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Abstract

How to cluster event sequences generated via different point processes is an inter-
esting and important problem in statistical machine learning. To solve this problem,
we propose and discuss an effective model-based clustering method based on a
novel Dirichlet mixture model of a special but significant type of point processes —
Hawkes process. The proposed model generates the event sequences with different
clusters from the Hawkes processes with different parameters, and uses a Dirichlet
distribution as the prior distribution of the clusters. We prove the identifiability
of our mixture model and propose an effective variational Bayesian inference
algorithm to learn our model. An adaptive inner iteration allocation strategy is
designed to accelerate the convergence of our algorithm. Moreover, we investigate
the sample complexity and the computational complexity of our learning algorithm
in depth. Experiments on both synthetic and real-world data show that the clus-
tering method based on our model can learn structural triggering patterns hidden
in asynchronous event sequences robustly and achieve superior performance on
clustering purity and consistency compared to existing methods.

1 Introduction

In many practical situations, we need to deal with a huge amount of irregular and asynchronous
sequential data. Typical examples include the viewing records of users in an IPTV system, the
electronic health records of patients in hospitals, among many others. All of these data are so-called
event sequences, each of which contains a series of events with different types in the continuous time
domain, e.g., when and which TV program a user watched, when and which care unit a patient is
transferred to. Given a set of event sequences, an important task is learning their clustering structure
robustly. Event sequence clustering is meaningful for many practical applications. Take the previous
two examples: clustering IPTV users according to their viewing records is beneficial to the program
recommendation system and the ads serving system; clustering patients according to their health
records helps hospitals to optimize their medication resources.

Event sequence clustering is very challenging. Existing work mainly focuses on clustering syn-
chronous (or aggregated) time series with discrete time-lagged observations [19, 23, 39]. Event
sequences, on the contrary, are in the continuous time domain, so it is difficult to find a universal and
tractable representation for them. A potential solution is constructing features of event sequences via
parametric [22] or nonparametric [18] methods. However, these feature-based methods have a high
risk of overfitting because of the large number of parameters. What is worse, these methods actually
decompose the clustering problem into two phases: extracting features and learning clusters. As a
result, their clustering results are very sensitive to the quality of learned (or predefined) features.
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To make concrete progress, we propose a Dirichlet Mixture model of Hawkes Processes (DMHP
for short) and study its performance on event sequence clustering in depth. In this model, the event
sequences belonging to different clusters are modeled via different Hawkes processes. The priors
of the Hawkes processes’ parameters are designed based on their physically-meaningful constraints.
The prior of the clusters is generated via a Dirichlet distribution. We propose a variational Bayesian
inference algorithm to learn the DMHP model in a nested Expectation-Maximization (EM) framework.
In particular, we introduce a novel inner iteration allocation strategy into the algorithm with the help
of open-loop control theory, which improves the convergence of the algorithm. We prove the local
identifiability of our model and show that our learning algorithm has better sample complexity and
computational complexity than its competitors.

The contributions of our work include: 1) We propose a novel Dirichlet mixture model of Hawkes pro-
cesses and demonstrate its local identifiability. To our knowledge, it is the first systematical research
on the identifiability problem in the task of event sequence clustering. 2) We apply an adaptive inner
iteration allocation strategy based on open-loop control theory to our learning algorithm and show
its superiority to other strategies. The proposed strategy achieves a trade-off between convergence
performance and computational complexity. 3) We propose a DMHP-based clustering method. It
requires few parameters and is robust to the problems of overfitting and model misspecification,
which achieves encouraging clustering results.

2 Related Work

A temporal point process [4] is a random process whose realization consists of an event sequence
{(ti, ci)}Mi=1 with time stamps ti ∈ [0, T ] and event types ci ∈ C = {1, ..., C}. It can be equivalently
represented as C counting processes {Nc(t)}Cc=1, where Nc(t) is the number of type-c events
occurring at or before time t. A way to characterize point processes is via the intensity function
λc(t) = E[dNc(t)|HCt ]/dt, where HCt = {(ti, ci)|ti < t, ci ∈ C} collects historical events of all
types before time t. It is the expected instantaneous rate of happening type-c events given the history,
which captures the phenomena of interests, i.e., self-triggering [13] or self-correcting [44].

Hawkes Processes. A Hawkes process [13] is a kind of point processes modeling complicated event
sequences in which historical events have influences on current and future ones. It can also be viewed
as a cascade of non-homogeneous Poisson processes [8, 34]. We focus on the clustering problem of
the event sequences obeying Hawkes processes because Hawkes processes have been proven to be
useful for describing real-world data in many applications, e.g., financial analysis [1], social network
analysis [3, 51], system analysis [22], and e-health [30, 42]. Hawkes processes have a particular form
of intensity:

λc(t) = µc +
∑C

c′=1

∫ t

0

φcc′(s)dNc′(t− s), (1)

where µc is the exogenous base intensity independent of the history while
∑C
c′=1

∫ t
0
φcc′(s)dNc′(t−s)

the endogenous intensity capturing the peer influence. The decay in the influence of historical type-c′
events on the subsequent type-c events is captured via the so-called impact function φcc′(t), which is
nonnegative. A lot of existing work uses predefined impact functions with known parameters, e.g.,
the exponential functions in [29,50] and the power-law functions in [49]. To enhance the flexibility, a
nonparametric model of 1-D Hawkes process was first proposed in [16] based on ordinary differential
equation (ODE) and extended to multi-dimensional case in [22, 51]. Another nonparametric model
is the contrast function-based model in [30], which leads to a Least-Squares (LS) problem [7].
A Bayesian nonparametric model combining Hawkes processes with infinite relational model is
proposed in [3]. Recently, the basis representation of impact functions was used in [6,15,41] to avoid
discretization.

Sequential Data Clustering and Mixture Models. Traditional methods mainly focus on clustering
synchronous (or aggregated) time series with discrete time-lagged variables [19, 23, 39]. These
methods rely on probabilistic mixture models [46], extracting features from sequential data and
then learning clusters via a Gaussian mixture model (GMM) [25, 28]. Recently, a mixture model
of Markov chains is proposed in [21], which learns potential clusters from aggregate data. For
asynchronous event sequences, most of the existing clustering methods can be categorized into feature-
based methods, clustering event sequences from learned or predefined features. Typical examples
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include the Gaussian process-base multi-task learning method in [18] and the multi-task multi-
dimensional Hawkes processes in [22]. Focusing on Hawkes processes, the feature-based mixture
models in [5, 17, 47] combine Hawkes processes with Dirichlet processes [2, 36]. However, these
methods aim at modeling clusters of events or topics hidden in event sequences (i.e., sub-sequence
clustering), which cannot learn clusters of event sequences. To our knowledge, the model-based
clustering method for event sequences has been rarely considered.

3 Proposed Model

3.1 Dirichlet Mixture Model of Hawkes Processes

Given a set of event sequences S = {sn}Nn=1, where sn = {(ti, ci)}Mn
i=1 contains a series of events

ci ∈ C = {1, ..., C} and their time stamps ti ∈ [0, Tn], we model them via a mixture model of
Hawkes processes. According to the definition of Hawkes process in (1), for the event sequence
belonging to the k-th cluster its intensity function of type-c event at time t is

λkc (t) = µkc +
∑

ti<t
φkcci(t− ti) = µkc +

∑
ti<t

∑D

d=1
akccidgd(t− ti), (2)

where µk = [µkc ] ∈ RC+ is the exogenous base intensity of the k-th Hawkes process. Following the
work in [41], we represent each impact function φkcc′(t) via basis functions as

∑
d a

k
cc′dgd(t − ti),

where gd(t) ≥ 0 is the d-th basis function and Ak = [akcc′d] ∈ RC×C×D0+ is the coefficient tensor.
Here we use Gaussian basis function, and their number D can be decided automatically using the
basis selection method in [41].

In our mixture model, the probability of the appearance of an event sequence s is

p(s;Θ) =
∑

k
πkHP(s|µk,Ak), HP(s|µk,Ak) =

∏
i
λkci(ti) exp

(
−
∑

c

∫ T

0

λkc (s)ds
)
. (3)

Here πk’s are the probabilities of clusters and HP(s|µk,Ak) is the conditional probability of the
event sequence s given the k-th Hawkes process, which follows the intensity function-based definition
in [4]. According to the Bayesian graphical model, we regard the parameters of Hawkes processes,
{µk,Ak}, as random variables. For µk’s, we consider its positiveness and assume that they obey
C ×K independent Rayleigh distributions. ForAk’s, we consider its nonnegativeness and sparsity
as the work in [22, 41, 50]) did, and assume that they obey C ×C ×D ×K independent exponential
distributions. The prior of cluster is a Dirichlet distribution. Therefore, we can describe the proposed
Dirichlet mixture model of Hawkes process in a generative way as

π ∼ Dir(α/K, ..., α/K), k|π ∼ Category(π),
µ ∼ Rayleigh(B), A ∼ Exp(Σ), s|k,µ,A ∼ HP(µk,Ak),

Here µ = [µkc ] ∈ RC×K+ andA = [akcc′d] ∈ RC×C×D×K0+ are parameters of Hawkes processes, and
{B = [βkc ],Σ = [σkcc′d]} are hyper-parameters. Denote the latent variables indicating the labels of
clusters as matrix Z ∈ {0, 1}N×K . We can factorize the joint distribution of all variables as2

p(S,Z,π,µ,A) = p(S|Z,µ,A)p(Z|π)p(π)p(µ)p(A), where

p(S|Z,µ,A) =
∏

n,k
HP(sn|µk,Ak)znk , p(Z|π) =

∏
n,k

(πk)znk ,

p(π) = Dir(π|α), p(µ) =
∏

c,k
Rayleigh(µkc |βkc ), p(A) =

∏
c,c′,d,k

Exp(akcc′d|σkcc′d).

(4)

Our mixture model of Hawkes processes are different from the models in [5, 17, 47]. Those models
focus on the sub-sequence clustering problem within an event sequence. The intensity function is a
weighted sum of multiple intensity functions of different Hawkes processes. Our model, however,
aims at finding the clustering structure across different sequences. The intensity of each event is
generated via a single Hawkes process, while the likelihood of an event sequence is a mixture of
likelihood functions from different Hawkes processes.

2Rayleigh(x|β) = x
β2 e

− x2

2β2 , Exp(x|σ) = 1
σ
e−

x
σ , x ≥ 0.
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3.2 Local Identifiability

One of the most important questions about our mixture model is whether it is identifiable or not.
According to the definition of Hawkes process and the work in [26, 31], we can prove that our model
is locally identifiable. The proof of the following theorem is given in the supplementary file.
Theorem 3.1. When the time of observation goes to infinity, the mixture model of the Hawkes pro-
cesses defined in (3) is locally identifiable, i.e., for each parameter point Θ = vec

([
π1 ... πK

θ1 ... θK

])
,

where θk = {µk,Ak} ∈ RC+ × RC×C×D0+ for k = 1, ..,K, there exists an open neighborhood of Θ
containing no other Θ′ which makes p(s;Θ) = p(s;Θ′) holds for all possible s.

4 Proposed Learning Algorithm

4.1 Variational Bayesian Inference

Instead of using purely MCMC-based learning method like [29], we propose an effective variational
Bayesian inference algorithm to learn (4) in a nested EM framework. Specifically, we consider a
variational distribution having the following factorization:

q(Z,π,µ,A) = q(Z)q(π,µ,A) = q(Z)q(π)
∏

k
q(µk)q(Ak). (5)

An EM algorithm can be used to optimize (5).

Update Responsibility (E-step). The logarithm of the optimized factor q∗(Z) is approximated as

log q∗(Z) = Eπ[log p(Z|π)] + Eµ,A[log p(S|Z,µ,A)] + C

=
∑

n,k
znk

(
E[log πk] + E[logHP(sn|µk,Ak)]

)
+ C

=
∑

n,k
znk

(
E[log πk] + E[

∑
i
log λkci(ti)−

∑
c

∫ Tn

0

λkc (s)ds]
)
+ C

≈
∑

n,k
znk

(
E[log πk] +

∑
i

(
logE[λkci(ti)]−

Var[λkci(ti)]
2E2[λkci(ti)]

)
−
∑

c
E[
∫ Tn

0

λkc (s)ds]
)

︸ ︷︷ ︸
ρnk

+C.

where C is a constant and Var[·] represents the variance of random variable. Each term E[log λkc (t)]
is approximated via its second-order Taylor expansion logE[λkc (t)] −

Var[λkc (t)]
2E2[λkc (t)]

[37]. Then, the
responsibility rnk is calculated as

rnk = E[znk] = ρnk/(
∑

j
ρnj). (6)

Denote Nk =
∑
n rnk for all k’s.

Update Parameters (M-step). The logarithm of optimal factor q∗(π,µ,A) is

log q∗(π,µ,A)

=
∑

k
log(p(µk)p(Ak)) + EZ [log p(Z|π)] + log p(π) +

∑
n,k

rnk logHP(sn|µk,Ak) + C.

We can estimate the parameters of Hawkes processes via:

µ̂, Â = arg maxµ,A log(p(µ)p(A)) +
∑

n,k
rnk logHP(sn|µk,Ak). (7)

Following the work in [41, 47, 50], we need to apply an EM algorithm to solve (7) iteratively. After
getting optimal µ̂ and Â, we update distributions as

Σk = Âk, Bk =
√

2/πµ̂k. (8)

Update The Number of Clusters K. When the number of clusters K is unknown, we initialize K
randomly and update it in the learning phase. There are multiple methods to update the number of
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Figure 1: The data contain 200 event sequences generated via two 5-dimensional Hawkes processes.
(a) Each curve is the average of 5 trials’ results. In each trial, total 100 inner iterations are applied.
The increasing (decreasing) strategy changes the number of inner iterations from 2 to 8 (from 8 to 2).
The constant strategy fixes the number to 5. (b) The black line is the ground truth. The red dots are
responsibilities after 15 inner iterations, and the red line is their average.

clusters. Regrading our Dirichlet distribution as a finite approximation of a Dirichlet process, we set
a large initial K as the truncation level. A simple empirical method is discarding the empty cluster
(i.e., Nk = 0) and merging the cluster with Nk smaller than a threshold Nmin in the learning phase.
Besides this, we can apply the MCMC in [11, 48] to update K via merging or splitting clusters.

Repeating the three steps above, our algorithm maximizes the log-likelihood function (i.e., the
logarithm of (4)) and achieves optimal {Σ,B} accordingly. Both the details of our algorithm and its
computational complexity are given in the supplementary file.

4.2 Inner Iteration Allocation Strategy and Convergence Analysis

Our algorithm is in a nested EM framework, where the outer iteration corresponds to the loop of
E-step and M-step and the inner iteration corresponds to the inner EM in the M-step. The runtime of
our algorithm is linearly proportional to the total number of inner iterations. Given fixed runtime
(or the total number of inner iterations), both the final achievable log-likelihood and convergence
behavior of the algorithm highly depend on how we allocate the number of inner iterations across
the outer iterations. In this work, we test three inner iteration allocation strategies. The first
strategy is heuristic, which fixes, increases, or decreases the number of inner iterations as the outer
iteration progresses. Compared with constant inner iteration strategy, the increasing or decreasing
strategy might improve the convergence of algorithm [9]. The second strategy is based on open-loop
control [27]: in each outer iteration, we compute objective function via two methods respectively
— updating parameters directly (i.e., continuing current M-step and going to next inner iteration) or
first updating responsibilities and then updating parameters (i.e., going to a new loop of E-step and
M-step and starting a new outer iteration). The parameters corresponding to the smaller negative
log-likelihood are preserved. The third strategy is applying Bayesian optimization [33,35] to optimize
the number of inner iterations per outer iteration via maximizing the expected improvement.

We apply these strategies to a synthetic data set and visualize their impacts on the convergence of our
algorithm in Fig. 1(a). The open-loop control strategy and the Bayesian optimization strategy obtain
comparable performance on the convergence of algorithm. They outperform heuristic strategies (i.e.,
increasing, decreasing and fixing the number of inner iterations per outer iteration), which reduce the
negative log-likelihood more rapidly and reach lower value finally. Although adjusting the number of
inner iterations via different methodologies, both these two strategies tend to increase the number of
inner iterations w.r.t. the number of outer iterations. In the beginning of algorithm, the open-loop
control strategy updates responsibilities frequently, and similarly, the Bayesian optimization strategy
assigns small number of inner iterations. The heuristic strategy that increasing the number of inner
iterations follows the same tendency, and therefore, is just slightly worse than the open-loop control
and the Bayesian optimization. This phenomenon is because the estimated responsibility is not
reliable in the beginning. Too many inner iterations at that time might make learning results fall into
bad local optimums.

Fig. 1(b) further verifies our explanation. With the help of the increasing strategy, most of the
responsibilities converge to the ground truth with high confidence after just 15 inner iterations, because
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(a) MMHP+DPGMM
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(b) DMHP
Figure 2: Comparisons for various methods on F1 score of minor cluster.

the responsibilities has been updated over 5 times. On the contrary, the responsibilities corresponding
to the constant and the decreasing strategies have more uncertainty — many responsibilities are
around 0.5 and far from the ground truth.

Based on the analysis above, the increasing allocation strategy indeed improves the convergence
of our algorithm, and the open-loop control and the Bayesian optimization are superior to other
competitors. Because the computational complexity of the open-loop control is much lower than
that of the Bayesian optimization, in the following experiments, we apply open-loop control strategy
to our learning algorithm. The scheme of our learning algorithm and more detailed convergence
analysis can be found in the supplementary file.

4.3 Empirical Analysis of Sample Complexity

Focusing on the task of clustering event sequences, we investigate the sample complexity of our
DMHP model and its learning algorithm. In particular, we want to show that the clustering method
based on our model requires fewer samples than existing methods to identify clusters successfully.
Among existing methods, the main competitor of our method is the clustering method based on the
multi-task multi-dimensional Hawkes process (MMHP) model in [22]. It learns a specific Hawkes
process for each sequence and clusters the sequences via applying the Dirichlet processes Gaussian
mixture model (DPGMM) [10, 28] to the parameters of the corresponding Hawkes processes.

Following the work in [14], we demonstrate the superiority of our DMHP-based clustering method
through the comparison on the identifiability of minor clusters given finite number of samples.
Specifically, we consider a binary clustering problem with 500 event sequences. For the k-th cluster,
k = 1, 2, Nk event sequences are generated via a 1-dimensional Hawkes processes with parameter
θk = {µk,Ak}. Taking the parameter as a representation of the clustering center, we can calculate
the distance between two clusters as d = ‖θ1 − θ2‖2. Assume that N1 < N2, we denote the first
cluster as “minor” cluster, whose sample percentage is π1 = N1

N1+N2
. Applying our DMHP model

and its learning algorithm to the data generated with different d’s and π1’s, we can calculate the F1
scores of the minor cluster w.r.t. {d, π}. The high F1 score means that the minor cluster is identified
with high accuracy. Fig. 2 visualizes the maps of F1 scores generated via different methods w.r.t. the
number of events per sequence. We can find that the F1 score obtained via our DMHP-based method
is close to 1 in most situations. Its identifiable area (yellow part) is much larger than that of the
MMHP+DPGMM method consistently w.r.t. the number of events per sequence. The unidentifiable
cases happen only in the following two situations: the parameters of different clusters are nearly
equal (i.e., d→ 0); or the minor cluster is extremely small (i.e., π1 → 0). The enlarged version of
Fig. 2 is given in the supplementary file.

5 Experiments

To demonstrate the feasibility and the efficiency of our DMHP-based sequence clustering method, we
compare it with the state-of-the-art methods, including the vector auto-regressive (VAR) method [12],
the Least-Squares (LS) method in [7], and the multi-task multi-dimensional Hawkes process (MMHP)
in [22]. All of the three competitors first learn features of sequences and then apply the DPGMM [10]
to cluster sequences. The VAR discretizes asynchronous event sequences to time series and learns
transition matrices as features. Both the LS and the MMHP learn a specific Hawkes process for each
event sequence. For each event sequence, we calculate its infectivity matrix Φ = [φcc′ ], where the
element φcc′ is the integration of impact function (i.e.,

∫∞
0
φcc′(t)dt), and use it as the feature.
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Table 1: Clustering Purity on Synthetic Data.
Sine-like φ(t) Piecewise constant φ(t)

C K
VAR+ LS+ MMHP+ DMHP VAR+ LS+ MMHP+ DMHPDPGMM DPGMM DPGMM DPGMM DPGMM DPGMM

5

2 0.5235 0.5639 0.5917 0.9898 0.5222 0.5589 0.5913 0.8085
3 0.3860 0.5278 0.5565 0.9683 0.3618 0.4402 0.4517 0.7715
4 0.2894 0.4365 0.5112 0.9360 0.2901 0.3365 0.3876 0.7056
5 0.2543 0.3980 0.4656 0.9055 0.2476 0.2980 0.3245 0.6774

For the synthetic data with clustering labels, we use clustering purity [24] to evaluate various methods:

Purity =
1

N

∑K

k=1
maxj∈{1,...,K′} |Wk ∩ Cj |,

whereWk is the learned index set of sequences belonging to the k-th cluster, Cj is the real index set
of sequence belonging to the j-th class, and N is the total number of sequences. For the real-world
data, we visualize the infectivity matrix of each cluster and measure the clustering consistency via
a cross-validation method [38, 40]. The principle is simple: because random sampling does not
change the clustering structure of data, a clustering method with high consistency should preserve
the pairwise relationships of samples in different trials. Specifically, we test each clustering method
with J (= 100) trials. In the j-th trial, data is randomly divided into two folds. After learning the
corresponding model from the training fold, we apply the method to the testing fold. We enumerate
all pairs of sequences within a same cluster in the j-th trial and count the pairs preserved in all other
trials. The clustering consistency is the minimum proportion of preserved pairs over all trials:

Consistency = minj∈{1,..,J}
∑

j′ 6=j

∑
(n,n′)∈Mj

1{kj′n = kj
′

n′}
(J − 1)|Mj |

,

whereMj = {(n, n′)|kjn = kjn′} is the set of sequence pairs within same cluster in the j-th trial, and
kjn is the index of cluster of the n-th sequence in the j-th trial.

5.1 Synthetic Data

We generate two synthetic data sets with various clusters using sine-like impact functions and
piecewise constant impact functions respectively. In each data set, the number of clusters is set from 2
to 5. Each cluster contains 400 event sequences, and each event sequence contains 50 (=Mn) events
and 5 (= C) event types. The elements of exogenous base intensity are sampled uniformly from [0, 1].
Each sine-like impact function in the k-th cluster is formulated as φkcc′ = bkcc′(1−cos(ωkcc′(t−skcc′))),
where {bkcc′ , ωkcc′ , skcc′} are sampled randomly from [π5 ,

2π
5 ]. Each piecewise constant impact function

is the truncation of the corresponding sine-like impact function, i.e., 2bkcc′ × round(φkcc′/(2b
k
cc′)).

Table 1 shows the clustering purity of various methods on the synthetic data. Compared with the
three competitors, our DMHP obtains much better clustering purity consistently. The VAR simply
treats asynchronous event sequences as time series, which loses the information like the order of
events and the time delay of adjacent events. Both the LS and the MMHP learn Hawkes process for
each individual sequence, which might suffer to over-fitting problem in the case having few events
per sequence. These competitors decompose sequence clustering into two phases: learning feature
and applying DPGMM, which is very sensitive to the quality of feature. The potential problems
above lead to unsatisfying clustering results. Our DMHP method, however, is model-based, which
learns clustering result directly and reduces the number of unknown variables greatly. As a result,
our method avoids the problems of these three competitors and obtains superior clustering results.
Additionally, the learning results of the synthetic data with piecewise constant impact functions prove
that our DMHP method is relatively robust to the problem of model misspecification — although
our Gaussian basis cannot fit piecewise constant impact functions well, our method still outperforms
other methods greatly.

5.2 Real-world Data

We test our clustering method on two real-world data sets. The first is the ICU patient flow data used
in [43], which is extracted from the MIMIC II data set [32]. This data set contains the transition
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Table 2: Clustering Consistency on Real-world Data.
Method VAR+DPGMM LS+DPGMM MMHP+DPGMM DMHP

ICU Patient 0.0901 0.1390 0.3313 0.3778
IPTV User 0.0443 0.0389 0.1382 0.2004
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(c) MMHP+DPGMM
Figure 3: Comparisons on the ICU patient flow data.

processes of 30, 308 patients among different kinds of care units. The patients can be clustered
according to their transition processes. The second is the IPTV data set in [20, 22], which contains
7, 100 IPTV users’ viewing records collected via Shanghai Telecomm Inc. The TV programs are
categorized into 16 classes and the viewing behaviors more than 20 minutes are recorded. Similarly,
the users can be clustered according to their viewing records. The event sequences in these two data
have strong but structural triggering patterns, which can be modeled via different Hawkes processes.

Table 2 shows the performance of various clustering methods on the clustering consistency. We can
find that our method outperforms other methods obviously, which means that the clustering result
obtained via our method is more stable and consistent than other methods’ results. In Fig. 3 we
visualize the comparison for our method and its main competitor MMHP+DPGMM on the ICU
patient flow data. Fig. 3(a) shows the histograms of the number of clusters for the two methods. We
can find that MMHP+DPGMM method tends to over-segment data into too many clusters. Our DMHP
method, however, can find more compact clustering structure. The distribution of the number of
clusters concentrates to 6 and 19 for the two data sets, respectively. In our opinion, this phenomenon
reflects the drawback of the feature-based method — the clustering performance is highly dependent
on the quality of feature while the clustering structure is not considered sufficiently in the phase of
extracting feature. Taking learned infectivity matrices as representations of clusters, we compare our
DMHP method with MMHP+DPGMM in Figs. 3(b) and 3(c). The infectivity matrices obtained by
our DMHP are sparse and with distinguishable structure, while those obtained by MMHP+DPGMM
are chaotic — although MMHP also applies sparse regularizer to each event sequence’ infectivity
matrix, it cannot guarantee the average of the infectivity matrices in a cluster is still sparse. Same
phenomena can also be observed in the experiments on the IPTV data. More experimental results are
given in the supplementary file.

6 Conclusion and Future Work

In this paper, we propose and discuss a Dirichlet mixture model of Hawkes processes and achieve
a model-based solution to event sequence clustering. We prove the identifiability of our model
and analyze the convergence, sample complexity and computational complexity of our learning
algorithm. In the aspect of methodology, we plan to study other potential priors, e.g., the prior based
on determinantial point processes (DPP) in [45], to improve the estimation of the number of clusters,
and further accelerate our learning algorithm via optimizing inner iteration allocation strategy in near
future. Additionally, our model can be extended to Dirichlet process mixture model whenK →∞. In
that case, we plan to apply Bayesian nonparametrics to develop new learning algorithms. The source
code can be found at https://github.com/HongtengXu/Hawkes-Process-Toolkit.
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