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Abstract

Computational models in fields such as computational neuroscience are often
evaluated via stochastic simulation or numerical approximation. Fitting these
models implies a difficult optimization problem over complex, possibly noisy
parameter landscapes. Bayesian optimization (BO) has been successfully applied
to solving expensive black-box problems in engineering and machine learning.
Here we explore whether BO can be applied as a general tool for model fitting.
First, we present a novel hybrid BO algorithm, Bayesian adaptive direct search
(BADS), that achieves competitive performance with an affordable computational
overhead for the running time of typical models. We then perform an extensive
benchmark of BADS vs. many common and state-of-the-art nonconvex, derivative-
free optimizers, on a set of model-fitting problems with real data and models
from six studies in behavioral, cognitive, and computational neuroscience. With
default settings, BADS consistently finds comparable or better solutions than
other methods, including ‘vanilla’ BO, showing great promise for advanced BO
techniques, and BADS in particular, as a general model-fitting tool.

1 Introduction

Many complex, nonlinear computational models in fields such as behaviorial, cognitive, and compu-
tational neuroscience cannot be evaluated analytically, but require moderately expensive numerical
approximations or simulations. In these cases, finding the maximum-likelihood (ML) solution –
for parameter estimation, or model selection – requires the costly exploration of a rough or noisy
nonconvex landscape, in which gradients are often unavailable to guide the search.

Here we consider the problem of finding the (global) optimum x∗ = argminx∈XE [f(x)] of a
possibly noisy objective f over a (bounded) domain X ⊆ RD, where the function f can be intended
as the (negative) log likelihood of a parameter vector x for a given dataset and model, but is generally
a black box. With many derivative-free optimization algorithms available to the researcher [1], it is
unclear which one should be chosen. Crucially, an inadequate optimizer can hinder progress, limit
the complexity of the models that can be fit, and even cast doubt on the reliability of one’s findings.

Bayesian optimization (BO) is a state-of-the-art machine learning framework for optimizing expensive
and possibly noisy black-box functions [2, 3, 4]. This makes it an ideal candidate for solving difficult
model-fitting problems. Yet there are several obstacles to a widespread usage of BO as a general tool
for model fitting. First, traditional BO methods target very costly problems, such as hyperparameter
tuning [5], whereas evaluating a typical behavioral model might only have a moderate computational
cost (e.g., 0.1-10 s per evaluation). This implies major differences in what is considered an acceptable
algorithmic overhead, and in the maximum number of allowed function evaluations (e.g., hundreds vs.
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thousands). Second, it is unclear how BO methods would fare in this regime against commonly used
and state-of-the-art, non-Bayesian optimizers. Finally, BO might be perceived by non-practitioners
as an advanced tool that requires specific technical knowledge to be implemented or tuned.

We address these issues by developing a novel hybrid BO algorithm, Bayesian Adaptive Direct Search
(BADS), that achieves competitive performance at a small computational cost. We tested BADS,
together with a wide array of commonly used optimizers, on a novel benchmark set of model-fitting
problems with real data and models drawn from studies in cognitive, behaviorial and computational
neuroscience. Finally, we make BADS available as a free MATLAB package with the same user
interface as existing optimizers and that can be used out-of-the-box with no tuning.1

BADS is a hybrid BO method in that it combines the mesh adaptive direct search (MADS) framework
[6] (Section 2.1) with a BO search performed via a local Gaussian process (GP) surrogate (Section
2.2), implemented via a number of heuristics for efficiency (Section 3). BADS proves to be highly
competitive on both artificial functions and real-world model-fitting problems (Section 4), showing
promise as a general tool for model fitting in computational neuroscience and related fields.

Related work There is a large literature about (Bayesian) optimization of expensive, possibly
stochastic, computer simulations, mostly used in machine learning [3, 4, 5] or engineering (known
as kriging-based optimization) [7, 8, 9]. Recent work has combined MADS with treed GP models
for constrained optimization (TGP-MADS [9]). Crucially, these methods have large overheads and
may require problem-specific tuning, making them impractical as a generic tool for model fitting.
Cheaper but less precise surrogate models than GPs have been proposed, such as random forests [10],
Parzen estimators [11], and dynamic trees [12]. In this paper, we focus on BO based on traditional
GP surrogates, leaving the analysis of alternative models for future work (see Conclusions).

2 Optimization frameworks

2.1 Mesh adaptive direct search (MADS)

The MADS algorithm is a directional direct search framework for nonlinear optimization [6, 13].
Briefly, MADS seeks to improve the current solution by testing points in the neighborhood of the
current point (the incumbent), by moving one step in each direction on an iteration-dependent mesh.
In addition, the MADS framework can incorporate in the optimization any arbitrary search strategy
which proposes additional test points that lie on the mesh.

MADS defines the current mesh at the k-th iteration as Mk =
⋃

x∈Sk

{
x+ ∆mesh

k Dz : z ∈ ND
}

,
where Sk ⊂ Rn is the set of all points evaluated since the start of the iteration, ∆mesh

k ∈ R+ is the
mesh size, and D is a fixed matrix in RD×nD whose nD columns represent viable search directions.
We choose D = [ID,−ID], where ID is the identity matrix in dimension D.

Each iteration of MADS comprises of two stages, a SEARCH stage and an optional POLL stage. The
SEARCH stage evaluates a finite number of points proposed by a provided search strategy, with the
only restriction that the tested points lie on the current mesh. The search strategy is intended to inject
problem-specific information in the optimization. In BADS, we exploit the freedom of SEARCH to
perform Bayesian optimization in the neighborhood of the incumbent (see Section 2.2 and 3.3). The
POLL stage is performed if the SEARCH fails in finding a point with an improved objective value.
POLL constructs a poll set of candidate points, Pk, defined as Pk =

{
xk + ∆mesh

k v : v ∈ Dk
}
,

where xk is the incumbent and Dk is the set of polling directions constructed by taking discrete linear
combinations of the set of directions D. The poll size parameter ∆poll

k ≥ ∆mesh
k defines the maximum

length of poll displacement vectors ∆mesh
k v, for v ∈ Dk (typically, ∆poll

k ≈ ∆mesh
k ||v||). Points in the

poll set can be evaluated in any order, and the POLL is opportunistic in that it can be stopped as soon
as a better solution is found. The POLL stage ensures theoretical convergence to a local stationary
point according to Clarke calculus for nonsmooth functions [6, 14].

If either SEARCH or POLL are a success, finding a mesh point with an improved objective value, the
incumbent is updated and the mesh size remains the same or is multiplied by a factor τ > 1. If neither
SEARCH or POLL are successful, the incumbent does not move and the mesh size is divided by τ . The
algorithm proceeds until a stopping criterion is met (e.g., maximum budget of function evaluations).

1Code available at https://github.com/lacerbi/bads.
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2.2 Bayesian optimization

The typical form of Bayesian optimization (BO) [2] builds a Gaussian process (GP) approximation
of the objective f , which is used as a relatively inexpensive surrogate to guide the search towards
regions that are promising (low GP mean) and/or unknown (high GP uncertainty), according to a rule,
the acquisition function, that formalizes the exploitation-exploration trade-off.

Gaussian processes GPs are a flexible class of models for specifying prior distributions over
unknown functions f : X ⊆ RD → R [15]. GPs are specified by a mean function m : X → R and a
positive definite covariance, or kernel function k : X×X → R. Given any finite collection of n points
X =

{
x(i) ∈ X

}n
i=1

, the value of f at these points is assumed to be jointly Gaussian with mean
(m(x(1)), . . . ,m(x(n)))> and covariance matrix K, where Kij = k(x(i),x(j)) for 1 ≤ i, j ≤ n. We
assume i.i.d. Gaussian observation noise such that f evaluated at x(i) returns y(i) ∼ N

(
f(x(i)), σ2

)
,

and y = (y(1), . . . , y(n))> is the vector of observed values. For a deterministic f , we still assume a
small σ > 0 to improve numerical stability of the GP [16]. Conveniently, observation of such (noisy)
function values will produce a GP posterior whose latent marginal conditional mean µ(x; {X,y} ,θ)
and variance s2(x; {X,y} ,θ) at a given point are available in closed form (see Supplementary
Material), where θ is a hyperparameter vector for the mean, covariance, and likelihood. In the
following, we omit the dependency of µ and s2 from the data and GP parameters to reduce clutter.

Covariance functions Our main choice of stationary (translationally-invariant) covariance function
is the automatic relevance determination (ARD) rational quadratic (RQ) kernel,

kRQ (x,x′) = σ2
f

[
1 +

1

2α
r2(x,x′)

]−α
, with r2(x,x′) =

D∑
d=1

1

`2d
(xd − x′d)

2
, (1)

where σ2
f is the signal variance, `1, . . . , `D are the kernel length scales along each coordinate direction,

and α > 0 is the shape parameter. More common choices for Bayesian optimization include the
squared exponential (SE) kernel [9] or the twice-differentiable ARD Matérn 5/2 (M5/2) kernel [5],
but we found the RQ kernel to work best in combination with our method (see Section 4.2). We also
consider composite periodic kernels for circular or periodic variables (see Supplementary Material).

Acquisition function For a given GP approximation of f , the acquisition function, a : X → R,
determines which point in X should be evaluated next via a proxy optimization xnext = argminxa(x).
We consider here the GP lower confidence bound (LCB) metric [17],

aLCB (x; {X,y} ,θ) = µ (x)−
√
νβts2 (x), βt = 2 ln

(
Dt2π2/(6δ)

)
(2)

where ν > 0 is a tunable parameter, t is the number of function evaluations so far, δ > 0 is a
probabilistic tolerance, and βt is a learning rate chosen to minimize cumulative regret under certain
assumptions. For BADS we use the recommended values ν = 0.2 and δ = 0.1 [17]. Another popular
choice is the (negative) expected improvement (EI) over the current best function value [18], and an
historical, less used metric is the (negative) probability of improvement (PI) [19].

3 Bayesian adaptive direct search (BADS)

We describe here the main steps of BADS (Algorithm 1). Briefly, BADS alternates between a series
of fast, local BO steps (the SEARCH stage of MADS) and a systematic, slower exploration of the
mesh grid (POLL stage). The two stages complement each other, in that the SEARCH can explore
the space very effectively, provided an adequate surrogate model. When the SEARCH repeatedly
fails, meaning that the GP model is not helping the optimization (e.g., due to a misspecified model,
or excess uncertainty), BADS switches to POLL. The POLL stage performs a fail-safe, model-free
optimization, during which BADS gathers information about the local shape of the objective function,
so as to build a better surrogate for the next SEARCH. This alternation makes BADS able to deal
effectively and robustly with a variety of problems. See Supplementary Material for a full description.

3.1 Initial setup

Problem specification The algorithm is initialized by providing a starting point x0, vectors of hard
lower/upper bounds LB, UB, and optional vectors of plausible lower/upper bounds PLB, PUB, with the
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Algorithm 1 Bayesian Adaptive Direct Search
Input: objective function f , starting point x0, hard bounds LB, UB, (optional: plausible bounds PLB,

PUB, barrier function c, additional options)
1: Initialization: ∆mesh

0 ← 2−10, ∆poll
0 ← 1, k ← 0, evaluate f on initial design . Section 3.1

2: repeat
3: (update GP approximation at any step; refit hyperparameters if necessary) . Section 3.2
4: for 1 . . . nsearch do . SEARCH stage, Section 3.3
5: xsearch ← SEARCHORACLE . local Bayesian optimization step
6: Evaluate f on xsearch, if improvement is sufficient then break
7: if SEARCH is NOT successful then . optional POLL stage, Section 3.3
8: compute poll set Pk
9: evaluate opportunistically f on Pk sorted by acquisition function

10: if iteration k is successful then
11: update incumbent xk+1

12: if POLL was successful then ∆mesh
k ← 2∆mesh

k , ∆poll
k ← 2∆poll

k
13: else
14: ∆mesh

k ← 1
2∆mesh

k , ∆poll
k ← 1

2∆poll
k

15: k ← k + 1
16: until fevals > MaxFunEvals or ∆poll

k < 10−6 or stalling . stopping criteria
17: return xend = arg mink f(xk) (or xend = arg mink qβ(xk) for noisy objectives, Section 3.4)

requirement that for each dimension 1 ≤ d ≤ D, LBd ≤ PLBd < PUBd ≤ UBd.2 Plausible bounds
identify a region in parameter space where most solutions are expected to lie. Hard upper/lower
bounds can be infinite, but plausible bounds need to be finite. Problem variables whose hard bounds
are strictly positive and UBd ≥ 10 · LBd are automatically converted to log space. All variables
are then linearly rescaled to the standardized box [−1, 1]D such that the box bounds correspond
to [PLB, PUB] in the original space. BADS supports bound or no constraints, and optionally other
constraints via a provided barrier function c (see Supplementary Material). The user can also specify
circular or periodic dimensions (such as angles); and whether the objective f is deterministic or noisy
(stochastic), and in the latter case provide a coarse estimate of the noise (see Section 3.4).

Initial design The initial design consists of the provided starting point x0 and ninit = D additional
points chosen via a space-filling quasi-random Sobol sequence [20] in the standardized box, and
forced to lie on the mesh grid. If the user does not specify whether f is deterministic or stochastic,
the algorithm assesses it by performing two consecutive evaluations at x0.

3.2 GP model in BADS

The default GP model is specified by a constant mean function m ∈ R, a smooth ARD RQ kernel
(Eq. 1), and we use aLCB (Eq. 2) as a default acquisition function.

Hyperparameters The default GP has hyperparameters θ = (`1, . . . , `D, σ
2
f , α, σ

2,m). We
impose an empirical Bayes prior on the GP hyperparameters based on the current training set
(see Supplementary Material), and select θ via maximum a posteriori (MAP) estimation. We fit θ
via a gradient-based nonlinear optimizer, starting from either the previous value of θ or a weighted
draw from the prior, as a means to escape local optima. We refit the hyperparameters every 2D
to 5D function evaluations; more often earlier in the optimization, and whenever the current GP
is particularly inaccurate at predicting new points, according to a normality test on the residuals,
z(i) =

(
y(i) − µ(x(i))

)
/
√
s2(x(i)) + σ2 (assumed independent, in first approximation).

Training set The GP training set X consists of a subset of the points evaluated so far (the cache),
selected to build a local approximation of the objective in the neighborhood of the incumbent xk,
constructed as follows. Each time X is rebuilt, points in the cache are sorted by their `-scaled distance
r2 (Eq. 1) from xk. First, the closest nmin = 50 points are automatically added to X. Second,
up to 10D additional points with r ≤ 3ρ(α) are included in the set, where ρ(α) & 1 is a radius

2A variable d can be fixed by setting (x0)d = LBd = UBd = PLBd = PUBd. Fixed variables become
constants, and BADS runs on an optimization problem with reduced dimensionality.
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function that depends on the decay of the kernel. For the RQ kernel, ρRQ(α) =
√
α
√
e1/α − 1 (see

Supplementary Material). Newly evaluated points are added incrementally to the set, using fast
rank-one updates of the GP posterior. The training set is rebuilt any time the incumbent is moved.

3.3 Implementation of the MADS framework

We initialize ∆poll
0 = 1 and ∆mesh

0 = 2−10 (in standardized space), such that the initial poll steps can
span the plausible region, whereas the mesh grid is relatively fine. We use τ = 2, and increase the
mesh size only after a successful POLL. We skip the POLL after a successful SEARCH.

Search stage We apply an aggressive, repeated SEARCH strategy that consists of up to nsearch =
max{D, b3 +D/2c} unsuccessful SEARCH steps. In each step, we use a search oracle, based on a
local BO with the current GP, to produce a search point xsearch (see below). We evaluate f(xsearch)
and add it to the training set. If the improvement in objective value is none or insufficient, that is less
than (∆poll

k )3/2, we continue searching, or switch to POLL after nsearch steps. Otherwise, we call it a
success and start a new SEARCH from scratch, centered on the updated incumbent.

Search oracle We choose xsearch via a fast, approximate optimization inspired by CMA-ES [21].
We sample batches of points in the neighborhood of the incumbent xk, drawn∼ N (xs, λ

2(∆poll
k )2Σ),

where xs is the current search focus, Σ a search covariance matrix, and λ > 0 a scaling factor, and
we pick the point that optimizes the acquisition function (see Supplementary Material). We remove
from the SEARCH set candidate points that violate non-bound constraints (c(x) > 0), and we project
candidate points that fall outside hard bounds to the closest mesh point inside the bounds. Across
SEARCH steps, we use both a diagonal matrix Σ` with diagonal

(
`21/|`|2, . . . , `2D/|`|2

)
, and a matrix

ΣWCM proportional to the weighted covariance matrix of points in X (each point weighted according
to a function of its ranking in terms of objective values yi). We choose between Σ` and ΣWCM
probabilistically via a hedge strategy, based on their track record of cumulative improvement [22].

Poll stage We incorporate the GP approximation in the POLL in two ways: when constructing the
set of polling directions Dk, and when choosing the polling order. We generate Dk according to the
random LTMADS algorithm [6], but then rescale each vector coordinate 1 ≤ d ≤ D proportionally
to the GP length scale `d (see Supplementary Material). We discard poll vectors that do not satisfy
the given bound or nonbound constraints. Second, since the POLL is opportunistic, we evaluate points
in the poll set according to the ranking given by the acquisition function [9].

Stopping criteria We stop the optimization when the poll size ∆poll
k goes below a threshold (default

10−6); when reaching a maximum number of objective evaluations (default 500D); or if there is no
significant improvement of the objective for more than 4 + bD/2c iterations. The algorithm returns
the optimum xend (transformed back to original coordinates) with the lowest objective value yend.

3.4 Noisy objective

In case of a noisy objective, we assume for the noise a hyperprior lnσ ∼ N (lnσest, 1), with σest
a base noise magnitude (default σest = 1, but the user can provide an estimate). To account for
additional uncertainty, we also make the following changes: double the minimum number of points
added to the training set, nmin = 100, and increase the maximum number to 200; increase the initial
design to ninit = 20; and double the number of allowed stalled iterations before stopping.

Uncertainty handling Due to noise, we cannot simply use the output values yi as ground truth in
the SEARCH and POLL stages. Instead, we replace yi with the GP latent quantile function [23]

qβ (x; {X,y} ,θ) ≡ qβ(x) = µ (x) + Φ−1(β)s (x) , β ∈ [0.5, 1), (3)

where Φ−1(·) is the quantile function of the standard normal (plugin approach [24]). Moreover, we
modify the MADS procedure by keeping an incumbent set {xi}ki=1, where xi is the incumbent at the
end of the i-th iteration. At the end of each POLL we re-evaluate qβ for all elements of the incumbent
set, in light of the new points added to the cache. We select as current (active) incumbent the point
with lowest qβ(xi). During optimization we set β = 0.5 (mean prediction only), which promotes
exploration. We use a conservative βend = 0.999 for the last iteration, to select the optimum xend
returned by the algorithm in a robust manner. Instead of yend, we return either µ(xend) or an unbiased
estimate of E[f(xend)] obtained by averaging multiple evaluations (see Supplementary Material).
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4 Experiments

We tested BADS and many optimizers with implementation available in MATLAB (R2015b, R2017a)
on a large set of artificial and real optimization problems (see Supplementary Material for details).

4.1 Design of the benchmark

Algorithms Besides BADS, we tested 16 optimization algorithms, including popular choices
such as Nelder-Mead (fminsearch [25]), several constrained nonlinear optimizers in the fmincon
function (default interior-point [26], sequential quadratic programming sqp [27], and active-set
actset [28]), genetic algorithms (ga [29]), random search (randsearch) as a baseline [30]; and
also less-known state-of-the-art methods for nonconvex derivative-free optimization [1], such as
Multilevel Coordinate Search (MCS [31]) and CMA-ES [21, 32] (cmaes, in different flavors). For
noisy objectives, we included algorithms that explicitly handle uncertainty, such as snobfit [33]
and noisy CMA-ES [34]. Finally, to verify the advantage of BADS’ hybrid approach to BO, we also
tested a standard, ‘vanilla’ version of BO [5] (bayesopt, R2017a) on the set of real model-fitting
problems (see below). For all algorithms, including BADS, we used default settings (no fine-tuning).

Problem sets First, we considered a standard benchmark set of artificial, noiseless functions
(BBOB09 [35], 24 functions) in dimensions D ∈ {3, 6, 10, 15}, for a total of 96 test functions. We
also created ‘noisy’ versions of the same set. Second, we collected model-fitting problems from six
published or ongoing studies in cognitive and computational neuroscience (CCN17). The objectives
of the CCN17 set are negative log likelihood functions of an input parameter vector, for specified
datasets and models, and can be deterministic or stochastic. For each study in the CCN17 set we
asked its authors for six different real datasets (i.e., subjects or neurons), divided between one or two
main models of interest; collecting a total of 36 test functions with D ∈ {6, 9, 10, 12, 13}.

Procedure We ran 50 independent runs of each algorithm on each test function, with randomized
starting points and a budget of 500×D function evaluations (200×D for noisy problems). If an
algorithm terminated before depleting the budget, it was restarted from a new random point. We
consider a run successful if the current best (or returned, for noisy problems) function value is within a
given error tolerance ε > 0 from the true optimum fmin (or our best estimate thereof).3 For noiseless
problems, we compute the fraction of successful runs as a function of number of objective evaluations,
averaged over datasets/functions and over ε ∈ [0.01, 10] (log spaced). This is a realistic range for ε,
as differences in log likelihood below 0.01 are irrelevant for model selection; an acceptable tolerance
is ε ∼ 0.5 (a difference in deviance, the metric used for AIC or BIC, less than 1); larger ε associate
with coarse solutions, but errors larger than 10 would induce excessive biases in model selection. For
noisy problems, what matters most is the solution xend that the algorithm actually returns, which,
depending on the algorithm, may not necessarily be the point with the lowest observed function value.
Since, unlike the noiseless case, we generally do not know the solutions that would be returned by any
algorithm at every time step, but only at the last step, we plot instead the fraction of successful runs
at 200×D function evaluations as a function of ε, for ε ∈ [0.1, 10] (noise makes higher precisions
moot), and averaged over datasets/functions. In all plots we omit error bars for clarity (standard errors
would be about the size of the line markers or less).

4.2 Results on artificial functions (BBOB09)

The BBOB09 noiseless set [35] comprises of 24 functions divided in 5 groups with different properties:
separable; low or moderate conditioning; unimodal with high conditioning; multi-modal with adequate
/ with weak global structure. First, we use this benchmark to show the performance of different
configurations for BADS. Note that we selected the default configuration (RQ kernel, aLCB) and
other algorithmic details by testing on a different benchmark set (see Supplementary Material). Fig 1
(left) shows aggregate results across all noiseless functions with D ∈ {3, 6, 10, 15}, for alternative
choices of kernels and acquisition functions (only a subset is shown, such as the popular M5/2, EI
combination), or by altering other features (such as setting nsearch = 1, or fixing the search covariance
matrix to Σ` or ΣWCM). Almost all changes from the default configuration worsen performance.

3Note that the error tolerance ε is not a fractional error, as sometimes reported in optimization, because for
model comparison we typically care about (absolute) differences in log likelihoods.
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Figure 1: Artificial test functions (BBOB09). Left & middle: Noiseless functions. Fraction of
successful runs (ε ∈ [0.01, 10]) vs. # function evaluations per # dimensions, for D ∈ {3, 6, 10, 15}
(96 test functions); for different BADS configurations (left) and all algorithms (middle). Right:
Heteroskedastic noise. Fraction of successful runs at 200×D objective evaluations vs. tolerance ε.

Noiseless functions We then compared BADS to other algorithms (Fig 1 middle). Depending on
the number of function evaluations, the best optimizers are BADS, methods of the fmincon family,
and, for large budget of function evaluations, CMA-ES with active update of the covariance matrix.

Noisy functions We produce noisy versions of the BBOB09 set by adding i.i.d. Gaussian obser-
vation noise at each function evaluation, y(i) = f(x(i)) + σ(x(i))η(i), with η(i) ∼ N (0, 1). We
consider a variant with moderate homoskedastic (constant) noise (σ = 1), and a variant with het-
eroskedastic noise with σ(x) = 1+0.1×(f(x)−fmin), which follows the observation that variability
generally increases for solutions away from the optimum. For many functions in the BBOB09 set, this
heteroskedastic noise can become substantial (σ � 10) away from the optimum. Fig 1 (right) shows
aggregate results for the heteroskedastic set (homoskedastic results are similar). BADS outperforms
all other optimizers, with CMA-ES (active, with or without the noisy option) coming second.

Notably, BADS performs well even on problems with non-stationary (location-dependent) features,
such as heteroskedastic noise, thanks to its local GP approximation.

4.3 Results on real model-fitting problems (CCN17)

The objectives of the CCN17 set are deterministic (e.g., computed via numerical approximation) for
three studies (Fig 2), and noisy (e.g., evaluated via simulation) for the other three (Fig 3).

The algorithmic cost of BADS is ∼ 0.03 s to 0.15 s per function evaluation, depending on D, mostly
due to the refitting of the GP hyperparameters. This produces a non-negligible overhead, defined as
100%× (total optimization time / total function time −1). For a fair comparison with other methods
with little or no overhead, for deterministic problems we also plot the effective performance of BADS
by accounting for the extra cost per function evaluation. In practice, this correction shifts rightward
the performance curve of BADS in log-iteration space, since each function evaluation with BADS has
an increased fractional time cost. For stochastic problems, we cannot compute effective performance
as easily, but there we found small overheads (< 5%), due to more costly evaluations (more than 1 s).

For a direct comparison with standard BO, we also tested on the CCN17 set a ‘vanilla’ BO algorithm,
as implemented in MATLAB R2017a (bayesopt). This implementation closely follows [5], with
optimization instead of marginalization over GP hyperparameters. Due to the fast-growing cost of
BO as a function of training set size, we allowed up to 300 training points for the GP, restarting the
BO algorithm from scratch with a different initial design every 300 BO iterations (until the total
budget of function evaluations was exhausted). The choice of 300 iterations already produced a large
average algorithmic overhead of ∼ 8 s per function evaluation. In showing the results of bayesopt,
we display raw performance without penalizing for the overhead.

Causal inference in visuo-vestibular perception Causal inference (CI) in perception is the pro-
cess whereby the brain decides whether to integrate or segregate multisensory cues that could arise
from the same or from different sources [39]. This study investigates CI in visuo-vestibular heading

7



10 50 100 500

Function evaluations / D

0

0.25

0.5

0.75

1

F
ra

ct
io

n
 s

ol
ve

d

CCN17 causal inference

[overhead-corrected, 24%]
bads
bads
cmaes (active)
cmaes
fminsearch
patternsearch
particleswarm
global
simulannealbnd
fmincon
fmincon (sqp)
mcs
ga
fmincon (actset)
randsearch
bayesopt

10 50 100 500

Function evaluations / D

0

0.25

0.5

0.75

1

F
ra

ct
io

n
 s

ol
ve

d

CCN17 Bayesian confidence

bads
bads
fmincon
fmincon (sqp)
fmincon (actset)
cmaes (active)
cmaes
mcs
patternsearch
fminsearch
particleswarm
global
randsearch
simulannealbnd
ga
bayesopt

10 50 100 500

Function evaluations / D

0

0.25

0.5

0.75

1

F
ra

ct
io

n
 s

ol
ve

d

CCN17 neuronal selectivity

bads
bads
fmincon
fmincon (sqp)
fmincon (actset)
cmaes (active)
cmaes
mcs
fminsearch
patternsearch
simulannealbnd
ga
global
particleswarm
randsearch
bayesopt

[overhead-corrected, 68%] [overhead-corrected, 14%]

Figure 2: Real model-fitting problems (CCN17, deterministic). Fraction of successful runs (ε ∈
[0.01, 10]) vs. # function evaluations per # dimensions. Left: Causal inference in visuo-vestibular
perception [36] (6 subjects, D = 10). Middle: Bayesian confidence in perceptual categorization [37]
(6 subjects, D = 13). Right: Neural model of orientation selectivity [38] (6 neurons, D = 12).

perception across tasks and under different levels of visual reliability, via a factorial model comparison
[36]. For our benchmark we fit three subjects with a Bayesian CI model (D = 10), and another three
with a fixed-criterion CI model (D = 10) that disregards visual reliability. Both models include
heading-dependent likelihoods and marginalization of the decision variable over the latent space of
noisy sensory measurements (xvis, xvest), solved via nested numerical integration in 1-D and 2-D.

Bayesian confidence in perceptual categorization This study investigates the Bayesian confi-
dence hypothesis that subjective judgments of confidence are directly related to the posterior probabil-
ity the observer assigns to a learnt perceptual category [37] (e.g., whether the orientation of a drifting
Gabor patch belongs to a ‘narrow’ or to a ‘wide’ category). For our benchmark we fit six subjects
to the ‘Ultrastrong’ Bayesian confidence model (D = 13), which uses the same mapping between
posterior probability and confidence across two tasks with different distributions of stimuli. This
model includes a latent noisy decision variable, marginalized over via 1-D numerical integration.

Neural model of orientation selectivity The authors of this study explore the origins of diversity of
neuronal orientation selectivity in visual cortex via novel stimuli (orientation mixtures) and modeling
[38]. We fit the responses of five V1 and one V2 cells with the authors’ neuronal model (D = 12)
that combines effects of filtering, suppression, and response nonlinearity [38]. The model has one
circular parameter, the preferred direction of motion of the neuron. The model is analytical but still
computationally expensive due to large datasets and a cascade of several nonlinear operations.

Word recognition memory This study models a word recognition task in which subjects rated their
confidence that a presented word was in a previously studied list [40] (data from [41]). We consider
six subjects divided between two normative models, the ‘Retrieving Effectively from Memory’ model
[42] (D = 9) and a similar, novel model4 (D = 6). Both models use Monte Carlo methods to draw
random samples from a large space of latent noisy memories, yielding a stochastic log likelihood.

Target detection and localization This study looks at differences in observers’ decision making
strategies in target detection (‘was the target present?’) and localization (‘which one was the target?’)
with displays of 2, 3, 4, or 6 oriented Gabor patches.5 Here we fit six subjects with a previously
derived ideal observer model [43, 44] (D = 6) with variable-precision noise [45], assuming shared
parameters between detection and localization. The log likelihood is evaluated via simulation due to
marginalization over latent noisy measurements of stimuli orientations with variable precision.

Combinatorial board game playing This study analyzes people’s strategies in a four-in-a-row
game played on a 4-by-9 board against human opponents ([46], Experiment 1). We fit the data of six
players with the main model (D = 10), which is based on a Best-First exploration of a decision tree
guided by a feature-based value heuristic. The model also includes feature dropping, value noise, and
lapses, to better capture human variability. Model evaluation is computationally expensive due to the

4Unpublished; upcoming work from Aspen H. Yoo and Wei Ji Ma.
5Unpublished; upcoming work from Andra Mihali and Wei Ji Ma.
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Figure 3: Real model-fitting problems (CCN17, noisy). Fraction of successful runs at 200 × D
objective evaluations vs. tolerance ε. Left: Confidence in word recognition memory [40] (6 subjects,
D = 6, 9). Middle: Target detection and localization [44] (6 subjects, D = 6). Right: Combinatorial
board game playing [46] (6 subjects, D = 10).

construction and evaluation of trees of future board states, and achieved via inverse binomial sampling,
an unbiased stochastic estimator of the log likelihood [46]. Due to prohibitive computational costs,
here we only test major algorithms (MCS is the method used in the paper [46]); see Fig 3 right.

In all problems, BADS consistently performs on par with or outperforms all other tested optimizers,
even when accounting for its extra algorithmic cost. The second best algorithm is either some flavor
of CMA-ES or, for some deterministic problems, a member of the fmincon family. Crucially, their
ranking across problems is inconsistent, with both CMA-ES and fmincon performing occasionally
quite poorly (e.g., fmincon does poorly in the causal inference set because of small fluctuations
in the log likelihood landscape caused by coarse numerical integration). Interestingly, vanilla BO
(bayesopt) performs poorly on all problems, often at the level of random search, and always
substantially worse than BADS, even without accounting for the much larger overhead of bayesopt.
The solutions found by bayesopt are often hundreds (even thousands) points of log likelihood from
the optimum. This failure is possibly due to the difficulty of building a global GP surrogate for BO,
coupled with strong non-stationarity of the log likelihood functions; and might be ameliorated by more
complex forms of BO (e.g., input warping to produce nonstationary kernels [47], hyperparameter
marginalization [5]). However, these advanced approaches would substantially increase the already
large overhead. Importantly, we expect this poor perfomance to extend to any package which
implements vanilla BO (such as BayesOpt [48]), regardless of the efficiency of implementation.

5 Conclusions

We have developed a novel BO method and an associated toolbox, BADS, with the goal of fitting
moderately expensive computational models out-of-the-box. We have shown on real model-fitting
problems that BADS outperforms widely used and state-of-the-art methods for nonconvex, derivative-
free optimization, including ‘vanilla’ BO. We attribute the robust performance of BADS to the
alternation between the aggressive SEARCH strategy, based on local BO, and the failsafe POLL stage,
which protects against failures of the GP surrogate – whereas vanilla BO does not have such failsafe
mechanisms, and can be strongly affected by model misspecification. Our results demonstrate that
a hybrid Bayesian approach to optimization can be beneficial beyond the domain of very costly
black-box functions, in line with recent advancements in probabilistic numerics [49].

Like other surrogate-based methods, the performance of BADS is linked to its ability to obtain a fast
approximation of the objective, which generally deteriorates in high dimensions, or for functions
with pathological structure (often improvable via reparameterization). From our tests, we recommend
BADS, paired with some multi-start optimization strategy, for models with up to ∼ 15 variables,
a noisy or jagged log likelihood landscape, and when algorithmic overhead is . 75% (e.g., model
evaluation & 0.1 s). Future work with BADS will focus on testing alternative statistical surrogates
instead of GPs [12]; combining it with a smart multi-start method for global optimization; providing
support for tunable precision of noisy observations [23]; improving the numerical implementation;
and recasting some of its heuristics in terms of approximate inference.
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