a (Linear ODE) defined by x0 and a positive symmetric matrix A whose
eigenvalues belong to [µ,L] with 0 < µ ≤ L, using a linear multistep method defined by (ρ, σ) and
applying a fixed step size h, we define rmax as

rmax = max
λ∈[µ,L]

max
r∈roots(πλh(z))

|r|,

where πλh is defined in (8). If rmax < 1 and its multiplicity is equal to m, then the speed of
convergence of the sequence xk produced by the linear multistep method to the equilibrium x∗ of the
differential equation is given by

‖xk − x∗‖ = O(km−1rkmax). (9)

We can now use these properties to analyze and design multistep methods.

3 Analysis and design of multi-step methods

As shown previously, we want to integrate (Gradient Flow) and Proposition 1.1 gives a rate of
convergence in the continuous case. If the method tracks x(t) with sufficient accuracy, then the rate
of the method will be close to the rate of convergence of x(kh). So, larger values of h yield faster
convergence of x(t) to the equilibrium x∗. However h cannot be too large, as the method may be
too inaccurate and/or unstable as h increases. Convergence rates of optimization algorithms are thus
controlled by our ability to discretize the gradient flow equation using large step sizes. We recall the
different conditions that proper linear multistep methods should satisfy.

• Monic polynomial (Section 2.1). Without loss of generality (dividing both sides of the
difference equation of the multistep method (2) by ρs does not change the method).

• Explicit method (Section 2.1). We assume that the scheme is explicit in order to avoid
solving a non-linear system at each step.

5

• Consistency (Section 2.2). If the method is not consistent, then the local error does not
converge when the step size goes to zero.

• Zero-stability (Section 2.2). Zero-stability ensures convergence of the global error (Section
2.3) when the method is also consistent.

• Region of absolute stability (Section 2.4). If λh is not inside the region of absolute stability
for any λ ∈ [µ,L], then the method is divergent when tmax increases.

Using the remaining degrees of freedom, we can tune the algorithm to improve the convergence
rate on (Linear ODE), which corresponds to the optimization of a quadratic function. Indeed, as
showed in Proposition 2.8, the largest root of πλh(z) gives us the rate of convergence on quadratic
functions (when λ ∈ [µ,L]). Since smooth and strongly convex functions are close to quadratic (being
sandwiched between two quadratics), this will also give us a good idea of the rate of convergence
on these functions. We do not derive a proof of convergence of the sequence for general smooth
and (strongly) convex function (but convergence is proved by Nesterov [2013] or using Lyapunov
techniques by Wilson et al. [2016]). Still our results provide intuition on why accelerated methods
converge faster.

3.1 Analysis of two-step methods

We now analyze convergence of two-step methods (an analysis of Euler’s method is provided in the
Supplementary Material). We first translate the conditions multistep method, listed at the beginning
of this section, into constraints on the coefficients:

ρ2 = 1 (Monic polynomial)
σ2 = 0 (Explicit method)

ρ0 + ρ1 + ρ2 = 0 (Consistency)
σ0 + σ1 + σ2 = ρ1 + 2ρ2 (Consistency)
|Roots(ρ)| ≤ 1 (Zero-stability).

Equality contraints yield three linear constraints, defining the set L such that

L = {ρ0, ρ1, σ0, σ1 : ρ1 = −(1 + ρ0), σ1 = 1− ρ0 − σ0, |ρ0| < 1}. (10)

We now seek conditions on the remaining parameters to produce a stable method. Absolute stability
requires that all roots of the polynomial πλh(z) in (8) are inside the unit circle, which translates into
condition on the roots of second order equations here. The following proposition gives the values of
the roots of πλh(z) as a function of the parameters ρi and σi.

Proposition 3.1 Given constants 0 < µ ≤ L, a step size h > 0 and a linear two-step method defined
by (ρ, σ), under the conditions

(ρ1 + µhσ1)
2 ≤ 4(ρ0 + µhσ0), (ρ1 + Lhσ1)

2 ≤ 4(ρ0 + Lhσ0), (11)

the roots r±(λ) of πλh, defined in (8), are complex conjugate for any λ ∈ [µ,L]. Moreover, the
largest root modulus is equal to

max
λ∈[µ,L]

|r±(λ)|2 = max {ρ0 + µhσ0, ρ0 + Lhσ0} . (12)

The proof can be found in the Supplementary Material. The next step is to minimize the largest
modulus (12) in the coefficients ρi and σi to get the best rate of convergence, assuming the roots are
complex (the case were the roots are real leads to weaker results).

3.2 Design of a family of two-step methods for quadratics

We now have all ingredients to build a two-step method for which the sequence xk converges quickly
to x∗ for quadratic functions. Optimizing the convergence rate means solving the following problem,

min max {ρ0 + µhσ0, ρ0 + Lhσ0}
s.t. (ρ0, ρ1, σ0, σ1) ∈ L

(ρ1 + µhσ1)
2 ≤ 4(ρ0 + µhσ0)

(ρ1 + Lhσ1)
2 ≤ 4(ρ0 + Lhσ0),

6

in the variables ρ0, ρ1, σ0, σ1, h > 0, where L is defined in (10). If we use the equality constraints
in (10) and make the following change of variables,

ĥ = h(1− ρ0), cµ = ρ0 + µhσ0, cL = ρ0 + Lhσ0, (13)

the problem can be solved, for fixed ĥ, in the variables cµ, cL. In that case, the optimal solution is
given by

c∗µ = (1−
√
µĥ)2, c∗L = (1−

√
Lĥ)2, (14)

obtained by tightening the two first inequalities, for ĥ ∈]0, (1+µ/L)
2

L [. Now if we fix ĥ we can recover
a two step linear method defined by (ρ, σ) and a step size h by using the equations in (13). We define
the following quantity β = (1−

√
µ/L)/(1 +

√
µ/L).

A suboptimal two-step method. Setting ĥ = 1/L for example, the parameters of the correspond-
ing two-step method, called methodM1, are

M1 =

{
ρ(z) = β − (1 + β)z + z2, σ(z) = −β(1− β) + (1− β2)z, h =

1

L(1− β)

}
(15)

and its largest modulus root (12) is given by

rate(M1) =
√
max{cµ, cL} =

√
cµ = 1−

√
µ/L.

Optimal two-step method for quadratics. We can compute the optimal ĥ which minimizes the
maximum of the two roots c∗µ and c∗L defined in (14). The solution simply balances the two terms in
the maximum, with ĥ∗ = (1 + β)2/L. This choice of ĥ leads to the methodM2, described by

M2 =

{
ρ(z) = β2 − (1 + β2)z + z2, σ(z) = (1− β2)z, h =

1√
µL

}
(16)

with convergence rate

rate(M2) =
√
cµ =

√
cL = β = (1−

√
µ/L)/(1 +

√
µ/L) < rate(M1).

We will now see that methodsM1 andM2 are actually related to Nesterov’s accelerated method and
Polyak’s heavy ball algorithms.

4 On the link between integration and optimization

In the previous section, we derived a family of linear multistep methods, parametrized by ĥ. We
will now compare these methods to common optimization algorithms used to minimize L-smooth,
µ-strongly convex functions.

4.1 Polyak’s heavy ball method

The heavy ball method was proposed by Polyak [1964]. It adds a momentum term to the gradient step
xk+2 = xk+1 − c1∇f(xk+1) + c2(xk+1 − xk),

where c1 = 4/(
√
L+
√
µ)2 and c2 = β2. We can organize the terms in the sequence to match the

general structure of linear multistep methods, to get
β2xk − (1 + β2)xk+1 + xk+2 = c1 (−∇f(xk+1)) .

We easily identify ρ(z) = β2−(1+β2)z+z2 and hσ(z) = c1z. To extract h, we will assume that the
method is consistent (see conditions (5)). All computations done, we can identify the corresponding
linear multistep method as

MPolyak =

{
ρ(z) = β2 − (1 + β2)z + 1, σ(z) = (1− β2)z, h =

1√
µL

}
. (17)

This shows thatMPolyak =M2. In fact, this result was expected since Polyak’s method is known
to be optimal for quadratic functions. However, it is also known that Polyak’s algorithm does not
converge for a general smooth and strongly convex function [Lessard et al., 2016].

7

4.2 Nesterov’s accelerated gradient

Nesterov’s accelerated method in its simplest form is described by two sequences xk and yk, with

yk+1 = xk −
1

L
∇f(xk),

xk+1 = yk+1 + β(yk+1 − yk).

As above, we will write Nesterov’s accelerated gradient as a linear multistep method by expanding
yk in the definition of xk, to get

βxk − (1 + β)xk+1 + xk+2 =
1

L
(−β(−∇f(xk)) + (1 + β)(−∇f(xk+1))) .

Again, assuming as above that the method is consistent to extract h, we identify the linear multistep
method associated to Nesterov’s algorithm. After identification,

MNest =

{
ρ(z) = β − (1 + β)z + z2, σ(z) = −β(1− β) + (1− β2)z, h =

1

L(1− β)
,

}
which means thatM1 =MNest.

4.3 The convergence rate of Nesterov’s method

Pushing the analysis a little bit further, we have a simple intuitive argument that explains why
Nesterov’s algorithm is faster than the gradient method. There is of course a complete proof of its
rate of convergence [Nesterov, 2013], even using differential equations arguments [Wibisono et al.,
2016; Wilson et al., 2016], but we take a simpler approach here. The key parameter is the step size h.
If we compare it with the step size in the classical gradient method, Nesterov’s method uses a step
size which is (1− β)−1 ≈

√
L/µ times larger.

Recall that, in continuous time, the rate of convergence of x(t) to x∗ is given by

f(x(t))− f(x∗) ≤ e−2µt(f(x0)− f(x∗)).

The gradient method tries to approximate x(t) using an Euler scheme with step size h = 1/L, which
means x(grad)

k ≈ x(k/L), so

f(x
(grad)
k)− f(x∗) ≈ f(x(k/L))− f(x∗) ≤ (f(x0)− f(x∗))e−2k

µ
L .

However, Nesterov’s method has a step size equal to

hNest =
1

L(1− β)
=

1 +
√
µ/L

2
√
µL

≈ 1√
4µL

which means xnest
k ≈ x

(
k/
√
4µL

)
.

while maintaining stability. In that case, the estimated rate of convergence becomes

f(xnest
k)− f(x∗) ≈ f

(
x
(
k/
√
4µL

))
− f(x∗) ≤ (f(x0)− f(x∗))e−k

√
µ/L,

which is approximatively the rate of convergence of Nesterov’s algorithm in discrete time and we
recover the accelerated rate in

√
µ/L versus µ/L for gradient descent.

Overall, the accelerated method is more efficient because it integrates the gradient flow faster than
simple gradient descent, making longer steps. A numerical simulation in Figure 1 makes this argument
more visual.

5 Generalization and Future Work

We showed that accelerated optimization methods can be seen as multistep integration schemes
applied to the basic gradient flow equation. Our results give a natural interpretation of acceleration:
multistep schemes allow for larger steps, which speeds up convergence. In the Supplementary
Material, we detail further links between integration methods and other well-known optimization
algorithms such as proximal point methods, mirror gradient decent, proximal gradient descent, and

8

5 5.5 6 6.5 7

6

6.5

7

7.5

8

8.5

9
x0

xstar

Exact

Euler

Nesterov

Polyak

5 5.5 6 6.5

6

6.5

7

7.5

8

8.5

9
x0

xstar

Exact

Euler

Nesterov

Polyak

Figure 1: Integration of a linear ODE with optimal (left) and small (right) step sizes.

discuss the weakly convex case. The extra-gradient algorithm and its recent accelerated version Di-
akonikolas and Orecchia [2017] can also be linked to another family of integration methods called
Runge-Kutta which include notably predictor-corrector methods.

Our stability analysis is limited to the quadratic case, the definition of A-stability being too restrictive
for the class of smooth and strongly convex functions. A more appropriate condition would be G-
stability, which extends A-stability to non-linear ODEs, but this condition requires strict monotonicity
of the error (which is not the case with accelerated algorithms). Stability may also be tackled by
recent advances in lower bound theory provided by Taylor [2017] but these yield numerical rather
than analytical convergence bounds. Our next objective is thus to derive a new stability condition in
between A-stability and G-stability.

Acknowledgments

The authors would like to acknowledge support from a starting grant from the European Research
Council (ERC project SIPA), from the European Union’s Seventh Framework Programme (FP7-
PEOPLE-2013-ITN) under grant agreement number 607290 SpaRTaN, an AMX fellowship, as well as
support from the chaire Économie des nouvelles données with the data science joint research initiative
with the fonds AXA pour la recherche and a gift from Société Générale Cross Asset Quantitative
Research.

9

References
Allen Zhu, Z. and Orecchia, L. [2017], Linear coupling: An ultimate unification of gradient and

mirror descent, in ‘Proceedings of the 8th Innovations in Theoretical Computer Science’, ITCS 17.

Beck, A. and Teboulle, M. [2003], ‘Mirror descent and nonlinear projected subgradient methods for
convex optimization’, Operations Research Letters 31(3), 167–175.

Ben-Tal, A. and Nemirovski, A. [2001], Lectures on modern convex optimization: analysis, algo-
rithms, and engineering applications, SIAM.

Bubeck, S., Tat Lee, Y. and Singh, M. [2015], ‘A geometric alternative to nesterov’s accelerated
gradient descent’, ArXiv e-prints .

Diakonikolas, J. and Orecchia, L. [2017], ‘Accelerated extra-gradient descent: A novel accelerated
first-order method’, arXiv preprint arXiv:1706.04680 .

Duchi, J. C., Shalev-Shwartz, S., Singer, Y. and Tewari, A. [2010], Composite objective mirror
descent., in ‘COLT’, pp. 14–26.

Gautschi, W. [2011], Numerical analysis, Springer Science & Business Media.

Krichene, W., Bayen, A. and Bartlett, P. L. [2015], Accelerated mirror descent in continuous and
discrete time, in ‘Advances in neural information processing systems’, pp. 2845–2853.

Lessard, L., Recht, B. and Packard, A. [2016], ‘Analysis and design of optimization algorithms via
integral quadratic constraints’, SIAM Journal on Optimization 26(1), 57–95.

Nesterov, Y. [1983], A method of solving a convex programming problem with convergence rate o
(1/k2), in ‘Soviet Mathematics Doklady’, Vol. 27, pp. 372–376.

Nesterov, Y. [2007], ‘Gradient methods for minimizing composite objective function’.

Nesterov, Y. [2013], Introductory lectures on convex optimization: A basic course, Vol. 87, Springer
Science & Business Media.

Nesterov, Y. [2015], ‘Universal gradient methods for convex optimization problems’, Mathematical
Programming 152(1-2), 381–404.

Polyak, B. T. [1964], ‘Some methods of speeding up the convergence of iteration methods’, USSR
Computational Mathematics and Mathematical Physics 4(5), 1–17.

Su, W., Boyd, S. and Candes, E. [2014], A differential equation for modeling nesterov’s accelerated
gradient method: Theory and insights, in ‘Advances in Neural Information Processing Systems’,
pp. 2510–2518.

Süli, E. and Mayers, D. F. [2003], An introduction to numerical analysis, Cambridge University
Press.

Taylor, A. [2017], Convex Interpolation and Performance Estimation of First-order Methods for
Convex Optimization, PhD thesis, Université catholique de Louvain.

Wibisono, A., Wilson, A. C. and Jordan, M. I. [2016], ‘A variational perspective on accelerated
methods in optimization’, Proceedings of the National Academy of Sciences p. 201614734.

Wilson, A. C., Recht, B. and Jordan, M. I. [2016], ‘A lyapunov analysis of momentum methods in
optimization’, arXiv preprint arXiv:1611.02635 .

10

