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Abstract

Ordinal regression seeks class label predictions when the penalty incurred for
mistakes increases according to an ordering over the labels. The absolute error
is a canonical example. Many existing methods for this task reduce to binary
classification problems and employ surrogate losses, such as the hinge loss. We
instead derive uniquely defined surrogate ordinal regression loss functions by
seeking the predictor that is robust to the worst-case approximations of training
data labels, subject to matching certain provided training data statistics. We
demonstrate the advantages of our approach over other surrogate losses based on
hinge loss approximations using UCI ordinal prediction tasks.

1 Introduction

For many classification tasks, the discrete class labels being predicted have an inherent order (e.g.,
poor, fair, good, very good, and excellent labels). Confusing two classes that are distant from one
another (e.g., poor instead of excellent) is more detrimental than confusing two classes that are nearby.
The absolute error, |§ — y| between label prediction (§ € ) and actual label (y € )) is a canonical
ordinal regression loss function. The ordinal regression task seeks class label predictions for new
datapoints that minimize losses of this kind.

Many prevalent methods reduce the ordinal regression task to subtasks solved using existing super-
vised learning techniques. Some view the task from the regression perspective and learn both a linear
regression function and a set of thresholds that define class boundaries [1H5]. Other methods take a
classification perspective and use tools from cost-sensitive classification [658]]. However, since the
absolute error of a predictor on training data is typically a non-convex (and non-continuous) function
of the predictor’s parameters for each of these formulations, surrogate losses that approximate the
absolute error must be optimized instead. Under both perspectives, surrogate losses for ordinal regres-
sion are constructed by transforming the surrogate losses for binary zero-one loss problems—such as
the hinge loss, the logistic loss, and the exponential loss—to take into account the different penalties
of the ordinal regression problem. Empirical evaluations have compared the appropriateness of
different surrogate losses, but these still leave the possibility of undiscovered surrogates that align
better with the ordinal regression loss.

To address these limitations, we seek the most robust [9] ordinal regression predictions by focusing
on the following adversarial formulation of the ordinal regression task: what predictor best minimizes
absolute error in the worst case given partial knowledge of the conditional label distribution? We
answer this question by considering the Nash equilibrium for a game defined by combining the loss
function with Lagrangian potential functions [10]]. We derive a surrogate loss function for empirical
risk minimization that realizes this same adversarial predictor. We show that different types of
available knowledge about the conditional label distribution lead to thresholded regression-based
predictions or classification-based predictions. In both cases, the surrogate loss is novel compared to
existing surrogate losses. We also show that our surrogate losses enjoy Fisher consistency, a desirable
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theoretical property guaranteeing that minimizing the surrogate loss produces Bayes optimal decisions
for the original loss in the limit. We develop two different approaches for optimizing the loss: a
stochastic optimization of the primal objective and a quadratic program formulation of the dual
objective. The second approach enables us to efficiently employ the kernel trick to provide a richer
feature representation without an overly burdensome time complexity. We demonstrate the benefits
of our adversarial formulation over previous ordinal regression methods based on hinge loss for a
range of prediction tasks using UCI datasets.

2 Background and Related Work

2.1 Ordinal Regression Problems

Ordinal regression is a discrete label prediction problem characterized by Table 1: Ordinal re-
an ordered penalty for making mistakes: loss(§1,y) < loss(f2,y) if ¥ < gression loss matrix.
Y1 < Yo ory > 91 > 2. Though many loss functions possess this property,

the absolute error |j — y| is the most widely studied. We similarly restrict 0 123

. . : A ) 1 0 1 2
our consideration to this loss function in this paper. The full loss matrix 9 1 0 1
L for absolute error with four labels is shown in Table [I} The expected 392 1 0

loss incurred using a probabilistic predictor ]3(@|x) evaluated on true data

distribution P(x,y) is: Ex y _p.yixplly y] = Dx 5 P y)P(§|x)Ly,,. The supervised

learning objective for this problem setting is to construct a probabilistic predictor 15(;9|x) in a way
that minimizes this expected loss using training samples distributed according to the empirical
distribution P(x,y), which are drawn from the unknown true data generating distribution, P(x, y).

A naive ordinal regression approach relaxes the task to a continuous prediction problem, minimizes
the least absolute deviation [11]], and then rounds predictions to nearest integral label [12]. More
sophisticated methods range from using a cumulative link model [13]] that assumes the cumulative
conditional probability P(Y < j|x) follows a link function, to Bayesian non-parametric approaches
[14] and many others [[15H22]. We narrow our focus over this broad range of methods found in the
related work to those that can be viewed as empirical risk minimization methods with piece-wise
convex surrogates, which are more closely related to our approach.

2.2 Threshold Methods for Ordinal Regression

Threshold methods are one popular family of techniques that treat the ordinal response variable,
f £ w - x, as a continuous real-valued variable and introduce |)/| — 1 thresholds 61, 65, ..., 0)y)-1
that partition the real line into || segments: )y = —oco < 01 < by < ... < O)y|_1 < Oy = 00

[4]. Each segment corresponds to a label with §; assigned label j if 0;_; < f < §;. There are two
different approaches for constructing surrogate losses based on the threshold methods to optimize the
choice of w and 61, ..., 6|y_1: one is based on penalizing all thresholds involved when a mistake is
made and one is based on only penalizing the most immediate thresholds.

All thresholds methods penalize every erroneous threshold using a surrogate loss, 9, for sets of binary

classification problems: lossar(f,y) = S2Y_1 6(—(0x — f)) + Z‘k);ly 8(0x — f). Shashua and Levin
[1]] studied the hinge loss under the name of support vector machines with a sum-of margin strategy,
while Chu and Keerthi [2] proposed a similar approach under the name of support vector ordinal
regression with implicit constraints (SVORIM). Lin and Li 3] proposed ordinal regression boosting,
an all thresholds method using the exponential loss as a surrogate. Finally, Rennie and Srebro [4]
proposed a unifying approach for all threshold methods under a variety of surrogate losses.

Rather than penalizing all erroneous thresholds when an error is made, immediate thresholds methods
only penalize the threshold of the true label and the threshold immediately beneath the true label:
lossir(f,y) = 0(—(0y—1—f))+(0,— f )EI Similar to the all thresholds methods, immediate thresh-
old methods have also been studied in the literature under different names. For hinge loss surrogates,
Shashua and Levin [1]] called the model support vector with fixed-margin strategy while Chu and
Keerthi [2] use the term support vector ordinal regression with explicit constraints (SVOREX). For

'For the boundary labels, the method defines §(—(6p — f)) = §(Oy+1 — f) =0.



the exponential loss, Lin and Li [3] introduced ordinal regression boosting with left-right margins.
Rennie and Srebro [4] also proposed a unifying framework for immediate threshold methods.

2.3 Reduction Framework from Ordinal Regression to Binary Classification

Li and Lin [3] proposed a reduction framework to convert ordinal regression problems to binary
classification problems by extending training examples. For each training sample (x, y), the reduction
framework creates || — 1 extended samples (x/), y(/)) and assigns weight w,, ; to each extended
sample. The binary label associated with the extended sample is equivalent to the answer of the
question: “is the rank of x greater than j?” The reduction framework allows a choice for how extended
samples x/) are constructed from original samples x and how to perform binary classification. If
the threshold method is used to construct the extended sample and SVM is used as the binary
classification algorithm, the classifier can be obtained by solving a family of quadratic optimization
problems that includes SVORIM and SVOREX as special instances.

2.4 Cost-sensitive Classification Methods for Ordinal Regression

Rather than using thresholding or the reduction framework, ordinal regression can also be cast as a
special case of cost-sensitive multiclass classification. Two of the most popular classification-based
ordinal regression techniques are extensions of one-versus-one (OVO) and one-versus-all (OVA) cost-
sensitive classification [6, [7]. Both algorithms leverage a transformation that converts a cost-sensitive
classification problem to a set of weighted binary classification problems. Rather than reducing
to binary classification, Tu and Lin [8] reduce cost-sensitive classification to one-sided regression
(OSR), which can be viewed as an extension of the one-versus-all (OVA) technique.

2.5 Adversarial Prediction

Foundational results establish a duality between adversarial logarithmic loss minimization and
constrained maximization of the entropy [23]]. This takes the form of a zero-sum game between
a predictor seeking to minimize expected logarithmic loss and an adversary seeking to maximize
this same loss. Additionally, the adversary is constrained to choose a distribution that matches
certain sample statistics. Ultimately, through the duality to maximum entropy, this is equivalent
to maximum likelihood estimation of probability distributions that are members of the exponential
family [23]. Griinwald and Dawid [9] emphasize this formulation as a justification for the principle of
maximum entropy [24]] and generalize the adversarial formulation to other loss functions. Extensions
to multivariate performance measures [25]] and non-IID settings [26] have demonstrated the versatility
of this perspective.

Recent analysis [27, 28] has shown that for the special case of zero-one loss classification, this
adversarial formulation is equivalent to empirical risk minimization with a surrogate loss function:

ALY (xi, i) = m D (W (i) + 18| = 1)/IS], (1)

ax
SC{1,...
C{L V1}570 £

where v, .., (x;) is the potential difference ¢, ,, (x;) = f;(x;) — fy, (x:). This surrogate loss function
provides a key theoretical advantage compared to the Crammer-Singer hinge loss surrogate for
multiclass classification [29]: it guarantees Fisher consistency [27] while Crammer-Singer—despite
its popularity in many applications, such as Structured SVM [30} [31]—does not [32,133]. We extend
this type of analysis to the ordinal regression setting with the absolute error as the loss function in
this paper, producing novel surrogate loss functions that provide better predictions than other convex,
piece-wise linear surrogates.

3 Adversarial Ordinal Regression

3.1 Formulation as a zero-sum game

We seek the ordinal regression predictor that is the most robust to uncertainty given partial knowledge
of the evaluating distribution’s characteristics. This takes the form of a zero-sum game between a

predictor player choosing a predicted label distribution P (¢|x) that minimizes loss and an adversarial



player choosing an evaluation distribution P(j|x) that maximizes loss while closely matching the
feature-based statistics of the training data:

min - max By poix pyixp HY/ - YH such that: Ex _p.yxp[¢(X,Y)] = ¢.
P(glx) P(glx)

2
The vector of feature moments, ¢ = Ex y.pl®(X,Y)], is measured from sample training data
distributed according to the empirical distribution P(x, ).

An ordinal regression problem can be viewed as a cost-sensitive loss with the entries of the cost
matrix defined by the absolute loss between the row and column labels (an example of the cost
matrix for the case of a problem with four labels is shown in Table[I)). Following the construction of

adversarial prediction games for cost-sensitive classification [[10], the optimization of Eq. (2)) reduces
to minimizing the equilibrium game values of a new set of zero-sum games characterized by matrix
/ .

Xi,W*

Zero-sum game f fl } fyl ?y\ - ;yi =+ Iyl -1
1— Jy +1 y = fo. H1YV] =2
mlnz max mln IA)):,; L;cl pri; L;c w ~y > ’ : ’ (3)
W Px; P ’ v : :
fi=fy +1YI -1 fyr = fu

convex optimization of w

where: w represents a vector of Lagrangian model parameters; f; = w - ¢(x;, j) is a Lagrangian
potential; Py, is a vector representation of the conditional label distribution, 15(17 = jlx;), i.e.,
Px, = [P(Y = 1]x;) P(Y = 2|x;) ...]T; and Py, is similarly defined. The matrix L w =
(|9 — 9| + fg — fy.) is a zero-sum game matrix for each example. This optimization problem (Eq. (3)))
is convex in w and the inner zero-sum game can be solved using a linear program [[10]]. To address
finite sample estimation errors, the difference between expected and sample feature can be bounded

in Eq. @), ||]EX~P;Y\X~P[¢(Xa Y)] - q~5|| < ¢, leading to Lagrangian parameter regularization in
Eq. @) [34].

3.2 Feature representations

We consider two feature representations corresponding to different training data summaries:

yx I(ly=1)x
Ily<1) Iy =2)x
Pun(x,y) = Hy<2) sand  dne(x,y) = | T =3)x )
Iy <[V -1) Iy = [Y])x
The first, which we call the thresholded regression representation, A
has size m+|Y| — 1, where m is the dimension of our input space. It ® _©
induces a single shared vector of feature weights and a set of thresh- ® @ @
olds. If we denote the weight vector associated with the yx term as ©
w and the terms associated with each sum of class indicator func- @ ©
tions as 6y, 05, ..., 0|y‘_1, then thresholds for switching between @
class j and j + 1 (ignoring other classes) occur when w - x; = 0;. ° @
®
The second feature representation, ¢,,., which we call the multi- o @
class representation, has size m|)| and can be equivalently inter- ®
preted as inducing a set of class-specific feature weights, f; = w;-x;.
This feature representation is useful when ordered labels cannot be >

thresholded according to any single direction in the input space, as
shown in the example dataset of Figure

Figure 1: Example where mul-
tiple weight vectors are useful.



3.3 Adversarial Loss from the Nash Equilibrium
We now present the main technical contribution of our paper: a surrogate loss function that, when
minimized, produces a solution to the adversarial ordinal regression problem of Eq. E]

Theorem 1. An adversarial ordinal regression predictor is obtained by choosing parameters w that
minimize the empirical risk of the surrogate loss function:

o f+fl+jfl f+.] flil
ALwd(x,;,yi) ?leﬁléﬁyu % — fy = mjax ]2 erlax 5~ fyr (5)

where f; =w - ¢(x;,7) forall j € {1,...,|YV|}.

Proof sketch. Let j*,[* be the solution of argmax; ;cy |y} w, we show that the Nash

equilibrium value of a game matrix that contains only row j* and [* and column j5* and [* from

matrix L} o is exactly LS 25721 e then show that adding other rows and columns in Ly w

to the game matrix does not change the game value. Given the resulting closed form solution of the
game (instead of a minimax), we can recast the adversarial framework for ordinal regression as an
empirical risk minimization with the proposed loss. O

We note that the ALS{,d surrogate is the maximization over pairs of different potential functions
associated with each class (including pairs of identical class labels) added to the distance between the
pair. For both of our feature representations, we make use of the fact that maximization over each
element of the pair can be independently realized, as shown on the right-hand side of Eq. (3).

Thresholded regression surrogate loss

In the thresholded regression feature representation, the parameter contains a single shared vector of
feature weights w and || — 1 terms 6y, associated with thresholds. Following Eq. (3}, the adversarial
ordinal regression surrogate loss for this feature representation can be written as:

j(w-x; +1) + 0 I(w-x; — 1)+ 0
AL‘"d’lh(xi,yi) = maxj( 2) Zkz] r +mlax ( 2) Zkzl b YiW - X — Z 0.
J

k>y;

6

This loss has a straight-forward interpreta-
tion in terms of the thresholded regression
perspective, as shown in Figure it is
based on averaging the thresholded label
predictions for potentials w - x; + 1 and
w - X; — 1. This penalization of the pair of
thresholds differs from the thresholded sur-
rogate losses of related work, which either
penalize all violated thresholds or penalize
only the thresholds adjacent to the actual
class label. Figure 2: Surrogate loss calculation for datapoint x;
(projected to w - x;) with a label prediction of 4 for pre-
dictive purposes, the surrogate loss is instead obtained
using potentials for the classes based on w-x; + 1 (label
5) and w - x; — 1 (label 2) averaged together.

Using a binary search procedure over
01, ...,0jy—1, the largest lower bounding
threshold for each of these potentials can
be obtained in O(log|)|) time.

Multiclass ordinal surrogate loss

In the multiclass feature representation, we have a set of specific feature weights w; for each label
and the adversarial multiclass ordinal surrogate loss can be written as:
WX+ WX+ — 1

ALord—mc X Yi) = max — W, - X;. 7
(i, i) PRLSEIRAY)! 2 vi Q)

The detailed proof of this theorem and others are contained in the supplementary materials. Proof sketches
are presented in the main paper.
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Figure 3: Loss function contour plots of AL over the space of potential differences P = fi— fu
for the prediction task with three classes when the true label is y; = 1 (a), y; = 2 (b), and y; = 3 (c).

We can also view this as the maximization over | Y|(|)| + 1)/2 linear hyperplanes. For an ordinal
regression problem with three classes, the loss has six facets with different shapes for each true label
value, as shown in Figure 3| In contrast with AL”“™ the class label potentials for AL°“™ may
differ from one another in more-or-less arbitrary ways. Thus, searching for the maximal j and [ class
labels requires O(]Y|) time.

3.4 Consistency Properties

The behavior of a prediction method in ideal learning settings—i.e., trained on the true evaluation
distribution and given an arbitrarily rich feature representation, or, equivalently, considering the space
of all measurable functions—provides a useful theoretical validation. Fisher consistency requires that
the prediction model yields the Bayes optimal decision boundary [32} 133} 35] in this setting. Given
the true label conditional probability P;(x) £ P(Y = j|x), a surrogate loss function § is said to
be Fisher consistent with respect to the loss ¢ if the minimizer f* of the surrogate loss achieves the
Bayes optimal risk, i.e.,:

f* = argmin By x . p [0¢(X, V)| X = x] ®)
£
= Eyx~p [l (X,Y)[X =x] = mfiHEYp(NP (e (X, Y)|X =x].

Ramaswamy and Agarwal [36]] provide a necessary and sufficient condition for a surrogate loss to be
Fisher consistent with respect to general multiclass losses, which includes ordinal regression losses.
A recent analysis by Pedregosa et al. [35]] shows that the all thresholds and the immediate thresholds
methods are Fisher consistent provided that the base binary surrogates losses they use are convex
with a negative derivative at zero.

For our proposed approach, the condition for Fisher consistency above is equivalent to:
f* = argmin Z Py, {max Jith+ji=l_ fy| = argmax f; (x) C argminz Pyli—yl. O
£ ” il 2 j j ”

Since adding a constant to all f; does not change the value of both AL{™ and argmax; f;(x), we

employ the constraint max; f;(x) = 0, to remove redundant solutions for the consistency analysis.
We establish an important property of the minimizer for ALY in the following theorem.

Theorem 2. The minimizer vector £* of Ey x.p [AL{*(X,Y)|X = x| satisfies the loss reflective
property, i.e., it complements the absolute error by starting with a negative integer value, then
increasing by one until reaching zero, and then incrementally decreases again.

Proof sketch. We show that for any f° that does not satisfy the loss reflective property, we can
construct ! using several steps that satisfy the loss reflective property and has the expected loss value
less than the expected loss of £0. O



Example vectors f* that satisfy Theorem [2| are [0, —1, —2]T, [-1,0,—1]T and [-2, —1,0]T for
three-class problems, and [—3, —2, —1, 0, —1] for five-class problems. Using the key property of the
minimizer above, we establish the consistency of our loss functions in the following theorem.

Theorem 3. The adversarial ordinal regression surrogate loss AL from Eg. @) is Fisher consistent.

Proof sketch. We only consider || possible values of f that satisfy the loss reflective property. For
the f that corresponds to class 7, the value of the expected loss is equal to the Bayes loss if we predict
j as the label. Therefore minimizing over f that satisfy the loss reflective property is equivalent to
finding the Bayes optimal response. O

3.5 Optimization
3.5.1 Primal Optimization

To optimize the regularized adversarial ordinal regression loss from the primal, we employ stochastic
average gradient (SAG) methods [37, 38]], which have been shown to converge faster than standard
stochastic gradient optimization. The idea of SAG is to use the gradient of each example from the last
iteration where it was selected to take a step. However, the naive implementation of SAG requires
storing the gradient of each sample, which may be expensive in terms of the memory requirements.
Fortunately, for our loss ALﬁd, we can drastically reduce this memory requirement by just storing a

pair of number, (j*,1*) = argmax; ey, |y} W, rather than storing the gradient for each

sample. Appendix C explains the details of this technique.

3.5.2 Dual Optimization

Dual optimization is often preferred when optimizing piecewise linear losses, such as the hinge loss,
since it enables one to easily perform the kernel trick and obtain a non-linear decision boundary
without heavily sacrificing computational efficiency. Optimizing the regularized adversarial ordinal
regression loss in the dual can be performed by solving the following quadratic optimization:

) 1 )
fgfg(ZjJ(ai,j = Bii) =3 VZ;Z (@ij + Big) (g + Br) (9(xi,5) — d(xi,v:)) - (9(Xk, 1) — P(x1, yx))
1, VLA
subject t0: iy > 03855 > 0; Y iy =53 Biy =Stk e{l,...,n}i4l€{l,..., |V} (10)

J J

Note that our dual formulation only depends on the dot product of the features. Therefore, we can
also easily apply the kernel trick to our algorithm. Appendix D describes the derivation from the
primal optimization to the dual optimization above.

4 Experiments Table 2: Dataset properties.

4.1 Experiment Setup

Dataset #class  #train  #test #features

We conduct our experiments on a benchmark diabetes 5 30 13 9
dataset for ordinal regression [14], evaluate the pyrimidines 5 51 23 27
performance using mean absolute error (MAE), triazines 5 130 56 60
and perform statistical tests on the results of dif- wisconsin 5 135 59 32
ferent hinge loss surrogate methods. The bench- machinecpu 10 146 63 6
mark contains datasets taken from the UCI Ma- autompg 10 274 118 7
chine Learning repository [39] ranging from rel- boston 5 354152 13
atively small to relatively large in size. The char- stocks 5 665 285 9
acteristics of the datasets, including the number abalone 10 2923 1254 10
.. . . bank 10 5734 2458 8

of classes, the training set size, the testing set
. ; computer 10 5734 2458 21
size, and the number of features, are described calhousing 10 14447 6193 8

in Table[2l

In the experiment, we consider different methods using the original feature space and a kernelized
feature space using the Gaussian radial basis function kernel. The methods that we compare include

two variations of our approach, the threshold based (AL**™), and the multiclass-based (AL4™).



Table 3: The average of the mean absolute error (MAE) for each model. Bold numbers in each case
indicate that the result is the best or not significantly worse than the best (paired t-test with o = 0.05).

Dataset Threshold-based models Multiclass-based models
ALt REDM" AT IT  AL”*™ RED™ CSOSR CSOVO CSOVA
diabetes 0.696 0.715 0.731 0.827 0.629 0.700 0.715 0.738 0.762
pyrimidines 0.654 0.678 0.615 0.626 0.509 0.565 0.520 0.576 0.526
triazines 0.607 0.683 0.649 0.654 0.670 0.673 0.677 0.738 0.732
wisconsin 1.077 1.067 1.097 1.175 1.136 1.141 1.208 1.275 1.338
machinecpu 0.449 0.456 0.458 0.467 0.518 0.515 0.646 0.602 0.702
autompg 0.551 0.550 0.550 0.617 0.599 0.602 0.741 0.598 0.731
boston 0.316 0.304 0.306 0.298 0.311 0.311 0.353 0.294 0.363
stocks 0.324 0.317 0315 0.324 0.168 0.175 0.204 0.147 0.213
abalone 0.551 0.547 0.546 0.571 0.521 0.520 0.545 0.558 0.556
bank 0.461 0.460 0461 0461 0.445 0.446 0.732 0.448 0.989
computer 0.640 0.635 0.633 0.683 0.625 0.624 0.889 0.649 1.055
calhousing 1.190 1.183 1.182 1.225 1.164 1.144 1.237 1.202 1.601
average 0.626 0.633 0.629 0.661 0.613 0.618 0.706 0.652 0.797
# bold 5 5 4 2 5 5 2 2 1

The baselines we use for the threshold-based models include a SVM-based reduction framework
algorithm (REDth) [5], an all threshold method with hinge loss (AT) [, 2], and an immediate threshold
method with hinge loss (IT) [} 2l]. For the multiclass-based models, we compare our method with an
SVM-based reduction algorithm using multiclass features (RED™) [5]], with cost-sensitive one-sided
support vector regression (CSOSR) [8]], with cost-sensitive one-versus-one SVM (CSOVO) [[7]], and
with cost-sensitive one-versus-all SVM (CSOVA) [6]]. For our Gaussian kernel experiment, we
compare our threshold based model (AL**"™) with SVORIM and SVOREX [2].

In our experiments, we first make 20 random splits of each dataset into training and testing sets. We
performed two stages of five-fold cross validation on the first split training set for tuning each model’s
regularization constant A. In the first stage, the possible values for A are 27,7 = {1, 3,5,7, 9,11, 13}.

Using the best )\ in the first stage, we set the possible values for ) in the second stage as 22 \g, i =
{-3,-2,-1,0,1,2,3}, where \g is the best parameter obtained in the first stage. Using the selected
parameter from the second stage, we train each model on the 20 training sets and evaluate the MAE
performance on the corresponding testing set. We then perform a statistical test to find whether the
performance of a model is different with statistical significance from other models. We perform the
Gaussian kernel experiment similarly with model parameter C equals to 2%, = {0,3,6,9, 12} and
kernel parameter v equals to 2¢,i = {—12, —9, —6, —3,0} in the first stage. In the second stage, we
set C' equals to 2°Cy,i = {—2,—1,0, 1,2} and v equals to 2%yp,i = {—2,—1,0,1,2}, where Cy
and g are the best parameters obtained in the first stage.

4.2 Results

We report the mean absolute error (MAE) averaged over the dataset splits as shown in Table [3]and
Table [d We highlight the result that is either the best or not worse than the best with statistical
significance (under paired t-test with o = 0.05) in boldface font. We also provide the summary for
each model in terms of the averaged MAE over all datasets and the number of datasets for which
each model marked with boldface font in the bottom of the table.

As we can see from Table (3| in the experiment with the original feature space, threshold-based
models perform well on relatively small datasets, whereas multiclass-based models perform well on
relatively large datasets. A possible explanation for this result is that multiclass-based models have
more flexibility in creating decision boundaries, hence they perform better if the training data size is
sufficient. However, since multiclass-based models have many more parameters than threshold-based
models (m|Y| parameters rather than m + || — 1 parameters), multiclass methods may need more
data, and hence, may not perform well on relatively small datasets.

In the threshold-based models comparison, ALord'th, RED™, and AT perform competitively on
relatively small datasets like triazines, wisconsin, machinecpu, and autompg. AL hag a



slight advantage over RED™ on the overall accuracy, and a slight advantage over AT on the number
of “indistinguishably best” performance on all datasets. We can also see that AT is superior to IT in
the experiments under the original feature space.

Among the multiclass-based models, AL°™ Table 4: The average of MAE for models with
and RED™ perform competitively on datasets Gaussian kernel.
like abalone, bank, and computer, with a

slight advantage of AL®“™ model on the over- ~ Dataset AL™™  SVORIM SVOREX
all accuracy. In general, the cost-sensitive mod- diabetes 0.696 0.665 0688
els perform poorly compared with AL4™ and pyrimidines 0.478 0.539 0.550
RED™. A notable exception is the CSOVO triazines 0.609 0.612 0.604
model which perform very well on the stocks wisconsin 1.090 1113 1.049
and the boston datasets. machinecpu 0.452 0.652 0.628

autompg 0.529 0.589 0.593
In the Gaussian kernel experiment, we can see boston 0.278 0.324 0.316
from Table 4l that the kernelized version of stocks 0.103 0.099 0.100
AL performs significantly better than the average 0531 0574 0,566
threshold-based models SVORIM and SVOREX # bold 7 3 4

in terms of both the overall accuracy and the
number of “indistinguishably best” performance
on all datasets. We also note that immediate-threshold-based model (SVOREX) performs better than
all-threshold-based model (SVORIM) in our experiment using Gaussian kernel. We can conclude
that our proposed adversarial losses for ordinal regression perform competitively compared to the
state-of-the-art ordinal regression models using both original feature spaces and kernel feature spaces
with a significant performance improvement in the Gaussian kernel experiments.

5 Conclusion and Future Work

In this paper, we have proposed a novel surrogate loss for ordinal regression, a classification problem
where the discrete class labels have an inherent order and penalty for making mistakes based on that
order. We focused on the absolute loss, which is the most widely used ordinal regression loss. In
contrast with existing methods, which typically reduce ordinal regression to binary classification
problems and then employ surrogates for the binary zero-one loss, we derive a unique surrogate
ordinal regression loss by seeking the predictor that is robust to a worst case constrained approx-
imation of the training data. We derived two versions of the loss based on two different feature
representation approaches: thresholded regression and multiclass representations. We demonstrated
the benefit of our approach on a benchmark of datasets for ordinal regression tasks. Our approach
performs competitively compared to the state-of-the-art surrogate losses based on hinge loss. We
also demonstrated cases when the multiclass feature representations works better than thresholded
regression representation, and vice-versa, in our experiments.

Our future work will investigate less prevalent ordinal regression losses, such as the discrete quadratic
loss and arbitrary losses that have v-shaped penalties. Furthermore, we plan to investigate the
characteristics required of discrete ordinal losses for their optimization to have a compact analytical
solution. In terms of applications, one possible direction of future work is to combine our approach
with deep neural network models to perform end-to-end representation learning for ordinal regression
applications like age estimation and rating prediction. In that setting, our proposed loss can be used
in the last layer of a deep neural network to serve as the gradient source for the backpropagation
algorithm.
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