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Abstract

In this paper, we develop an algorithm that approximates the residual error of
Tucker decomposition, one of the most popular tensor decomposition methods,
with a provable guarantee. Given an order-K tensor X ∈ RN1×···×NK , our
algorithm randomly samples a constant number s of indices for each mode and
creates a “mini” tensor X̃ ∈ Rs×···×s, whose elements are given by the intersection
of the sampled indices on X . Then, we show that the residual error of the Tucker
decomposition of X̃ is sufficiently close to that of X with high probability. This
result implies that we can figure out how much we can fit a low-rank tensor to X in
constant time, regardless of the size of X . This is useful for guessing the favorable
rank of Tucker decomposition. Finally, we demonstrate how the sampling method
works quickly and accurately using multiple real datasets.

1 Introduction

Tensor decomposition is a fundamental tool for dealing with array-structured data. Using tensor
decomposition, a tensor (or a multidimensional array) is approximated with multiple tensors in
lower-dimensional space using a multilinear operation. This drastically reduces disk and memory
usage. We say that a tensor is of order K if it is a K-dimensional array; each dimension is called a
mode in tensor terminology.

Among the many existing tensor decomposition methods, Tucker decomposition [18] is a popular
choice. To some extent, Tucker decomposition is analogous to singular-value decomposition (SVD):
as SVD decomposes a matrix into left and right singular vectors that interact via singular values,
Tucker decomposition of an order-K tensor consists of K factor matrices that interact via the so-
called core tensor. The key difference between SVD and Tucker decomposition is that, with the latter,
the core tensor need not be diagonal and its “rank” can differ for each mode k = 1, . . . ,K. In this
paper, we refer to the size of the core tensor, which is a K-tuple, as the Tucker rank of a Tucker
decomposition.

We are usually interested in obtaining factor matrices and a core tensor to minimize the residual error—
the error between the input and low-rank approximated tensors. Sometimes, however, knowing the
residual error itself is an important task. The residual error tells us how the low-rank approximation
is suitable to the input tensor, and is particularly useful to predetermine the Tucker rank. In real
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Algorithm 1
Input: Random access to a tensor X ∈ RN1×···×NK , Tucker rank (R1, . . . , Rk), and ε, δ ∈ (0, 1).

for k = 1 to K do
Sk ← a sequence of s = s(ε, δ) indices uniformly and independently sampled from [Nk].

Construct a mini-tensor X|S1,...,SK .
Return `R1,...,RK (X|S1,...,SK ).

applications, Tucker ranks are not explicitly given, and we must select them by considering the
balance between space usage and approximation accuracy. For example, if the selected Tucker rank
is too small, we risk losing essential information in the input tensor. On the other hand, if the selected
Tucker rank is too large, the computational cost of computing the Tucker decomposition (even if we
allow for approximation methods) increases considerably along with space usage. As with the case of
the matrix rank, one might think that a reasonably good Tucker rank can be found using a grid search.
Unfortunately, grid searches for Tucker ranks are challenging because, for an order-K tensor, the
Tucker rank consists of K free parameters and the search space grows exponentially in K. Hence,
we want to evaluate each grid point as quickly as possible.

Unfortunately, although several practical algorithms have been proposed, such as the higher-order
orthogonal iteration (HOOI) [7], they are not sufficiently scalable. For each mode, HOOI iteratively
applies SVD to an unfolded tensor—a matrix that is reshaped from the input tensor. Given an N1 ×
· · · ×NK tensor, the computational cost is hence O(K maxkNk ·

∏
kNk), which depends crucially

on the input size N1, . . . , NK . Although there are several approximation algorithms [8, 21, 17], their
computational costs are still intensive. Consequently, we cannot search for good Tucker ranks. Rather,
we can only check a few candidates.

1.1 Our Contributions

When finding a good Tucker rank with a grid search, we need only the residual error. More specifically,
given an order-K tensor X ∈ RN1×···×NK and integers Rk ≤ Nk (k = 1, . . . ,K), we consider the
following rank-(R1, . . . , RK) Tucker-fitting problem. For an integer n ∈ N, let [n] denote the set
{1, 2, . . . , n}. Then, we want to compute the following normalized residual error:

`R1,...,RK (X) := min
G∈RR1×···×RK ,{U(k)∈RNk×Rk}k∈[K]

∥∥∥X − [[G;U (1), . . . , U (K)]]
∥∥∥2

F∏
k∈[K]Nk

, (1)

where [[G;U (1), . . . , U (K)]] ∈ RN1×···×NK is an order-K tensor, defined as

[[G;U (1), . . . , U (K)]]i1···iK =
∑

r1∈[R1],...,rK∈[RK ]

Gr1···rK
∏
k∈[K]

U
(k)
ikrk

for every i1 ∈ [N1], . . . , iK ∈ [NK ]. Here, G is the core tensor, and U (1), . . . , U (K) are the factor
matrices. Note that we are not concerned with computing the minimizer. Rather, we only want
to compute the minimum value. In addition, we do not need the exact minimum. Indeed, a rough
estimate still helps to narrow down promising rank candidates. The question here is how quickly we
can compute the normalized residual error `R1,...,RK (X) with moderate accuracy.

We shed light on this question by considering a simple sampling-based algorithm. Given an order-K
tensor X ∈ RN1×···×NK , Tucker rank (R1, . . . , RK), and sample size s ∈ N, we sample a sequence
of indices Sk = (xk1 , . . . , x

k
s) uniformly and independently from {1, . . . , Nk} for each mode k ∈

[K]. Then, we construct a mini-tensor X|S1,...,SK ∈ Rs×···×s such that (X|S1,...,SK )i1,...,iK =

Xx1
i1
...,xKiK

. Finally, we compute `R1,...,RK (X|S1,...,SK ) using a solver, such as HOOI, that then
outputs the obtained value. The details are provided in Algorithm 1.

In this paper, we show that Algorithm 1 achieves our ultimate goal: with a provable guarantee, the
time complexity remains constant. Assume each rank parameter Rk is sufficiently smaller than
the dimension of each mode Nk. Then, given error and confidence parameters ε, δ ∈ (0, 1), there
exists a constant s = s(ε, δ) such that the approximated residual `R1,...,RK (X|S1,...,SK ) is close to
the original one `R1,...,RK (X), to within ε with a probability of at least 1 − δ. Note that the time
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complexity for computing `R1,...,RK (X|S1,...,SK ) does not depend on the input size N1, . . . , NK but
rather on the sample size s, meaning that the algorithm runs in constant time, regardless of the input
size.

The main component in our proof is the weak version of Szemerédi’s regularity lemma [9], which
roughly states that any tensor can be well approximated by a tensor consisting of a constant number
of blocks whose entries in the same block are equal. Then, we can show that X|S1,...,SK is a good
sketch of the original tensor, because by sampling s many indices for each mode, we can hit each
block a sufficient number of times. It follows that `R1,...,RK (X) and `R1,...,RK (X|S1,...,SK ) are close.
To formalize this argument, we want to measure the “distance” between X and X|S1,...,SK , and we
want to show that it is small. To this end, we exploit graph limit theory, first described by Lovász and
Szegedy [13] (see also [12]), in which we measure the distance between two graphs on a different
number of vertices by considering continuous versions called dikernels. Hayashi and Yoshida [10]
used graph limit theory to develop a constant-time algorithm that minimizes quadratic functions
described by matrices and vectors. We further extend this theory to tensors to analyze the Tucker
fitting problem.

With both synthetic and real datasets, we numerically evaluate our algorithm. The results show that
our algorithm overwhelmingly outperforms other approximation methods in terms of both speed and
accuracy.

2 Preliminaries

Tensors Let X ∈ RN1×···NK be a tensor. Then, we define the Frobenius norm of X as ‖X‖F =√∑
i1,...,iK

X2
i1···iK , the max norm of X as ‖X‖max = max

i1∈[N1],...,iK∈[NK ]
|Xi1···iK |, and the cut

norm of X as ‖X‖� = max
S1⊆[N1],...,SK⊆[NK ]

|
∑

i1∈S1,...,iK∈SK
Xi1···iK |. We note that these norms

satisfy the triangle inequalities.

For a vector v ∈ Rn and a sequence S = (x1, . . . , xs) of indices in [n], we define the restriction
v|S ∈ Rs of v such that (v|S)i = vxi for i ∈ [s]. Let X ∈ RN1×···×NK be a tensor, and
Sk = (xk1 , . . . , x

k
s) be a sequence of indices in [Nk] for each mode k ∈ [K]. Then, we define the

restrictionX|S1,...,SK ∈ Rs×···×s ofX to S1×· · ·×SK such that (X|S1,...,SK )i1···iK = Xx1
i1
,...,xKiK

for each i1 ∈ [N1], . . . , iK ∈ [Nk].

Hyper-dikernels We call a (measurable) functionW : [0, 1]
K → R a (hyper-)dikernel of order K.

We can regard a dikernel as a tensor whose indices are specified by real values in [0, 1]. We stress
that the term “dikernel” has nothing to do with kernel methods used in machine learning.

For two functions f, g : [0, 1]→ R, we define their inner product as 〈f, g〉 =
∫ 1

0
f(x)g(x)dx. For a

sequence of functions f (1), . . . , f (K), we define their tensor product
⊗

k∈[K] f
(k) ∈ [0, 1]

K → R as⊗
k∈[K] f

(k)(x1, . . . , xK) =
∏
k∈[K] f

(k)(xk), which is an order-K dikernel.

Let W : [0, 1]
K → R be a dikernel. Then, we define the Frobenius norm of W as ‖W‖F =√∫

[0,1]K
W(x)

2
dx, the max norm ofW as ‖W‖max = maxx∈[0,1]K |W(x)|, and the cut norm of

W as ‖W‖� = supS1,...,SK⊆[0,1]

∣∣∣∫S1×···×SK W(x)dx
∣∣∣. Again, we note that these norms satisfy

the triangle inequalities. For two dikernelsW andW ′, we define their inner product as 〈W,W ′〉 =∫
[0,1]K

W(x)W ′(x)dx.

Let λ be a Lebesgue measure. A map π : [0, 1] → [0, 1] is said to be measure-preserving, if the
pre-image π−1(X) is measurable for every measurable set X , and λ(π−1(X)) = λ(X). A measure-
preserving bijection is a measure-preserving map whose inverse map exists and is also measurable
(and, in turn, also measure-preserving). For a measure-preserving bijection π : [0, 1] → [0, 1] and
a dikernelW : [0, 1]

K → R, we define a dikernel π(W) : [0, 1]
K → R as π(W)(x1, . . . , xK) =

W(π(x1), . . . , π(xK)).
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For a tensor G ∈ RR1×···×RK and vector-valued functions {F (k) : [0, 1]→ RRk}k∈[K], we define

an order-K dikernel [[G;F (1), . . . , F (K)]] : [0, 1]
K → R as

[[G;F (1), . . . , F (K)]](x1, . . . , xK) =
∑

r1∈[R1],...,rK∈[RK ]

Gr1,...,rK
∏
k∈[K]

F (k)(xk)rk

We note that [[G;F (1), . . . , F (K)]] is a continuous analogue of Tucker decomposition.

Tensors and hyper-dikernels We can construct the dikernel X : [0, 1]
K → R from a tensor X ∈

RN1×···×NK as follows. For an integer n ∈ N, let In1 = [0, 1
n ], In2 = ( 1

n ,
2
n ], . . . , Inn = (n−1

n , . . . , 1].
For x ∈ [0, 1], we define in(x) ∈ [n] as a unique integer such that x ∈ Ini . Then, we define
X (x1, . . . , xK) = XiN1

(x1)···iNK (xK). The main motivation for creating a dikernel from a tensor is
that, in doing so, we can define the distance between two tensors X and Y of different sizes via the
cut norm—that is, ‖X − Y‖�.

LetW : [0, 1]
K → R be a dikernel and Sk = (xk1 , . . . , x

k
s) for k ∈ [K] be sequences of elements

in [0, 1]. Then, we define a dikernelW|S1,...,SK : [0, 1]
K → R as follows: We first extract a tensor

W ∈ Rs×···×s by setting Wi1···iK =W(x1
i1
, . . . , xKiK ). Then, we defineW|S1,...,SK as the dikernel

constructed from W .

3 Correctness of Algorithm 1

In this section, we prove the correctness of Algorithm 1.

The following sampling lemma states that dikernels and their sampling versions are close in the cut
norm with high probability.

Lemma 3.1. LetW1, . . . ,WT : [0, 1]
K → [−L,L] be dikernels. Let S1, . . . , SK be sequences of

s elements uniformly and independently sampled from [0, 1]. Then, with a probability of at least
1−exp(−ΩK(s2(T/ log2 s)

1/(K−1))), there exists a measure-preserving bijection π : [0, 1]→ [0, 1]
such that, for every t ∈ [T ], we have

‖Wt − π(Wt|S1,...,SK )‖� = L ·OK
(
T/ log2 s

)1/(2K−2)
,

where OK(·) and ΩK(·) hide factors depending on K.

We now consider the dikernel counterpart to the Tucker fitting problem, in which we want to compute
the following:

`R1,...,RK (X ) := inf
G∈RR1×···×RK ,{f(k):[0,1]→RRk}k∈[K]

∥∥∥X − [[G; f (1), . . . , f (K)]]
∥∥∥2

F
, (2)

The following lemma states that the Tucker fitting problem and its dikernel counterpart have the same
optimum values.
Lemma 3.2. Let X ∈ RN1×···×NK be a tensor, and let R1, . . . , RK ∈ N be integers. Then, we have

`R1,...,RK (X) = `R1,...,RK (X ).

For a set of vector-valued functions F = {f (k) : [0, 1]→ RRk}k∈[K], we define ‖F‖max =

maxk∈[K],r∈[Rk],x∈[0,1] f
(k)
r (x). For real values a, b, c ∈ R, a = b± c is shorthand for b− c ≤ a ≤

b+ c. For a dikernel X : [0, 1]
K → R, we define a dikernel X 2 : [0, 1]

K → R as X 2(x) = X (x)
2

for every x ∈ [0, 1]
K . The following lemma states that if X and Y are close in the cut norm, then the

optimum values of the Tucker fitting problem regarding them are also close.

Lemma 3.3. Let X ,Y : [0, 1]
K → R be dikernels with ‖X − Y‖� ≤ ε and ‖X 2 − Y2‖� ≤ ε. For

integers R1, . . . , RK ∈ N, we have

`R1,...,RK (X ) = `R1,...,RK (Y)± 2ε
(

1 +R
(
‖GX ‖max‖FX ‖Kmax + ‖GY‖max‖FY‖Kmax

))
,

where (GX , FX = {f (k)
X }k∈[K]) and (GY,FY = {f (k)

Y }k∈[K]
) are solutions to the problem (2) on

X and Y , respectively, whose objective values exceed the infima by at most ε, and R =
∏
k∈[K]Rk.
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It is well known that the Tucker fitting problem has a minimizer for which the factor matrices are
orthonormal. Thus, we have the following guarantee for the approximation error of Algorithm 1.

Theorem 3.4. Let X ∈ RN1×···×NK be a tensor, R1, . . . , RK be integers, and ε, δ ∈ (0, 1). For
s(ε, δ) = 2Θ(1/ε2K−2) + Θ(log 1

δ log log 1
δ ), we have the following. Let S1, . . . , SK be sequences of

indices as defined in Algorithm 1. Let (G∗, U∗1 , . . . , U
∗
K) and (G̃∗, Ũ∗1 , . . . , Ũ

∗
K) be minimizers of

the problem (1) on X and X|S1,...,SK for which the factor matrices are orthonormal, respectively.
Then, with a probability of at least 1− δ, we have

`R1,...,RK (X|S1,...,SK ) = `R1,...,RK (X)±O(εL2(1 + 2MR)),

where L = ‖X‖max, M = max {‖G∗‖max, ‖G̃∗‖max}, and R =
∏
k∈[K]Rk.

We remark that, for the matrix case (i.e., K = 2), ‖G∗‖max and ‖G̃∗‖max are equal to the maximum
singular values of the original and sampled matrices, respectively.

Proof. We apply Lemma 3.1 to X and X 2. Then, with a probability of at least 1− δ, there exists a
measure-preserving bijection π : [0, 1]→ [0, 1] such that

‖X − π(X|S1,...,SK )‖� ≤ εL and ‖X 2 − π(X 2|S1,...,SK )‖� ≤ εL2.

In what follows, we assume that this has happened. Then, by Lemma 3.3 and the fact that
`R1,...,RK (X|S1,...,SK ) = `R1,...,RK (π(X|S1,...,SK )), we have

`R1,...,RK (X|S1,...,SK ) = `R1,...,RK (X )± εL2
(

1 + 2R(‖G‖max‖F‖Kmax + ‖G̃‖max‖F̃‖Kmax)
)
,

where (G,F = {f (k)}k∈[K]) and (G̃, F̃ = {f̃ (k)}k∈[K]) be as in the statement of Lemma 3.3.
From the proof of Lemma 3.2, we can assume that ‖G‖max = ‖G∗‖max, ‖G̃‖max = ‖G̃∗‖max,
‖F‖max ≤ 1, and ‖F̃‖max ≤ 1 (owing to the orthonormality of U∗1 , . . . , U

∗
K and Ũ∗1 , . . . , Ũ

∗
K). It

follows that

`R1,...,RK (X|S1,...,SK ) = `R1,...,RK (X )± εL2
(

1 + 2R(‖G∗‖max + ‖G̃∗‖max)
)
. (3)

Then, we have

`R1,...,RK (X|S1,...,SK ) = `R1,...,RK (X|S1,...,SK ) (By Lemma 3.2)

= `R1,...,RK (X )± εL2
(

1 + 2R(‖G∗‖max + ‖G̃∗‖max)
)

(By (3))

= `R1,...,RK (X)± εL2
(

1 + 2R(‖G∗‖max + ‖G̃∗‖max)
)
. (By Lemma 3.2)

Hence, we obtain the desired result.

4 Related Work

To solve Tucker decomposition, several randomized algorithms have been proposed. A popular
approach involves using a truncated or randomized SVD. For example, Zhou et al. [21] proposed
a variant of HOOI with randomized SVD. Another approach is based on tensor sparsification.
Tsourakakis [17] proposed MACH, which randomly picks the element of the input tensor and
substitutes zero, with a probability of 1 − p, where p ∈ (0, 1] is an approximation parameter.
Moreover, several authors proposed CUR-type Tucker decomposition, which approximates the input
tensor by sampling tensor tubes [6, 8].

Unfortunately, these methods do not significantly reduce the computational cost. Randomized
SVD approaches reduce the computational cost of multiple SVDs from O(K maxkNk ·

∏
kNk) to

O(K maxk Rk ·
∏
kNk), but they still depend on

∏
kNk. CUR-type approaches require the same

time complexity. In MACH, to obtain accurate results, we need to set p as constant for instance
p = 0.1 [17]. Although this will improve the runtime by a constant factor, the dependency on

∏
kNk

does not change.
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Figure 1: Synthetic data: computed residual errors for various Tucker ranks. The horizontal axis
indicates the approximated residual error `R1,...,RK (X|S1,...,SK ). The error bar indicates the standard
deviation over ten trials with different random seeds, which affected both data generation and
sampling.

5 Experiments

For the experimental evaluation, we slightly modified our sampling algorithm. In Algorithm 1, the
indices are sampled using sampling with replacement (i.e., the same indices can be sampled more
than once). Although this sampling method is theoretically sound, we risk obtaining redundant
information by sampling the same index several times. To avoid this issue, we used sampling without
replacement—i.e., each index was sampled at most once. Furthermore, if the dimension of a mode
was smaller than the sampling size, we used all the coordinates. That is, we sampled min(s,Nk)
indices for each mode k ∈ [K]. Note that both sampling methods, with and without replacement, are
almost equivalent when the input size N1, . . . , NK is sufficiently larger than s (i.e., the probability
that a previously sampled index is sampled approaches zero.)

5.1 Synthetic Data

We first demonstrate the accuracy of our method using synthetic data. We prepared N × N × N
tensors for N ∈ {100, 200, 400, 800}, with a Tucker rank of (15, 15, 15). Each element of the core
G ∈ R15×15×15 and the factor matrices U (1), U (2), U (3) ∈ RN×15 was drawn from a standard
normal distribution. We set Y = [[G;U (1), U (2), U (3)]]. Then, we generated X ∈ RN×N×N as
Xijk = Yijk/‖Y ‖F + 0.1εijk, where εijk follows the standard normal distribution for i, j, k ∈ [N ].
Namely, X had a low-rank structure, though some small noise was added. Subsequently, X was
decomposed using our method with various Tucker ranks (R,R,R) for R ∈ {11, 12, . . . , 20} and
the sample size s ∈ {20, 40, 80}.
The results (see Figure 1) show that our method behaved ideally. That is, the error was high when
R was less than the true rank, 15, and it was almost zero when R was greater than or equal to the
true rank. Note that the scale of the estimated residual error seems to depend on s, i.e., small s tends
to yield a small residual error. This implies our method underestimates the residual error when s is
small.

5.2 Real Data

To evaluate how our method worked against real data tensors, we used eight datasets [1, 2, 4, 11,
14, 19] described in Table 1, where the “fluor” dataset is order-4 and the others are order-3 tensors.
Details regarding the data are provided in the Supplementary material. Before the experiment, we
normalized each data tensor by its norm ‖X‖F . To evaluate the approximation accuracy, we used
HOOI implemented in Python by Nickel3 as “true” residual error.4 As baselines, we used the two
randomized methods introduced in Section 4: randomized SVD [21] and MACH [17]. We denote our
method by “samples” where s indicates the sample size (e.g., sample40 denotes our method with

3https://github.com/mnick/scikit-tensor
4Note that, though no approximation is used in HOOI, the objective function (1) is nonconvex and it is not

guaranteed to converge to the global minimum. The obtained solution can be different from the ground truth.
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Table 1: Real Datasets.

Dataset Size Total # of elements

movie_gray 120× 160× 107 2.0M
EEM 28× 13324× 8 2.9M

fluorescence 299× 301× 41 3.6M
bonnie 89× 97× 549 4.7M

fluor 405× 136× 19× 5 5.2M
wine 44× 2700× 200 23.7M

BCI_Berlin 4001× 59× 1400 0.3G
visor 16818× 288× 384 1.8G
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Figure 2: Real data: (approximated) residual errors for various Tucker ranks.

s = 40). Similarly, “machp” refers to MACH with sparsification probability set at p. For all the
approximation methods, we used the HOOI implementation to solve Tucker decomposition. Every
data tensor was decomposed with Tucker rank (R1, . . . , RK) on the grid Rk ∈ {5, 10, 15, 20} for
k ∈ [K].

Figure 2 shows the residual error for order-3 data.5 It shows that the random projection tends to
overestimate the decomposition error. On the other hand, except for the wine dataset, our method
stably estimated the residual error with reasonable approximation errors. For the wine dataset, our
method estimated a very small value, far from the correct value. This result makes sense, however,
because the wine dataset is sparse (where 90% of the elements are zero) and the residual error is too
small. Table 2 shows the absolute error from HOOI averaged over all rank settings. In most of the
datasets, our methods achieved the lowest error.

5Here we exclude the results of the EEM dataset because its size is too small and we were unable to run the
experiment with all the Tucker rank settings. Also, the results of MACH on some datasets are excluded owing to
considerable errors.
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Table 2: Real data: absolute error of HOOI’s and other’s residual errors averaged over ranks. The
best and the second best results are shown in bold and italic, respectively.

mach0.1 mach0.3 randsvd sample40 sample80

movie_gray 0.084 ± 0.038 0.020 ± 0.010 0.004 ± 0.003 0.001 ± 0.001 0.000 ± 0.000
EEM 2.370 ± 0.792 0.587 ± 0.210 0.018 ± 0.029 0.003 ± 0.003 0.003 ± 0.003

fluorescence 0.569 ± 0.204 0.129 ± 0.053 0.024 ± 0.023 0.004 ± 0.005 0.002 ± 0.002
bonnie 1.170 ± 0.412 0.300 ± 0.121 0.012 ± 0.011 0.004 ± 0.002 0.003 ± 0.001

fluor 0.611 ± 0.307 0.148 ± 0.083 0.009 ± 0.007 0.003 ± 0.001 0.002 ± 0.001
wine 6.826 ± 0.733 1.417 ± 0.191 0.012 ± 0.009 0.008 ± 0.006 0.007 ± 0.006

BCI_Berlin 0.193 ± 0.039 0.048 ± 0.013 0.057 ± 0.020 0.065 ± 0.022 0.055 ± 0.007
visor 0.002 ± 0.001 0.000 ± 0.000 0.007 ± 0.003 0.003 ± 0.001 0.001 ± 0.001

Table 3: Real data: Kendall’s tau against the ranking of Tucker ranks obtained by HOOI.

mach0.1 mach0.3 randsvd sample40 sample80

movie_gray -0.07 0.04 0.1 0.71 0.73
EEM 0.64 0.68 0.77 0.79 0.91

fluorescence 0.08 0.02 0.28 0.61 0.77
bonnie -0.05 -0.01 0.33 0.27 0.67

fluor 0.77 0.73 0.83 0.93 0.89
wine 0.12 0.12 -0.02 0.04 0.15

BCI_Berlin 0.08 0.09 0.02 0.18 0.45
visor 0.07 0.18 0.11 0.64 0.7

Table 4: Real data: runtime averaged over Tucker ranks (in seconds).

hooi mach0.1 mach0.3 randsvd sample40 sample80

movie_gray 0.71 32.19 85.13 0.33 0.13 0.25
EEM 3447.97 7424.8 7938.75 2212.54 0.11 0.11

fluorescence 2.67 30.05 73.52 1.47 0.13 0.23
bonnie 9.13 25.99 56.56 2.32 0.11 0.41

fluor 3.2 34.54 98.63 1.43 0.2 0.43
wine 142.34 95.28 212.19 41.94 0.12 0.23

BCI_Berlin 428.13 2765.88 7830 82.43 0.2 0.45
visor 10034.96 27897.85 27769.53 1950.45 0.13 0.26

Next, we evaluated the correctness of the order of Tucker ranks. For rank determination, it is important
that the rankings of Tucker ranks in terms of residual errors are consistent between the original and
the sampled tensors. For example, if the rank-(15, 15, 5) Tucker decomposition of the original tensor
achieves a lower error than the rank-(5, 15, 15) Tucker decomposition, this order relation should
be preserved in the sampled tensor. We evaluated this using Kendall’s tau coefficient, between the
rankings of Tucker ranks obtained by HOOI and the others. Kendall’s tau coefficient takes as its
value +1 when the two rankings are the same, and −1 when they are opposite. Table 3 shows the
results. We can see that, again, our method outperformed the others.

Table 4 shows the runtime averaged over all the rank settings. It shows that our method is consistently
the fastest. Note that MACH was slower than normal Tucker decomposition. This is possibly because
it must create an additional sparse tensor, which requires O(

∏
kNk) time complexity.

6 Discussion

One might point out by way of criticism that the residual error is not a satisfying measure for
determining rank. In machine learning and statistics, it is common to choose hyperparameters based
on the generalization error or its estimator, such as cross-validation (CV) error, rather than the training
error (i.e., the residual error in Tucker decomposition). Unfortunately, our approach cannot be used
the CV error, because what we can obtain is the minimum of the training error, whereas CV requires
us to plug in the minimizers. An alternative is to use information criteria such as Akaike [3] and
Bayesian information criteria [15]. These criteria are given by the penalty term, which consists of

8



the number of parameters and samples6, and the maximum log-likelihood. Because the maximum
log-likelihood is equivalent to the residual error, our method can approximate these criteria.

Python code of our algorithm is available at: https://github.com/hayasick/CTFT.
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