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Abstract

Recently, linear formulations and convex optimization methods have been
proposed to predict diffusion-weighted Magnetic Resonance Imaging (dMRI)
data given estimates of brain connections generated using tractography
algorithms. The size of the linear models comprising such methods grows
with both dMRI data and connectome resolution, and can become very
large when applied to modern data. In this paper, we introduce a method
to encode dMRI signals and large connectomes, i.e., those that range from
hundreds of thousands to millions of fascicles (bundles of neuronal axons), by
using a sparse tensor decomposition. We show that this tensor decomposition
accurately approximates the Linear Fascicle Evaluation (LiFE) model, one
of the recently developed linear models. We provide a theoretical analysis of
the accuracy of the sparse decomposed model, LiFESD, and demonstrate that
it can reduce the size of the model significantly. Also, we develop algorithms
to implement the optimization solver using the tensor representation in an
efficient way.
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1 Introduction

Multidimensional arrays, hereafter referred to as tensors, are useful mathematical objects to
model a variety of problems in machine learning [2, 47] and neuroscience [27, 8, 50, 48, 3, 26,
13]. Tensor decomposition algorithms have a long history of applications in signal processing,
however, only recently their relation to sparse representations has started to be explored
[35, 11]. In this work, we present a sparse tensor decomposition model and its associated
algorithm applied to diffusion-weighted Magnetic Resonance Imaging (dMRI).
Diffusion-weighted MRI allows us to estimate structural brain connections in-vivo by mea-
suring the diffusion of water molecules at different spatial directions. Brain connections
are comprised of a set of fascicles describing the putative position and orientation of the
neuronal axons bundles wrapped by myelin sheaths traveling within the living human brain
[25]. The process by which fascicles (the connectome) are identified from dMRI measurements
is called tractography. Tractography and dMRI are the primary methods for mapping struc-
tural brain networks and white matter tissue properties in living human brains [6, 46, 34].
Despite current limits and criticisms, through these methods we have learned much about
the macrostructural organization of the human brain, such that network neuroscience has
become one of the fastest-growing scientific fields [38, 43, 44].
In recent years, a large variety of tractography algorithms have been proposed and tested
on modern datasets such as the Human Connectome Project (HCP) [45]. However, it
has been established that the estimated anatomical properties of the fascicles depend on
data type, tractography algorithm and parameters settings [32, 39, 7]. Such variability in
estimates makes it difficult to trust a single algorithm for all applications, and calls for
routine statistical evaluation methods of brain connectomes [32]. For this reason, linear
methods based on convex optimization have been proposed for connectome evaluation [32, 39]
and simultaneous connectome and white matter microstructure estimation [15]. However,
these methods can require substantial computational resources (memory and computation
load) making it prohibitive to apply them to the highest resolution datasets.
In this article, we propose a method to encode brain connectomes in multidimensional arrays
and perform statistical evaluation efficiently on high-resolution datasets. The article is
organized as follows: in section 2, the connectome encoding method is introduced; in section
2.1, a linear formulation of the connectome evaluation problem is described; in section 3, the
approximated tensor decomposed model is introduced; in section 3.3, we derive a theoretical
bound of the approximation error and compute the theoretical compression factor obtained
with the tensor decomposition; in section 4 we develop algorithms to make the operations
needed for solving the connectome evaluation optimization problem; in section 5 we present
experimental results using high resolution in vivo datasets; finally, in section 6, the main
conclusions of our work are outlined.

2 Encoding brain connectomes into multidimensional array
structures.

We propose a framework to encode brain connectome data (both dMRI and white matter
fascicles) into tensors [12, 11, 23] to allow fast and efficient mathematical operations on the
structure of the connectome. Here, we introduce the tensor encoding framework and show
how it can be used to implement recent methods for statistical evaluation of tractography
[32]. More specifically, we demonstrate that the framework can be used to approximate the
Linear Fascicle Evaluation model [32] with high accuracy while reducing the size of the model
substantially (with measured compression factors up to 40x). Hereafter, we refer to the new
tensor encoding method as ENCODE [10]. ENCODE maps fascicles from their natural brain
space (Fig. 1(a)) into a three dimensional sparse tensor Φ (Fig. 1(b)). The first dimension
of Φ (1st mode) encodes each individual white matter fascicle’s orientation at each position
along their path through the brain. Individual segments (nodes) in a fascicle are coded as
non-zero entries in the sparse array (dark-blue cubes in Fig. 1(b)). The second dimension
of Φ (2nd mode) encodes each fascicle’s spatial position within dMRI data volume (voxels).
Slices in this second dimension represent single voxels (cyan lateral slice in Fig. 1(b)). The
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third dimension (3rd mode) encodes the indices of each fascicle within the connectome. Full
fascicles are encoded as Φ frontal slices (c.f., yellow and blue in Fig. 1(b)).
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Figure 1: The ENCODE method: mapping structural connectomes from natural brain space to
tensor space. (a) Two example white matter fascicles (f1 and f2) passing through three voxels (v1,
v2 and v3). (b) Encoding of the two fascicles in a three dimensional tensor. The non-zero entries in
Φ indicate fascicle’s orientation (1st mode), position (voxel, 2nd mode) and identity (3rd mode).

Below we demonstrate how to use ENCODE to integrate connectome each fascicle’s structure
and measured dMRI signal into a single tensor decomposition model. We then show how to
use this decompositon model to implement very efficiently a recent model for tractography
evaluation, the linear fascicle evaluation method, also referred to as LiFE [32]. Before
introducing the tensor decomposition method, we briefly describe the LiFE model, as this is
needed to explain the model decomposition using the ENCODE method. We then calculate
the theoretical bounds to accuracy and compression factor that can be achieved using
ENCODE and tensor decomposition. Finally, we report the results of experiments on real
data and validate the theoretical calculations.

2.1 Statistical evaluation for brain connectomes by convex optimization.

The Linear Fascicle Evaluation (LiFE) method was introduced to compute the statistical
error of the fascicles comprising a structural brain connectome in predicting the measured
diffusion signal [32]. The fundamental idea behind LiFE is that a connectome should contain
fascicles whose trajectories represent the measured diffusion signal well. LiFE implements
a method for connectome evaluation that can be used, among other things, to eliminate
tracked fascicles that do not predict well the diffusion signal. LiFE takes as input the set of
fascicles generated by using tractography methods (the candidate connectome) and returns
as output the subset of fascicles that best predict the measured dMRI signal (the optimized
connectome). Fascicles are scored with respect to how well their trajectories represent the
measured diffusion signal in the voxels along the their path. To do so, weights are assigned
to each fascicle using convex optimization. Fascicles assigned a weight of zero are removed
from the connectome, as their contribution to predicting the diffusion signal is null. The
following linear system describes the equation of LiFE (see Fig. 2(a)):

y ≈Mw, (2.1)
where y ∈ RNθNv is a vector containing the demeaned signal yi = S̄(θni , vi) measured
at all white-matter voxels vi ∈ V = {1, 2, . . . , Nv} and across all diffusion directions θn ∈
Θ = {θ1,θ2, . . . ,θNθ

} ⊂ R3, and w ∈ RNf contains the weights for each fascicle in the
connectome.
Matrix M ∈ RNθNv×Nf contains, at column f , the predicted demeaned signal contributed
by fascicle f at all voxels V and across all directions Θ:

M(i, f) = S0(vi)Of (θni ,vf ). (2.2)
S0(v) is defined as the non diffusion-weighted signal and Of (θ,vf ) is the orientation distri-
bution function [32] of fascicle f at diffusion direction θ, i.e.

Of (θ,vf ) = e−b(θ
Tvf )2

− 1
Nθ

∑
θn∈Θ

e−b(θ
T
nvf )2

, (2.3)
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Figure 2: The Linear Fascicle Evaluation (LiFE) model. (a) The predicted signal y ∈ RNθNv in
all voxels and gradient directions is obtained by multiplying matrix M ∈ RNθNv×Nf by the vector
of weights w ∈ RNf (see equation 2.1). (b) A voxel containing two fascicles, f1 and f2. (c) The
predicted diffusion signal yv ∈ RNθ at voxel v is approximated by a nonnegative weighted linear
combination of the predicted signals for the fascicles in the voxel.

where the simple “stick” diffusion tensor model [31] was used and vector vf ∈ R3 is defined
as the spatial orientation of the fascicle in that voxel.
Whereas vector y and matrix M in equation (2.1) are fully determined by the dMRI
measurements and the output of a tractography algorithm, respectively, the vector of weights
w needs to be estimated by solving a Non-Negative Least squares (NNLS) optimization
problem, which is defined as follows:

min
w

(
1
2‖y−Mw‖2

)
subject to wf ≥ 0,∀f. (2.4)

As a result, a sparse non-negative vector of weights w is obtained. Whereas nonzero weights
correspond to fascicles that contribute to predict the measured dMRI signal, fascicles with
zero weight make no contribution to predicting the measurements and can be eliminated.
In this way, LiFE identifies the fascicles supported by the data in a candidate connectome
providing a principled approach to evaluate connectomes in terms of prediction error as well
as the number of non-zero weighted fascicles.
A noticeable property of the LiFE method is that the size of matrix M in equation (2.1)
can require tens of gigabytes for full-brain connectomes, even when using optimized sparse
matrix formats [19]. Below we show how to use ENCODE to implement a sparse tensor
decomposition [9, 11] of matrix M. This decomposition allows accurate approximation of
the original LiFE model with dramatic reduction in memory requirements.

3 Theoretical results: Tensor decomposition and approximation
of the linear model for tractography evaluation.

We describe the theoretical approach to factorizing the LiFE model, eq. (2.1). We note
that matrix M ∈ RNθNv×Nf (Fig. 2(a)) can be rewritten as a tensor (3D-array) M ∈
RNθ×Nv×Nf by decoupling the gradient direction and voxel indices into separate indices, i.e.
M(ni, vi, f) = M(i, f), where ni = {1, 2, . . . , Nθ}, vi = {1, 2, . . . , Nv} and f = {1, 2, . . . , Nf}.
Thus, equation (2.1) can be rewritten in tensor form as follows:

Y ≈M×3 wT , (3.1)

where Y ∈ RNθ×Nv is obtained by converting vector y ∈ RNθNv into a matrix (matricization)
and “×n” is the tensor-by-matrix product in mode-n [23], more specifically, the mode-3
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product in the above equation is defined as follows: Y(n, v) =
∑Nf
f=1 M(n, v, f)wf . Below,

we show how to approximate the tensor model in equation (3.1) using a sparse Tucker
decomposition [9] by first focusing on the dMRI signal in individual voxels and then across
voxels.

Empty entries (zero values)

(a) 

Max. discretization error, 

(c) (b) 

Figure 3: The LiFESD model: (a) Each block Mv of matrix M (a lateral slice in tensor M) is
factorized by using a dictionary of diffusion signal predictions D and a sparse matrix of coefficients
Φv. (b) LiFESD model is written as a Tucker decomposition model with a sparse core tensor Φ and
factors D (mode-1) and wT (mode-3). (c). The maximum distance between a fascicle orientation
vector v and its approximation va is determined by the discretization of azimuth (∆α) and elevation
(∆β) spherical coordinates. More specifically, for ∆α = ∆β = π/L, the maximum discretization
error is ‖∆v‖ ≤ π√

2L .

3.1 Approximation of the linear model within individual brain voxels.

We focus on writing the linear formulation of the diffusion prediction model (Fig. 2(b)-(c))
by restricting equation (3.1) to individual voxels, v:

yv ≈Mvw, (3.2)

where vector yv = Y(:, v) ∈ RNθ and matrix Mv = M(:, v, :) ∈ RNθ×Nf , correspond to a
column in Y and a lateral slice in tensor M, respectively. We propose to factorize matrix
Mv as follows

Mv ≈ M̂v = DΦv, (3.3)
where matrix D ∈ RNθ×Na is a dictionary of diffusion predictions whose columns (atoms)
correspond to precomputed fascicle orientations, and Φv ∈ RNa×Nf is a sparse matrix
whose non-zero entries, Φv(a, f), indicate the orientation of fascicle f in voxel v, which
is approximated by atom a (see Fig. 3(a) for an example of a voxel v as shown in Fig.
2(b)-(c)). For computing the diffusion predictions, we use a discrete grid in the sphere
by uniformly sampling the spherical coordinates using L points in azimuth and elevation
coordinates (Fig. 2(c)).

3.2 Approximation of the linear model across multiple brain voxels.

By applying the approximation introduced in equation (3.3) to every slice in tensor M in
equation 3.1, we obtain the following tensor Sparse Decomposed LiFE model, hereafter
referred to as LiFESD (Fig. 3(b)):

Y ≈ Φ×1 D×3 wT , (3.4)

where D is a common factor in mode-1, i.e., it multiplies all lateral slices. It is noted that, the
formula in the above equation (3.4), is a particular case of the Tucker decomposition [42, 16]
where the core tensor Φ is sparse [9, 11], and only factors in mode-1 (D) and mode-3 (wT )
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are present. By comparing equations (3.4) and (3.1) we define the LiFESD approximated
tensor model as

M̂ = Φ×1 D (3.5)

3.3 Theoretical bound for model decomposition accuracy and data
compression.

In this section, we derive a theoretical bound on the accuracy of LiFESD compared to the
original LiFE model (Proposition 3.1) and we theoretically analyze the compression factor
associated to the factorized tensor approximation (Proposition 3.2). Hereafter, we assume
that, in a given connectome having Nf fascicles, each fascicle has a fixed number of nodes
(Nn), and the diffusion weighted measurements were taken on Nθ gradient directions with
a gradient strength b. The proofs of the propositions can be found in the Supplementary
material.
Proposition 3.1 (accuracy). For a given connectome, and dictionary D obtained by
uniformly sampling the azimuth-elevation (α, β) space using ∆α = ∆β = π/L (see Fig.
3(c)), the following upper bound on the Frobenius norm based model error is verified:

‖M− M̂‖F ≤
2bπ
√

6NfNnNθ

L
. (3.6)

The importance of this theoretical result is that the error is inversely proportional to the
discretization parameter L, which allows one to design the decomposed model so that a
prescribed accuracy is met.
Proposition 3.2 (size reduction). For a given connectome, and a dictionary D ∈ RNθ×Na

containing Na atoms (columns of matrix D), the achieved compression factor is

CF =
(

4
3Nθ

− Na
3NnNf

)−1
, (3.7)

where CF = C(M)/C(M̂), with C(M) and C(M̂) being the storage costs of LiFE and
LiFESD models, respectively.

It is noted that, usually 3NnNf � Na, which implies that the compression factor can be
approximated by CF ≈ 3Nθ

4 , i.e., it is proportional to the number of gradient directions Nθ.

4 Model optimization using tensor encoding.

Once the LiFESD model has been built, the final step to validate a connectome requires
finding the non-negative weights that least-squares fit the measured diffusion data. This is
a convex optimization problem that can be solved using a variety of NNLS optimization
algorithms. We used a NNLS algorithm based on first-order methods specially designed for
large scale problems [22]. Next, we show how to exploit the decomposed LiFESD model in
the optimization.
The gradient of the original objective function for the LiFE model can be written as follows:

∇w

(
1
2‖y−Mw‖2

)
= MTMw− 2MTy, (4.1)

where M ∈ RNθNv×Nf is the original LiFE model, w ∈ RNf the fascicle weights and
y ∈ RNθNv the demeaned diffusion signal. Because the decomposed version does not
explicitly store M, below we describe how to perform two basic operations (y = Mw and
w = MTy) using the sparse decomposition.

4.1 Computing y = Mw

Using equation (3.1) we can see that the product Mw can be computed using equation
(3.4) and vectorizing the result, i.e. y = vec(Y), where vec() stands for the vectorization
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operation, i.e., to convert a matrix to a vector by stacking its columns in a long vector. In
Algorithm 1, we present the steps for computing y = Mw in an efficient way.

Algorithm 1 : y = M_times_w(Φ,D,w)
Require: Decomposition components (Φ, D and vector w ∈ RNf ).
Ensure: y = Mw
1: Y = Φ×3 wT ; the result is a large but very sparse matrix (Na ×Nv)
2: Y = DY; the result is a relatively small matrix (Nθ ×Nv)
3: y = vec(Y)
4: return y;

4.2 Computing w = MTy

The product w = MTy can be computed using LiFESD in the following way:
w = MTy = M(3)y = Φ(3)(I⊗DT )y, (4.2)

where M(3) ∈ RNf×NθNv and Φ(3) ∈ RNf×NaNv are the unfolding matrices [23] of tensors
M ∈ RNθ×Nv×Nf and Φ ∈ RNa×Nv×Nf , respectively; ⊗ is the Kronecker product and I is
the (Nv ×Nv) identity matrix. Equation (4.2) can be written also as follows [9]:

w = Φ(3)vec(DTY). (4.3)

Because matrix Φ(3) is very sparse, we avoid computing the large and dense matrix DTY
and compute instead only its blocks that are being multiplied by the non-zero entries in
Φ(3). This allows maintaining efficient memory usage and limits the number of CPU cycles
needed. In Algorithm 2, we present the steps for computing w = MTy in an efficient way.

Algorithm 2 : w = Mtransp_times_y(Φ,D,y)
Require: Decomposition components (Φ, D) and vector y ∈ RNθNv .
Ensure: w = MTy
1: Y ∈ RNθ×Nv ← y ∈ RNθNv ; reshape vector y into a matrix Y
2: [a,v, f , c] = get_nonzero_entries(Φ); a(n), v(n), f(n), c(n) indicate the atom, the voxel, the

fascicle and the entry in tensor Φ associated to node n, respectively, with n = 1, 2, . . . , Nn;
3: w = 0 ∈ RNf ; Initialize weights with zeros
4: for n = 1 to Nn do
5: w(f(n)) = w(f(n)) + DT (:, a(n))Y(:, v(n))c(n);
6: end for
7: return w;

5 Experimental results: Validation of the theoretical bounds for
model decomposition accuracy and data compression.

Here, we validate our theoretical findings by using dMRI data from subjects in a public
source (the Stanford dataset [32]). The data were collected using Nθ = 96 (STN96, five
subjects) and Nθ = 150 (STN150, one subject) directions with b-value b = 2, 000s/mm2. We
performed tractography using these data and both, probabilistic and deterministic methods,
in combination with Constrained Spherical Deconvolution (CSD) and the diffusion tensor
model (DTI) [41, 17, 5]. We generated candidate connectomes with Nf = 500, 000 fascicles
per brain brain. See for [10, 32, 39] for additional details on data preprocessing.
We first analyzed the accuracy of the approximated model (LiFESD) as a function of the
parameter, L, which describes the number of fascicles orientations encoded in the dictionary D.
In theory, the larger the number of atoms in D the higher the accuracy of the approximation.
We show that model error (defined as eM = ‖M−M̂‖F

‖M‖F ) decreases as a function of the
parameter L for all subjects in the dataset Fig. 4(a). This result validates the theoretical
upper bound in Proposition 3.1. We also solved the convex optimization problem of equation
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(2.4) for both, LiFE and LiFESD, and estimated the error in the weights assigned to each
fascicle by the two models (we computed the error in weights as follows ew = ‖w−ŵ‖

‖w‖ ). Fig.
4(b) shows the error ew as a function of the parameter L. It is noted that for L > 180 the
error is lower than 0.1% in all subjects.
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Figure 4: Experimental results: (a) The model error eM in approximating the matrix M with
LiFESD is inversely proportional to the parameter L as predicted by our Proposition 3.1 (eM ≈ C/L
was fitted to the data with C = 27.78 and a fitting error equal to 2.94%). (b) Error in the weights
obtained by LiFESD compared with original LiFE’s weights, ew, as a function of parameter L.
(c)-(d) Model size (GB) scales linearly with the number of directions Nθ and the number of fascicles
Nf , however it increases much faster in the LiFE model compared to the LiFESD model. LiFESD
was computed using L = 360. (e)-(f) Probabilistic and deterministic connectomes validated with
LiFESD for a HCP subject. (g) Comparison of the Root-mean-squared-error (r.m.s, as defined in
[32]) obtained in all voxels for probabilistic and deterministic connectomes. The averaged r.m.s.e
are 361.12 and 423.06 for the probabilistic and deterministic cases, respectively.

Having experimentally demonstrated that model approximation error decreases as function
of L, we move on to demonstrate the magnitude of model compression achieved by the
tensor decomposition approach. To do so, we fixed L = 360 and computed the model size for
both, LiFE and LiFESD, as a function of the number of gradient directions Nθ (Fig. 4(c))
and fascicles Nf (Fig. 4(d)). Results show that, as predicted by our theoretical results in
Proposition 3.2, model size scales linearly with the number of directions for both, LiFE and
LiFESD, but that the difference in slope is profound. Experimentally measured compression
ratios raise up to approximately 40 as it is the case for the subjects in the STN150 dataset
(Nf = 500, 000 and Nθ = 150).
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Finally, we show an example comparison between two connectomes obtained by applying
probabilistic [17] and deterministic [4] tracking algorithms to one brain dataset (a single
subject) from the Human Connectome Project dataset [45], with Nθ = 90, Nv = 267, 306
and Nf = 500, 000. Figs. 4e-f show the detected 20 major tracts in a human brain using
only the fascicles with nonzero weigths. In this case, the probabilistic connectome has more
fascicles (121, 050) than the deterministic one (64, 134). Moreover, we replicate previous
results demonstrating that probabilistic connectomes have lower error than the deterministic
one in a majority of the voxels (see Fig. 4(g)).

6 Conclusions

We introduced a method to encode brain connectomes in multidimensional arrays and
decomposition approach that can accurately approximate the linear model for connectome
evaluation used in the LiFE method [32]. We demonstrate that the decomposition approach
dramatically reduces the memory requirements of the LiFE model, approximately from 40GB
to 1GB, with a small model approximation error of less than 1%. The compactness of the
decomposed LIFE model has important implications for other computational problems. For
example, model optimization can be implemented by using operations involving tensorial
operations avoiding the use of large matrices such as M and using instead the sparse tensor
and prediction dictionary (Φ and D respectively).
Multidimensional tensors and decomposition methods have been used to help investigators
make sense of large multimodal datasets [27, 11]. Yet to date these methods have found
only a few applications in neuroscience, such as performing multi-subject, clustering and
electroencephalography analyses [49, 48, 3, 28, 26, 13, 8]. Generally, decomposition methods
have been used to find compact representations of complex data by estimating the combination
of a limited number of common meaningful factors that best fit the data [24, 27, 23]. We
propose a new application that, instead of using the decomposition to estimate latent factors,
it encodes the structure of the problem explicitly.
The new application of tensor decomposition proposed here has the potential to improve
future generations of models of connectomics, tractography evaluation and microstructure
[32, 15, 36, 39]. Improving these models will allow going beyond the current limitations of
the state of the art methods [14]. Finally, tensorial representations for brain imaging data
have the potential to contribute advancing the application of machine learning algorithms to
mapping the human connectome [18, 37, 21, 20, 30, 1, 51, 29, 40, 33].
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