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Abstract
We examine a class of embeddings based on structured random matrices with
orthogonal rows which can be applied in many machine learning applications
including dimensionality reduction and kernel approximation. For both the Johnson-
Lindenstrauss transform and the angular kernel, we show that we can select matrices
yielding guaranteed improved performance in accuracy and/or speed compared to
earlier methods. We introduce matrices with complex entries which give significant
further accuracy improvement. We provide geometric and Markov chain-based
perspectives to help understand the benefits, and empirical results which suggest
that the approach is helpful in a wider range of applications.

1 Introduction

Embedding methods play a central role in many machine learning applications by projecting feature
vectors into a new space (often nonlinearly), allowing the original task to be solved more efficiently.
The new space might have more or fewer dimensions depending on the goal. Applications include
the Johnson-Lindenstrauss Transform for dimensionality reduction (JLT, Johnson and Lindenstrauss,
1984) and kernel methods with random feature maps (Rahimi and Recht, 2007). The embedding can
be costly hence many fast methods have been developed, see §1.1 for background and related work.

We present a general class of random embeddings based on particular structured random matrices
with orthogonal rows, which we call random ortho-matrices (ROMs); see §2. We show that ROMs
may be used for the applications above, in each case demonstrating improvements over previous
methods in statistical accuracy (measured by mean squared error, MSE), in computational efficiency
(while providing similar accuracy), or both. We highlight the following contributions:

• In §3: The Orthogonal Johnson-Lindenstrauss Transform (OJLT) for dimensionality reduction.
We prove this has strictly smaller MSE than the previous unstructured JLT mechanisms. Further,
OJLT is as fast as the fastest previous JLT variants (which are structured).

• In §4: Estimators for the angular kernel (Sidorov et al., 2014) which guarantee better MSE. The
angular kernel is important for many applications, including natural language processing (Sidorov
et al., 2014), image analysis (Jégou et al., 2011), speaker representations (Schmidt et al., 2014)
and tf-idf data sets (Sundaram et al., 2013).

• In §5: Two perspectives on the effectiveness of ROMs to help build intuitive understanding.

In §6 we provide empirical results which support our analysis, and show that ROMs are effective for
a still broader set of applications. Full details and proofs of all results are in the Appendix.
∗equal contribution
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1.1 Background and related work

Our ROMs can have two forms (see §2 for details): (i) a Gort is a random Gaussian matrix con-
ditioned on rows being orthogonal; or (ii) an SD-product matrix is formed by multiplying some
number k of SD blocks, each of which is highly structured, typically leading to fast computation
of products. Here S is a particular structured matrix, and D is a random diagonal matrix; see §2
for full details. Our SD block generalizes an HD block, where H is a Hadamard matrix, which
received previous attention. Earlier approaches to embeddings have explored using various structured
matrices, including particular versions of one or other of our two forms, though in different contexts.

For dimensionality reduction, Ailon and Chazelle (2006) used a single HD block as a way to spread
out the mass of a vector over all dimensions before applying a sparse Gaussian matrix. Choromanski
and Sindhwani (2016) also used just one HD block as part of a larger structure. Bojarski et al. (2017)
discussed using k = 3 HD blocks for locality-sensitive hashing methods but gave no concrete results
for their application to dimensionality reduction or kernel approximation. All these works, and other
earlier approaches (Hinrichs and Vybíral, 2011; Vybíral, 2011; Zhang and Cheng, 2013; Le et al.,
2013; Choromanska et al., 2016), provided computational benefits by using structured matrices with
less randomness than unstructured iid Gaussian matrices, but none demonstrated accuracy gains.

Yu et al. (2016) were the first to show that Gort-type matrices can yield improved accuracy, but their
theoretical result applies only asymptotically for many dimensions, only for the Gaussian kernel and
for just one specific orthogonal transformation, which is one instance of the larger class we consider.
Their theoretical result does not yield computational benefits. Yu et al. (2016) did explore using a
number k of HD blocks empirically, observing good computational and statistical performance for
k = 3, but without any theoretical accuracy guarantees. It was left as an open question why matrices
formed by a small number of HD blocks can outperform non-discrete transforms.

In contrast, we are able to prove that ROMs yield improved MSE in several settings and for many of
them for any number of dimensions. In addition, SD-product matrices can deliver computational
speed benefits. We provide initial analysis to understand why k = 3 can outperform the state-of-
the-art, why odd k yields better results than even k, and why higher values of k deliver decreasing
additional benefits (see §3 and §5).

2 The family of Random Ortho-Matrices (ROMs)

Random ortho-matrices (ROMs) are taken from two main classes of distributions defined below that
require the rows of sampled matrices to be orthogonal. A central theme of the paper is that this
orthogonal structure can yield improved statistical performance. We shall use bold uppercase (e.g.
M) to denote matrices and bold lowercase (e.g. x) for vectors.

Gaussian orthogonal matrices. Let G be a random matrix taking values in Rm×n with iid N (0, 1)
elements, which we refer to as an unstructured Gaussian matrix. The first ROM distribution we
consider yields the random matrix Gort, which is defined as a random Rn×n matrix given by first
taking the rows of the matrix to be a uniformly random orthonormal basis, and then independently
scaling each row, so that the rows marginally have multivariate Gaussian N (0, I) distributions. The
random variable Gort can then be extended to non-square matrices by either stacking independent
copies of the Rn×n random matrices, and deleting superfluous rows if necessary. The orthogonality
of the rows of this matrix has been observed to yield improved statistical properties for randomized
algorithms built from the matrix in a variety of applications.

SD-product matrices. Our second class of distributions is motivated by the desire to obtain similar
statistical benefits of orthogonality to Gort, whilst gaining computational efficiency by employing
more structured matrices. We call this second class SD-product matrices. These take the more
structured form

∏k
i=1 SDi, where S = {si,j} ∈ Rn×n has orthogonal rows, |si,j | = 1√

n
∀i, j ∈

{1, . . . , n}; and the (Di)
k
i=1 are independent diagonal matrices described below. By

∏k
i=1 SDi, we

mean the matrix product (SDk) . . . (SD1). This class includes as particular cases several recently
introduced random matrices (e.g. Andoni et al., 2015; Yu et al., 2016), where good empirical
performance was observed. We go further to establish strong theoretical guarantees, see §3 and §4.
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A prominent example of an S matrix is the normalized Hadamard matrix H, defined recursively by

H1 = (1), and then for i > 1, Hi = 1√
2

(
Hi−1 Hi−1

Hi−1 −Hi−1

)
. Importantly, matrix-vector products

with H are computable in O(n log n) time via the fast Walsh-Hadamard transform, yielding large
computational savings. In addition, H matrices enable a significant space advantage: since the
fast Walsh-Hadamard transform can be computed without explicitly storing H, only O(n) space is
required to store the diagonal elements of (Di)

k
i=1. Note that these Hn matrices are defined only for

n a power of 2, but if needed, one can always adjust data by padding with 0s to enable the use of ‘the
next larger’ H, doubling the number of dimensions in the worst case.

Matrices H are representatives of a much larger family in S which also attains computational savings.
These are L2-normalized versions of Kronecker-product matrices of the form A1 ⊗ ...⊗Al ∈ Rn×n
for l ∈ N, where ⊗ stands for a Kronecker product and blocks Ai ∈ Rd×d have entries of the
same magnitude and pairwise orthogonal rows each. For these matrices, matrix-vector products are
computable in O(n(2d− 1) logd(n)) time (Zhang et al., 2015).

S includes also the Walsh matrices W = {wi,j} ∈ Rn×n, where wi,j = 1√
n

(−1)iN−1j0+...+i0jN−1

and iN−1...i0, jN−1...j0 are binary representations of i and j respectively.

For diagonal (Di)
k
i=1, we mainly consider Rademacher entries leading to the following matrices.

Definition 2.1. The S-Rademacher random matrix with k ∈ N blocks is below, where (D
(R)
i )ki=1

are diagonal with iid Rademacher random variables [i.e. Unif({±1})] on the diagonals:

M
(k)
SR =

k∏
i=1

SD
(R)
i . (1)

Having established the two classes of ROMs, we next apply them to dimensionality reduction.

3 The Orthogonal Johnson-Lindenstrauss Transform (OJLT)

Let X ⊂ Rn be a dataset of n-dimensional real vectors. The goal of dimensionality reduction via
random projections is to transform linearly each x ∈ X by a random mapping x

F7→ x′, where:
F : Rn → Rm for m < n, such that for any x,y ∈ X the following holds: (x′)>y′ ≈ x>y. If
we furthermore have E[(x′)>y′] = x>y then the dot-product estimator is unbiased. In particular,
this dimensionality reduction mechanism should in expectation preserve information about vectors’
norms, i.e. we should have: E[‖x′‖22] = ‖x‖22 for any x ∈ X .

The standard JLT mechanism uses the randomized linear map F = 1√
m
G, where G ∈ Rm×n is as

in §2, requiring mn multiplications to evaluate. Several fast variants (FJLTs) have been proposed by
replacing G with random structured matrices, such as sparse or circulant Gaussian matrices (Ailon
and Chazelle, 2006; Hinrichs and Vybíral, 2011; Vybíral, 2011; Zhang and Cheng, 2013). The fastest
of these variants has O(n log n) time complexity, but at a cost of higher MSE for dot-products.

Our Orthogonal Johnson-Lindenstrauss Transform (OJLT) is obtained by replacing the unstructured
random matrix G with a sub-sampled ROM from §2: either Gort, or a sub-sampled version M

(k),sub
SR

of the S-Rademacher ROM, given by sub-sampling rows from the left-most S matrix in the product.
We sub-sample since m < n. We typically assume uniform sub-sampling without replacement. The
resulting dot-product estimators for vectors x,y ∈ X are given by:

K̂base
m (x,y) =

1

m
(Gx)>(Gy) [unstructured iid baseline, previous state-of-the-art accuracy],

K̂ort
m (x,y) =

1

m
(Gortx)>(Gorty), K̂(k)

m (x,y) =
1

m

(
M

(k),sub
SR x

)> (
M

(k),sub
SR y

)
. (2)

We contribute the following closed-form expressions, which exactly quantify the mean-squared error
(MSE) for these three estimators. Precisely, the MSE of an estimator K̂(x,y) of the inner product
〈x,y〉 for x,y ∈ X is defined to be MSE(K̂(x,y)) = E

[
(K̂(x,y)− 〈x,y〉2)

]
. See the Appendix

for detailed proofs of these results and all others in this paper.
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Lemma 3.1. The MSE of the unstructured JLT dot-product estimator K̂base
m of x,y ∈ Rn using m-

dimensional random feature maps is unbiased, with MSE(K̂base
m (x,y)) = 1

m ((x>y)2 +‖x‖22‖y‖22).

Theorem 3.2. The estimator K̂ort
m is unbiased and satisfies, for n ≥ 4:

MSE(K̂ort
m (x,y))

=MSE(K̂base
m (x,y)) +

m

m− 1

[
‖x‖22‖y‖22n2

4I(n− 3)I(n− 4)

((
1

n
− 1

n+ 2

)
(I(n− 3)− I(n− 1))I(n− 4)

[
cos2(θ) +

1

2

]
+

I(n− 1) (I(n− 4)− I(n− 2))

(
1

n− 2
− 1

n

)[
cos2(θ)− 1

2

])
− 〈x,y〉2

]
,

(3)

where I(n) =
∫ π

0
sinn(x)dx =

√
πΓ((n+1)/2)
Γ(n/2+1) .

Theorem 3.3 (Key result). The OJLT estimator K̂(k)
m (x,y) with k blocks, using m-dimensional

random feature maps and uniform sub-sampling policy without replacement, is unbiased with

MSE(K̂(k)
m (x,y))=

1

m

(
n−m
n− 1

)(
((x>y)2 + ‖x‖2‖y‖2) + (4)

k−1∑
r=1

(−1)r2r

nr
(2(x>y)2 + ‖x‖2‖y‖2) +

(−1)k2k

nk−1

n∑
i=1

x2
i y

2
i

)
.

Proof (Sketch). For k = 1, the random projection matrix is given by sub-sampling rows from SD1,
and the computation can be carried out directly. For k ≥ 1, the proof proceeds by induction.
The random projection matrix in the general case is given by sub-sampling rows of the matrix
SDk · · ·SD1. By writing the MSE as an expectation and using the law of conditional expectations
conditioning on the value of the first k − 1 random matrices Dk−1, . . . ,D1, the statement of the
theorem for 1 SD block and for k − 1 SD blocks can be neatly combined to yield the result.

To our knowledge, it has not previously been possible to provide theoretical guarantees that
SD-product matrices outperform iid matrices. Combining Lemma 3.1 with Theorem 3.3 yields the
following important result.

Corollary 3.4 (Theoretical guarantee of improved performance). Estimators K̂(k)
m (subsampling

without replacement) yield guaranteed lower MSE than K̂base
m .

It is not yet clear when K̂ort
m is better or worse than K̂

(k)
m ; we explore this empirically in §6.

Theorem 3.3 shows that there are diminishing MSE benefits to using a large number k of SD

blocks. Interestingly, odd k is better than even: it is easy to observe that MSE(K̂
(2k−1)
m (x,y)) <

MSE(K̂
(2k)
m (x,y)) > MSE(K̂

(2k+1)
m (x,y)). These observations, and those in §5, help to under-

stand why empirically k = 3 was previously observed to work well (Yu et al., 2016).

If we take S to be a normalized Hadamard matrix H, then even though we are using sub-sampling,
and hence the full computational benefits of the Walsh-Hadamard transform are not available, still
K̂

(k)
m achieves improved MSE compared to the base method with less computational effort, as follows.

Lemma 3.5. There exists an algorithm (see Appendix for details) which computes an embedding for
a given datapoint x using K̂(k)

m with S set to H and uniform sub-sampling policy in expected time
min{O((k − 1)n log(n) + nm− (m−1)m

2 , kn log(n)}.
Note that for m = ω(k log(n)) or if k = 1, the time complexity is smaller than the brute force
Θ(nm). The algorithm uses a simple observation that one can reuse calculations conducted for the
upper half of the Hadamard matrix while performing computations involving rows from its other half,
instead of running these calculations from scratch (details in the Appendix).

An alternative to sampling without replacement is deterministically to choose the first m rows. In our
experiments in §6, these two approaches yield the same empirical performance, though we expect
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that the deterministic method could perform poorly on adversarially chosen data. The first m rows
approach can be realized in time O(n log(m) + (k − 1)n log(n)) per datapoint.

Theorem 3.3 is a key result in this paper, demonstrating that SD-product matrices yield both statistical
and computational improvements compared to the base iid procedure, which is widely used in practice.
We next show how to obtain further gains in accuracy.

3.1 Complex variants of the OJLT

We show that the MSE benefits of Theorem 3.3 may be markedly improved by using SD-product
matrices with complex entries M(k)

SH. Specifically, we consider the variant S-Hybrid random matrix
below, where D

(U)
k is a diagonal matrix with iid Unif(S1) random variables on the diagonal, inde-

pendent of (D
(R)
i )k−1

i=1 , and S1 is the unit circle of C. We use the real part of the Hermitian product
between projections as a dot-product estimator; recalling the definitions of §2, we use:

M
(k)
SH = SD

(U)
k

k−1∏
i=1

SD
(R)
i , K̂H,(k)

m (x,y) =
1

m
Re

[(
M

(k),sub
SH x

)> (
M

(k),sub
SH y

)]
. (5)

Remarkably, this complex variant yields exactly half the MSE of the OJLT estimator.

Theorem 3.6. The estimator K̂H,(k)
m (x,y), applying uniform sub-sampling without replacement, is

unbiased and satisfies: MSE(K̂
H,(k)
m (x,y)) = 1

2MSE(K̂
(k)
m (x,y)).

This large factor of 2 improvement could instead be obtained by doubling m for K̂(k)
m . However,

this would require doubling the number of parameters for the transform, whereas the S-Hybrid
estimator requires additional storage only for the complex parameters in the matrix D

(U)
k . Strikingly,

it is straightforward to extend the proof of Theorem 3.6 (see Appendix) to show that rather than
taking the complex random variables in M

(k),sub
SH to be Unif(S1), it is possible to take them to be

Unif({1,−1, i,−i}) and still obtain exactly the same benefit in MSE.

Theorem 3.7. For the estimator K̂H,(k)
m defined in Equation (5): replacing the random matrix D

(U)
k

(which has iid Unif(S1) elements on the diagonal) with instead a random diagonal matrix having iid
Unif({1,−1, i,−i}) elements on the diagonal, does not affect the MSE of the estimator.

It is natural to wonder if using an SD-product matrix with more complex random variables (for all
SD blocks) would improve performance still further. However, interestingly, this appears not to be
the case; details are provided in the Appendix §8.7.

3.2 Sub-sampling with replacement

Our results above focus on SD-product matrices where rows have been sub-sampled without
replacement. Sometimes (e.g. for parallelization) it can be convenient instead to sub-sample with
replacement. As might be expected, this leads to worse MSE, which we can quantify precisely.

Theorem 3.8. For each of the estimators K̂(k)
m and K̂H,(k)

m , if uniform sub-sampling with (rather
than without) replacement is used then the MSE is worsened by a multiplicative constant of n−1

n−m .

4 Kernel methods with ROMs

ROMs can also be used to construct high-quality random feature maps for non-linear kernel
approximation. We analyze here the angular kernel, an important example of a Pointwise Nonlinear
Gaussian kernel (PNG), discussed in more detail at the end of this section.

Definition 4.1. The angular kernel Kang is defined on Rn by Kang(x,y) = 1− 2θx,y

π , where θx,y
is the angle between x and y.
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To employ random feature style approximations to this kernel, we first observe it may be rewritten as

Kang(x,y) = E [sign(Gx)sign(Gy)] ,

where G ∈ R1×n is an unstructured isotropic Gaussian vector. This motivates approximations of the
form:

K̂angm(x,y) =
1

m
sign(Mx)>sign(My), (6)

where M ∈ Rm×n is a random matrix, and the sign function is applied coordinate-wise. Such
kernel estimation procedures are heavily used in practice (Rahimi and Recht, 2007), as they allow
fast approximate linear methods to be used (Joachims, 2006) for inference tasks. If M = G, the
unstructured Gaussian matrix, then we obtain the standard random feature estimator. We shall contrast
this approach against the use of matrices from the ROMs family.

When constructing random feature maps for kernels, very often m > n. In this case, our structured
mechanism can be applied by concatenating some number of independent structured blocks. Our
theoretical guarantees will be given just for one block, but can easily be extended to a larger number
of blocks since different blocks are independent.

The standard random feature approximation K̂ang,base
m for approximating the angular kernel is

defined by taking M to be G, the unstructured Gaussian matrix, in Equation (6), and satisfies the
following.

Lemma 4.2. The estimator K̂ang,base
m is unbiased and MSE(K̂ang,base

m (x,y)) =
4θx,y(π−θx,y)

mπ2 .

The MSE of an estimator K̂ang(x,y) of the true angular kernel Kang(x,y) is defined analogously
to the MSE of an estimator of the dot product, given in §3. Our main result regarding angular kernels
states that if we instead take M = Gort in Equation (6), then we obtain an estimator K̂ang,ort

m with
strictly smaller MSE, as follows.

Theorem 4.3. Estimator K̂ang,ort
m is unbiased and satisfies:

MSE(K̂ang,ort
m (x,y)) < MSE(K̂ang,base

m (x,y)).

We also derive a formula for the MSE of an estimator K̂ang,M
m of the angular kernel which replaces G

with an arbitrary random matrix M and uses m random feature maps. The formula is helpful to see
how the quality of the estimator depends on the probabilities that the projections of the rows of M are
contained in some particular convex regions of the 2-dimensional space Lx,y spanned by datapoints
x and y. For an illustration of the geometric definitions introduced in this Section, see Figure 1. The
formula depends on probabilities involving events Ai = {sgn((ri)Tx) 6= sgn((ri)Ty)}, where
ri stands for the ith row of the structured matrix. Notice that Ai = {riproj ∈ Cx,y}, where riproj
stands for the projection of ri into Lx,y and Cx,y is the union of two cones in Lx,y, each of angle θx,y.

Theorem 4.4. Estimator K̂ang,M
m satisfies the following, where: δi,j = P[Ai ∩ Aj ]− P[Ai]P[Aj ]:

MSE(K̂ang,M
m (x,y)) =

1

m2

[
m−

m∑
i=1

(1− 2P[Ai])2

]
+

4

m2

 m∑
i=1

(P[Ai]− θx,y
π

)2 +
∑
i 6=j

δi,j

 .
Note that probabilities P[Ai] and δi,j depend on the choice of M. It is easy to prove that for
unstructured G and Gort we have: P[Ai] =

θx,y

π . Further, from the independence of the rows of
G, δi,j = 0 for i 6= j. For unstructured G we obtain Lemma 4.2. Interestingly, we see that to
prove Theorem 4.3, it suffices to show δi,j < 0, which is the approach we take (see Appendix). If
we replace G with M

(k)
SR, then the expression ε = P[Ai] − θx,y

π does not depend on i. Hence, the
angular kernel estimator based on Hadamard matrices gives smaller MSE estimator if and only if∑
i 6=j δi,j +mε2 < 0. It is not yet clear if this holds in general.

As alluded to at the beginning of this section, the angular kernel may be viewed as a member of a wie
family of kernels known as Pointwise Nonlinear Gaussian kernels.
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Figure 1: Left part: Left: g1 is orthogonal to Lx,y. Middle: g1 ∈ Lx,y. Right: g1 is close to orthogonal to
Lx,y. Right part: Visualization of the Cayley graph explored by the Hadamard-Rademacher process in two
dimensions. Nodes are colored red, yellow, light blue, dark blue, for Cayley distances of 0, 1, 2, 3 from the
identity matrix respectively. See text in §5.

Definition 4.5. For a given function f , the Pointwise Nonlinear Gaussian kernel (PNG) Kf is
defined by Kf (x,y) = E

[
f(gTx)f(gTy)

]
, where g is a Gaussian vector with i.i.d N (0, 1) entries.

Many prominent examples of kernels (Williams, 1998; Cho and Saul, 2009) are PNGs. Wiener’s
tauberian theorem shows that all stationary kernels may be approximated arbitrarily well by sums of
PNGs (Samo and Roberts, 2015). In future work we hope to explore whether ROMs can be used to
achieve statistical benefit in estimation tasks associated with a wider range of PNGs.

5 Understanding the effectiveness of orthogonality

Here we build intuitive understanding for the effectiveness of ROMs. We examine geometrically the
angular kernel (see §4), then discuss a connection to random walks over orthogonal matrices.

Angular kernel. As noted above for the Gort-mechanism, smaller MSE than that for unstructured
G is implied by the inequality P[Ai ∩Aj ] < P[Ai]P[Aj ], which is equivalent to: P[Aj |Ai] < P[Aj ].
Now it becomes clear why orthogonality is crucial. Without loss of generality take: i = 1, j = 2, and
let g1 and g2 be the first two rows of Gort.

Consider first the extreme case (middle of left part of Figure 1), where all vectors are 2-dimensional.
Recall definitions from just after Theorem 4.3. If g1 is in Cx,y then it is much less probable for
g2 also to belong to Cx,y. In particular, if θ < π

2 then the probability is zero. That implies the
inequality. On the other hand, if g1 is perpendicular to Lx,y then conditioning on Ai does not have
any effect on the probability that g2 belongs to Cx,y (left subfigure of Figure 1). In practice, with high
probability the angle φ between g1 and Lx,y is close to π

2 , but is not exactly π
2 . That again implies

that conditioned on the projection g1
p of g1 into Lx,y to be in Cx,y, the more probable directions of

g2
p are perpendicular to g1

p (see: ellipsoid-like shape in the right subfigure of Figure 1 which is the
projection of the sphere taken from the (n− 1)-dimensional space orthogonal to g1 into Lx,y). This
makes it less probable for g2

p to be also in Cx,y. The effect is subtle since φ ≈ π
2 , but this is what

provides superiority of the orthogonal transformations over state-of-the-art ones in the angular kernel
approximation setting.

Markov chain perspective. We focus on Hadamard-Rademacher random matrices HDk...HD1,
a special case of the SD-product matrices described in Section 2. Our aim is to provide intuition
for how the choice of k affects the quality of the random matrix, following our earlier observations
just after Corollary 3.4, which indicated that for SD-product matrices, odd values of k yield greater
benefits than even values, and that there are diminishing benefits from higher values of k. We proceed
by casting the random matrices into the framework of Markov chains.

Definition 5.1. The Hadamard-Rademacher process in n dimensions is the Markov chain (Xk)∞k=0
taking values in the orthogonal group O(n), with X0 = I almost surely, and Xk = HDkXk−1

almost surely, where H is the normalized Hadamard matrix in n dimensions, and (Dk)∞k=1 are iid
diagonal matrices with independent Rademacher random variables on their diagonals.

Constructing an estimator based on Hadamard-Rademacher matrices is equivalent to simulating
several time steps from the Hadamard-Rademacher process. The quality of estimators based on
Hadamard-Rademacher random matrices comes from a quick mixing property of the corresponding
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(a) g50c - pointwise evalu-
ation MSE for inner product
estimation

(b) random - angular kernel (c) random - angular kernel
with true angle π/4

(d) g50c - inner product es-
timation MSE for variants of
3-block SD-product matri-
ces.

(e) LETTER - dot-product (f) USPS - dot-product (g) LETTER - angular kernel (h) USPS - angular kernel

Figure 2: Top row: MSE curves for pointwise approximation of inner product and angular kernels on the
g50c dataset, and randomly chosen vectors. Bottom row: Gram matrix approximation error for a variety of
data sets, projection ranks, transforms, and kernels. Note that the error scaling is dependent on the application.

Markov chain. The following demonstrates attractive properties of the chain in low dimensions.

Proposition 5.2. The Hadamard-Rademacher process in two dimensions: explores a state-space of
16 orthogonal matrices, is ergodic with respect to the uniform distribution on this set, has period 2,
the diameter of the Cayley graph of its state space is 3, and the chain is fully mixed after 3 time steps.

This proposition, and the Cayley graph corresponding to the Markov chain’s state space (Figure 1
right), illustrate the fast mixing properties of the Hadamard-Rademacher process in low dimensions;
this agrees with the observations in §3 that there are diminishing returns associated with using a large
number k of HD blocks in an estimator. The observation in Proposition 5.2 that the Markov chain
has period 2 indicates that we should expect different behavior for estimators based on odd and even
numbers of blocks of HD matrices, which is reflected in the analytic expressions for MSE derived in
Theorems 3.3 and 3.6 for the dimensionality reduction setup.

6 Experiments

We present comparisons of estimators introduced in §3 and §4, illustrating our theoretical results, and
further demonstrating the empirical success of ROM-based estimators at the level of Gram matrix
approximation. We compare estimators based on: unstructured Gaussian matrices G, matrices Gort,
S-Rademacher and S-Hybrid matrices with k = 3 and different sub-sampling strategies. Results
for k > 3 do not show additional statistical gains empirically. Additional experimental results,
including a comparison of estimators using different numbers of SD blocks, are in the Appendix §10.
Throughout, we use the normalized Hadamard matrix H for the structured matrix S.

6.1 Pointwise kernel approximation

Complementing the theoretical results of §3 and §4, we provide several salient comparisons of the
various methods introduced - see Figure 2 top. Plots presented here (and in the Appendix) compare
MSE for dot-product and angular and kernel. They show that estimators based on Gort, S-Hybrid
and S-Rademacher matrices without replacement, or using the first m rows, beat the state-of-the-art
unstructured G approach on accuracy for all our different datasets in the JLT setup. Interestingly, the
latter two approaches give also smaller MSE than Gort-estimators. For angular kernel estimation,
where sampling is not relevant, we see that Gort and S-Rademacher approaches again outperform
the ones based on matrices G.
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6.2 Gram matrix approximation

Moving beyond the theoretical guarantees established in §3 and §4, we show empirically that the
superiority of estimators based on ROMs is maintained at the level of Gram matrix approximation.
We compute Gram matrix approximations (with respect to both standard dot-product, and angular
kernel) for a variety of datasets. We use the normalized Frobenius norm error ‖K− K̂‖2/‖K‖2
as our metric (as used by Choromanski and Sindhwani, 2016), and plot the mean error based on
1,000 repetitions of each random transform - see Figure 2 bottom. The Gram matrices are computed
on a randomly selected subset of 550 data points from each dataset. As can be seen, the S-Hybrid
estimators using the “no-replacement” or “first m rows” sub-sampling strategies outperform even
the orthogonal Gaussian ones in the dot-product case. For the angular case, the Gort-approach and
S-Rademacher approach are practically indistinguishable.

7 Conclusion

We defined the family of random ortho-matrices (ROMs). This contains the SD-product matrices,
which include a number of recently proposed structured random matrices. We showed theoretically
and empirically that ROMs have strong statistical and computational properties (in several cases
outperforming previous state-of-the-art) for algorithms performing dimensionality reduction and
random feature approximations of kernels. We highlight Corollary 3.4, which provides a theoretical
guarantee that SD-product matrices yield better accuracy than iid matrices in an important dimension-
ality reduction application (we believe the first result of this kind). Intriguingly, for dimensionality
reduction, using just one complex structured matrix yields random features of much better quality.
We provided perspectives to help understand the benefits of ROMs, and to help explain the behavior
of SD-product matrices for various numbers of blocks. Our empirical findings suggest that our
theoretical results might be further strengthened, particularly in the kernel setting.
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