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Abstract

Many real world dynamical systems are described by stochastic differential equa-
tions. Thus parameter inference is a challenging and important problem in many
disciplines. We provide a grid free and flexible algorithm offering parameter and
state inference for stochastic systems and compare our approch based on variational
approximations to state of the art methods showing significant advantages both in
runtime and accuracy.

1 Introduction

A dynamical system is represented by a set of K stochastic differential equations (SDE’s) with model
parameters θ that describe the evolution of K states X(t) = [x1(t), x2(t), . . . , xK(t)]T such that:

dX(t) = f(X(t),θ)dt+ ΣdWt, (1)

where Wt is a Wiener process. A sequence of observations, y(t) is usually contaminated by some
measurement error which we assume to be normally distributed with zero mean and variance for each
of the K states, i.e. E ∼ N (0,D), with Dik = σ2

kδik. Thus for N distinct time points the overall
system may be summarized as

Y = AX + E,

where

X = [x(t1), . . . ,x(tN )] = [x1, . . . ,xK ]T

Y = [y(t1), . . . ,y(tN )] = [y1, . . . ,yK ]T ,

where xk = [xk(t1), . . . , xk(tN )]T is the k’th state sequence and yk = [yk(t1), . . . , yk(tN )]T are
the observations. Given the observations Y and the description of the dynamical system (1), the aim
is to estimate both state variables X and parameters θ.

Related Work. Classic approaches for solving the inverse problem i.e. estimating the parameters
given some noisy observations of the process, include the Kalman Filter or its improvements [e.g.
Evensen, 2003, Tornøe et al., 2005] and MCMC based approaches [e.g. Lyons et al., 2012]. However,
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MCMC based methods do not scale well since the number of particles required for a given accuracy
grows exponentially with the dimensionality of the inference problem [Snyder et al., 2008], which
is why approximations to the inference problem became increasingly more popular in recent years.
Archambeau et al. [2008] proposed a variational formulation for parameter and state inference of
stochastic diffuion processes using a linear dynamic approximation: In an iterated two-step approach
the mean and covariance of the approximate process (forward propagation) and in the second step the
time evolution of the Lagrange multipliers, which ensure the consistency constraints for mean and
variance (backward propagation), are calculated in order to obtain a smooth estimate of the states.
Both forward and backward smoothing require the repeated solving of ODEs. In order to obtain
a good accuracy a fine time grid is additionally needed, which makes the approach computational
expensive and infeasible for larger systems [Vrettas et al., 2015]. For parameter estimation the
smoothing algorithm is used in the inner loop of a conjugate gradient algorithm to obtain an estimate
of the optimal approximation process (given a fixed set of parameters) while in the outer loop a
gradient step is taken to improve the current estimate of the parameters. An extension of Archambeau
et al. [2008] using local polynomial approximations and mean-field approximations was proposed in
Vrettas et al. [2015]. Mean-field approximations remove the need of Lagrange multipliers and thus of
the backward propagation while the polynomial approximations remove the need of solving ODEs
iteratively in the forward propagation step which makes the smoothing algorithm and thus the inner
loop for parameter estimation feasible, even for large systems while achieving a comparable accuracy
[Vrettas et al., 2015].

Our contributions. While established methods often assume full observability of the stochastic
system for parameter estimation, we solve the more difficult problem of inferring parameters in
systems which include unobserved variables by combining state and parameter estimation in one step.
Despite the fact that we compare our approach to other methods which solve a simpler problem, we
offer improved accuracy in parameter estimation at a fraction of the computational cost.

2 Random Ordinary Differential Equations

Compared to stochastic differential equations, random ordinary differential equations (RODEs) have
been less popular even though both frameworks are highly connected. RODEs are pathwise ordinary
differential equations that contain a stochastic process in their vector field functions. In Kloeden and
Jentzen [2007] RODEs have been studied to derive better numerical integration schemes for SDEs,
which e.g. allows for stronger pathwise results compared to the L2 results given in Ito stochastic
calculus. Moreover, RODEs sometimes have an advantage over SDEs by allowing more realistic
noise for some applications e.g. correlated noise or noise with limited variance. Let (Ω,F ,P) be a
complete probability space, (ζt)t∈[0,T ] be aRm-valued stochastic process with continuous sample
paths and f : Rm ×Rd → Rd a continuous function. Then

dx(t)

dt
= f(x(t), ζt(ω)) (2)

is a scalar RODE, that is, an ODE

dx(t)

dt
= Fω(t, x) := f(x(t), ω(t)), (3)

for all ω ∈ Ω. Following Kloeden and Jentzen [2007], we likewise assume that f is arbitrary smooth
i.e. f ∈ C∞ and thus locally Lipschitz in x such that the initial value problem (3) has a unique
solution, which we assume to exist on the finite time interval [0, T ]. A simple example for a RODE is
Example 1 (RODE).

dx(t)

dt
= −x+ sin(Wt(ω)), (4)

where Wt is a Wiener process. Taylor-like schemes for directly solving RODEs (2) were derived e.g.
in Grüne and Kloeden [2001], Jentzen and Kloeden [2009]. One approach for solving the RODE (2)
is to use sampling to obtain many ODE’s (3) which can then be solved pathwise using deterministic
calculus. However, this pathwise solution of RODEs implies that a massive amount of deterministic
ODEs have to be solved efficiently. A study with a high performance focus was conducted in
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Riesinger et al. [2016], where parallelized pathwise inference for RODEs was implemented using
GPU’s. While in principle classic numerical schemes for deterministic systems e.g. Runge-Kutta
can be used for each path, they will usually converge with a lower order since the vector field is not
smooth enough in time [Asai et al., 2013]. Since the driving stochastic process ζt has at most Hölder
continuous sample paths, the sample paths of the solution t→ x(t) are continuously differentiable
but the derivatives of the solution sample paths are at most Hölder continuous in time. This is caused
by the fact that Fω(t, x) of the ODE (3) is usually only continuous, but not differentiable in t, no
matter how smooth the function f is in its variables. RODEs offer the opportunity to use deterministic
calculus (pathwise), yet being highly connected with an SDE since any RODE with a Wiener process
can be written as SDE Jentzen and Kloeden [2011]. To illustrate the point, the example 1 above can
be re-written as an SDE by:

Example 2 (SDE transformed RODE).

d

(
Xt

Yt

)
=

(
−Xt + sin(Yt)

0

)
+

(
0
1

)
dWt. (5)

It likewise holds that SDEs can be transformed into RODEs. This transformation was first described
in Sussmann [1978] and Doss [1977] and generalized to all finite dimensional stochastic differential
equations by Imkeller and Schmalfuss [2001]. RODEs can thus be used to find pathwise solutions for
SDEs but SDEs can likewise be used to find better solution for RODEs Asai and Kloeden [2013].

Due to space limitations and to circumvent the introduction of a large mathematical framework, we
only show the transformation for additive SDE’s following [Jentzen and Kloeden, 2011, chapter 2].

Proposition 1. Any finite dimensional SDE can be transformed into an RODE and the other way
round:

dxt = f(xt)dt+ dWt ⇐⇒
dz(t)

dt
= f(zt + Ot) + Ot, (6)

where z(t) := xt −Ot and Ot is the Ornstein-Uhlenbeck stochastic stationary process satisfying
the linear SDE

dOt = −Otdt+ dWt (7)

Typically a stationary Ornstein-Uhlenbeck process is used to replace the white noise of the SDE in its
transformation to an RODE. By continuity and the Fundamental Theorem of Calculus it then follows
that z(t) is pathwise differentiable. While we only showed the transformation for additive SDE’s, it
generally holds true that any RODE with a Wiener process can be transformed into an SDE and any
finite dimensional SDE with regular coefficients can be transformed into an RODE. This includes
nonlinear drifts and diffusions and is true for univariate and multivariate processes [Han and Kloeden,
2017]. There are cases for which this does not hold e.g. a RODE which includes fractional Brownian
motion as the driving noise. While the presented method is thus even more general since RODE’s
can be solved, we limit ourselves to the problem of solving additive SDE’s by transforming them into
a RODE.

Since the solution of a RODE is continuously differentiable in time (but not further differentiable in
time), classic numerical methods for ODEs rarely do achieve their traditional order and thus efficiency
[Kloeden and Jentzen, 2007]. In the following we describe a scalable variational formulation to infer
states and parameters of stochastic differential equations by providing an ensemble learning type
algorithm for inferring the parameters of the corresponding random ordinary differential equation.

3 Variational Gradient Matching

Gradient matching with Gaussian processes was originally motivated in Calderhead et al. [2008] and
offers a computationally efficient shortcut for parameter inference in deterministic systems. While the
original formulation was based on sampling, Gorbach et al. [2017] proposed a variational formulation
offering significant runtime and accuracy improvements.

Gradient matching assumes that the covariance kernel Cφk
(with hyper-parameters φk) of a Gaussian

process prior on state variables is once differentiable to obtain a conditional distribution over state
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Figure 1: Noise. The left plot shows three typical Wiener processes generated with mean zero and
the corresponding Ornstein-Uhlenbeck (OU) process having the same Wiener process in its diffusion
(right). The scale on the y-axis shows the mean-reverting behaviour of the OU process (compared to
the Wiener process).

derivatives using the closure property under differentiation of Gaussian processes:

p(Ẋ | X,φ) =
∏
k

N (ẋk | mk,Ak), (8)

where the mean and covariance is given by:

mk := ′Cφk
C−1φk

xk, Ak := C′′φk
− ′Cφk

C−1φk
C′φk

,

C′′φk
denotes the auto-covariance for each state-derivative with C′φk

and ′Cφk
denoting the cross-

covariances between the state and its derivative.

The posterior distribution over state-variables is

p(X | Y,φ,σ) =
∏
k

N (µk(yk),Σk) , (9)

where µk(yk) := Cφk
(Cφk

+ σ2
kI)−1yk and Σk := σ2

kCφk
(Cφk

+ σ2
kI)−1.

Inserting the GP based prior in the right hand side of a differential equation and assuming additive,
normally distributed noise with state-specific error variance γk one obtains a distribution of state
derivatives

p(Ẋ | X,θ,γ) =
∏
k

N (ẋk | fk(X,θ), γkI) . (10)

which is combined with the smoothed distribution obtained from the data fit (9) in a product of
experts approach:

p(Ẋ | X,θ,φ,γ) ∝ p(Ẋ | X,φ)p(Ẋ | X,θ,γ).

After analytically integrating out the latent state-derivatives

p(θ | X,φ,γ) ∝ p(θ)
∏

k

N
(
fk(X,θ) |mk,Λ

−1
k )
)
. (11)

where Λ−1k := Ak + γkI one aims to determine the maximum a posteriori estimate (MAP) of the
parameters

θ∗ : = arg max
θ

ln

∫
p(θ | X,φ,γ)p(X | Y,φ)dX, (12)

Since the integral in (12) is in most cases analytically intractable (even for small systems due to the
non-linearities and couplings induced by the drift function), a lower bound is established through the
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introduction of an auxiliary distribution Q:

ln

∫
p(θ | X,φ,γ)p(X | Y,φ)dX

(a)
= −

∫
Q(X)dX ln

∫
Q(X)dX∫

p(θ | X,φ,γ)p(X | Y,φ)dX

(b)

≥ −
∫
Q(X) ln

Q(X)

p(θ | X,φ,γ)p(X | Y,φ)
dX

= H(Q) + EQ ln p(θ | X,φ,γ) + EQ ln p(X | Y,φ)

=: LQ(θ) (13)

where H(Q) is the entropy. In (a) the auxiliary distribution Q(X),
∫
Q(X)dX = 1 is introduced and

in (b) is using Jensens’s inequality. The lower bound holds with equality whenever

Q∗(X) : =
p(θ | X,φ,γ)p(X | Y,φ)∫
p(θ | X,φ,γ)p(X | Y,φ)dX

(c)
= p(X | Y,θ,φ,γ),

where in (c) Bayes rule is used. Unfortunately Q∗ is analytically intractable because its normalization
given by the integral in the denominator is in most cases analytically intractable due to the strong
couplings induced by the nonlinear drift function f in (1). Using mean-field approximations

Q :=

{
Q : Q(X,θ) = q(θ | λ)

∏

u

q(xu | ψu)

}
, (14)

where λ and ψu are the variational parameters. Assuming that the drift in (1) is linear in the
parameters θ and that states only appear as monomial factors in arbitrary large products of states the
true conditionals p(θ | X,Y,φ) and p(xu | θ,X−u,Y,φ) are Gaussian distributed, where X−u
denotes all states excluding state xu (i.e. X−u := {x ∈ X | x 6= xu}) and thus q(θ | λ) and
q(xu | ψu) are designed to be Gaussian.

This posterior distribution over states is then approximated as p(X|Y,θ,φ,γ,σ) ≈ Q̂(X) =∏
k

∏
t q̂ψkt

and the log transformed distribution over the ODE parameters given the observations as
ln p(θ|Y,φ,γ,σ) ≈ LQ̂(θ).

Algorithm 1 Ensemble based parameter estimation for SDEs

1: Transform the SDE 1 into a RODE 2
2: Simulate a maximum number Nmax of OU-processes and insert them in 2 to obtain Nmax ODEs
3: For each ODE obtain approximate solutions using variational gradient matching [Gorbach et al.,

2017]
4: Combine the solutions θ̂ to obtain an estimate of the parameters for the RODE 2
5: Transform the solutions of the RODE 2 back into solutions of the SDE 1.

Gorbach et al. [2017] then use an EM-type approach illustrated in figure 2 iteratively optimizing
parameters and the variational lower bound LQ̂(θ). The variational parameters can be derived
analytically and the algorithm scales linearly in the number states of the differential equation and is
thus ideally suited to infer the solutions of the massive number of pathwise ODEs required for the
pathwise solution of the RODE formulation of the SDE. Since solution paths of the RODE are only
once differentiable, gradient matching (which only makes this assumption w.r.t. solution paths) is
ideally suited for estimating the parameters. Our approach is summarized in algorithm 1.

However, the application of variational gradient matching [Gorbach et al., 2017] for the pathwise
solution of the RODE is not straightforward since e.g. in the case for scalar stochastic differential
equations one has to solve

dz(t)

dt
= fθ(zt +Ot) +Ot, (15)

for a sampled trajectoryOt of an Ornstein-Uhlenbeck process rather than the classic ODE formulation
dz(t)
dt = f(zt). We account for the increased uncertainty by assuming an additional state specific

Gaussian noise factor δ i.e. assuming f(x+Ot) +Ot + δ for a sampled trajectory Ot in the gradient
matching formulation (10).
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Ẏk | Fk(Y,θ, γkI)

�
N
�
Xk | Yk, σ2I

�
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Ẏk | Fk(Y,θ, γkI)

�
N
�
Xk | Yk, σ2I

�

�
Ẏk
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Ẏk | Fk(Y,θ, γkI)

�
N (Xk | Yk, σ2I) dẎk




We can establish touching lower bounds since we can solve the integral ?? analytically.61

θ62

4

not analytically tractable

analytically tractable for a 
restricted family of ODE's

5 Experiments74

6 Discussion75

The contribution of this paper is to integrate out the latent state variables instead of sampling them as76

in previous work. Since the integration over state variables is not analytically tractable we establish77

tight variational lower bounds that are analytically tractable provided that the ODE is such that the78

state variables appear in quadratic form in equation ??. ODE’s such as the Lotka-Volterra system79

full-fill such ODE requirements whereas other systems such as the Fitz-High Nagumo sytem do not.80

DKL

�
Q(i−1)(X)

����p(θ,X | Y,φ,γ)
�

81

LQ(t)(θ)82

log
�

p(θ,X | Y,φ,γ)dX83

References84

B. Calderhead, M. Girolami and N. Lawrence, “Accelerating bayesian inference over nonliner85

differential equations with gaussian processes,” Neural Information Processing Systems, vol. 22,86

no. 429-443, 2008.87

F. Dondelinger, M. Filippone, S. Rogers and D. Husmeier, “Ode parameter inference using adaptive88

gradient matching with gaussian processes,” AISTATS, vol. 31, pp. 216–228, 2013.89

4

tight variational lower bounds that are analytically tractable provided that the ODE is such that the78

state variables appear in quadratic form in equation 6. ODE’s such as the Lotka-Volterra system79

full-fill such ODE requirements whereas other systems such as the Fitz-High Nagumo sytem do not.80

DKL

�
Q(i−1)(X)

����p(θ,X | Y,φ,γ)
�

81

LQ(t)(θ)82

log
�

p(θ,X | Y,φ,γ)dX83

θ̂
(i−1)

84

References85

B. Calderhead, M. Girolami and N. Lawrence, “Accelerating bayesian inference over nonliner86

differential equations with gaussian processes,” Neural Information Processing Systems, vol. 22,87

no. 429-443, 2008.88

F. Dondelinger, M. Filippone, S. Rogers and D. Husmeier, “Ode parameter inference using adaptive89

gradient matching with gaussian processes,” AISTATS, vol. 31, pp. 216–228, 2013.90

4

tight variational lower bounds that are analytically tractable provided that the ODE is such that the78

state variables appear in quadratic form in equation 6. ODE’s such as the Lotka-Volterra system79

full-fill such ODE requirements whereas other systems such as the Fitz-High Nagumo sytem do not.80

DKL

�
Q(i−1)(X)

����p(θ,X | Y,φ,γ)
�

81

LQ(t)(θ)82

log
�

p(θ,X | Y,φ,γ)dX83

θ̂
(i+1)

84

References85

B. Calderhead, M. Girolami and N. Lawrence, “Accelerating bayesian inference over nonliner86

differential equations with gaussian processes,” Neural Information Processing Systems, vol. 22,87

no. 429-443, 2008.88

F. Dondelinger, M. Filippone, S. Rogers and D. Husmeier, “Ode parameter inference using adaptive89

gradient matching with gaussian processes,” AISTATS, vol. 31, pp. 216–228, 2013.90

4

tight variational lower bounds that are analytically tractable provided that the ODE is such that the78

state variables appear in quadratic form in equation 6. ODE’s such as the Lotka-Volterra system79

full-fill such ODE requirements whereas other systems such as the Fitz-High Nagumo sytem do not.80

DKL

�
Q(i−1)(X)

����p(θ,X | Y,φ,γ)
�

81

LQ(t)(θ)82

log
�

p(θ,X | Y,φ,γ)dX83

θ̂
(i)

84

References85

B. Calderhead, M. Girolami and N. Lawrence, “Accelerating bayesian inference over nonliner86

differential equations with gaussian processes,” Neural Information Processing Systems, vol. 22,87

no. 429-443, 2008.88

F. Dondelinger, M. Filippone, S. Rogers and D. Husmeier, “Ode parameter inference using adaptive89

gradient matching with gaussian processes,” AISTATS, vol. 31, pp. 216–228, 2013.90

4

tight variational lower bounds that are analytically tractable provided that the ODE is such that the78

state variables appear in quadratic form in equation 6. ODE’s such as the Lotka-Volterra system79

full-fill such ODE requirements whereas other systems such as the Fitz-High Nagumo sytem do not.80

DKL

�
Q(i−1)(X)

����p(θ,X | Y,φ,γ)
�

81

LQ(i)(θ)82

log
�

p(θ,X | Y,φ,γ)dX83

θ̂
(i)

84

References85

B. Calderhead, M. Girolami and N. Lawrence, “Accelerating bayesian inference over nonliner86

differential equations with gaussian processes,” Neural Information Processing Systems, vol. 22,87

no. 429-443, 2008.88

F. Dondelinger, M. Filippone, S. Rogers and D. Husmeier, “Ode parameter inference using adaptive89

gradient matching with gaussian processes,” AISTATS, vol. 31, pp. 216–228, 2013.90

4

tight variational lower bounds that are analytically tractable provided that the ODE is such that the78

state variables appear in quadratic form in equation 6. ODE’s such as the Lotka-Volterra system79

full-fill such ODE requirements whereas other systems such as the Fitz-High Nagumo sytem do not.80

DKL

�
Q(i−1)(X)

����p(θ,X | Y,φ,γ)
�

81

LQ(i−1)(θ)82

log
�

p(θ,X | Y,φ,γ)dX83

θ̂
(i)

84

References85

B. Calderhead, M. Girolami and N. Lawrence, “Accelerating bayesian inference over nonliner86

differential equations with gaussian processes,” Neural Information Processing Systems, vol. 22,87

no. 429-443, 2008.88

F. Dondelinger, M. Filippone, S. Rogers and D. Husmeier, “Ode parameter inference using adaptive89

gradient matching with gaussian processes,” AISTATS, vol. 31, pp. 216–228, 2013.90

4

tight variational lower bounds that are analytically tractable provided that the ODE is such that the78

state variables appear in quadratic form in equation 6. ODE’s such as the Lotka-Volterra system79

full-fill such ODE requirements whereas other systems such as the Fitz-High Nagumo sytem do not.80

DKL

�
Q(i−1)(X)

����p(θ,X | Y,φ,γ)
�

81

LQ(i+1)(θ)82

log
�

p(θ,X | Y,φ,γ)dX83

θ̂
(i)

84

References85

B. Calderhead, M. Girolami and N. Lawrence, “Accelerating bayesian inference over nonliner86

differential equations with gaussian processes,” Neural Information Processing Systems, vol. 22,87

no. 429-443, 2008.88

F. Dondelinger, M. Filippone, S. Rogers and D. Husmeier, “Ode parameter inference using adaptive89

gradient matching with gaussian processes,” AISTATS, vol. 31, pp. 216–228, 2013.90

4

(ODE parameters)

latent state 
variables

state observations

GP kernel 
parameters state-derivative 

noise

Figure 2: Illustration of the "hill climbing" algo-
rithm in Gorbach et al. [2017] . The difference
between the lower bound LQ̂(·)(θ) and the log in-
tegral is given by the Kullback-Leibler divergence
(red line).

Flexibility and Efficiency Algorithm 1 offers
a flexible framework for inference in stochas-
tic dynamical systems e.g. if the parameters θ̂
are known they can be set to the true values in
each iteration, and algorithm 1 then just corre-
sponds to a smoothing algorithm. Compared to
the smoothing algorithm in Archambeau et al.
[2008] it does not require the computational ex-
pensive forward and backward propagation us-
ing an ODE solver. If the parameters are not
known then algorithm 1 offers a grid free infer-
ence procedure for estimating the parameters.
Opposite to Vrettas et al. [2011] which consider
unobserved state variables in the case of smooth-
ing but assume the system to be fully observed if
parameters are estimated, the outlined approach
offers an efficient inference framework for the
much more complicated problem of inferring
the parameters while not all states are observed
and still scales linearly in the states if pathwise
inference of the RODE is done in parallel.

The conceptual difference between the approach
of Vrettas et al. [2015] and Gorbach et al. [2017] is illustrated in figure 3.

Figure 3: Conceptual Difference. The red line represents an artificial function which has to be
approximated. Our approach (right) is grid free and based on the minimization of the differences of
the slopes. That is why convergence is vertical with each iteration step corresponding to a dashed
line (thickness of the line indicating the convergence direction). Vrettas et al. [2015] approximate
the true process by a linearized dynamic process which is discretized (left) and improved by iterated
forward and backward smoothing.

4 Experiments

We compare our approach on two established benchmark models for stochastic systems especially
used for weather forecasts. Vrettas et al. [2011] provide an extensive comparison of the approach of
Archambeau et al. [2008] and its improvements compared to classic Kalman filtering as well as more
advanced and state of the art inference schemes like 4D-Var [Le Dimet and Talagrand, 1986]. We use
the reported results there as a comparison measure.

The drift function for the Lorenz96 system consists of equations of the form:

fk(x(t),θ) = (xk+1 − xk−2)xk−1 − xk + θ

where θ is a scalar forcing parameter, x−1 = xK−1, x0 = xK and xK+1 = x1 (with K being the
number of states in the stochastic system (1)). The Lorenz96 system can be seen as a minimalistic
weather model [Lorenz and Emanuel, 1998].
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The three dimensional Lorenz attractor is described by the parameter vector θ = (σ, ρ, β) and the
following time evolution:

dX(t) =

[
σ(x2(t)− x1(t))

ρx1(t)− x2(t)− x1(t)x3(t)
x1(t)x2(t)− βx3(t)

]
dt+ Σ

1
2 dWt

The runtime for state estimation using the approach of Vrettas et al. [2011] and our method is
indicated in table 1. While parameter and state estimation are combined in one step in our approach,
parameter estimation using the approach of Vrettas et al. [2011] would imply the iterative use of the
smoothing algorithm and thus a multiple factor of the runtime indicated in table 1. While we solve a
much more difficult problem by inferring parameters and states at the same time our runtime is only a
fraction of the runtime awarded for a single run of the inner loop for parameter estimation in Vrettas
et al. [2011].

Method L63/D=3 L96/D=40 L96/D=1000
VGPA_MF 31s 6503s 17345s
Our approach 2.4s 14s 383s

Table 1: Runtime for one run of the smoothing algorithm of the approach of Vrettas et al. [2015] vs
the runtime of our approach in parallel implementation (using 51 OU sample paths). While parameter
estimation is done simultaneously in our approach, Vrettas et al. [2015] use the smoothing algorithm
iteratively for state estimation in an inner loop such that the runtime for parameter estimations is
multiple times higher than the indicated runtime for just one run of the smoothing algorithm.

We use our method to infer the states and drift parameters for the Lorenz attractor where the dimension
y is unobserved. The estimated state trajectories are shown in figure 4.

Estimated Trajectory

z

yx

Simulated Trajectory

z

yx

Figure 4: Lorenz attractor. The Lorenz attractor trajectories are shown on the right -hand side for
inferred solutions using an SDE solver, while the left-hand side plot shows the inferred trajectory
using our method. Our method was able to accurately resolve the typical “butterfly” pattern despite
not observing the drift parameters as well as not observing the dimension y. Only the dimensions x
and z were observed.

The estimated trajectories for one sample path are also shown in the time domain in section 5.2 of the
supplementary material.

Our approach offers an appealing shortcut to the inference problem for stochastic dynamical systems
and is robust to the noise in the diffusion term. Figure 5 shows the dependence of the inferred
parameters on the variance in the diffusion term of the stochastic differential equation.

Increasing the time interval of the observed process e.g. from 10 to 60 secs leads to a converging
behaviour to the true parameters (figure 6). This is in contrast to the reported results of Archambeau
et al. [2008], reported in Vrettas et al. [2011, Figure 29] and shows the asymptotic time consistency
of our approach.

Figure 5 shows, that in the near noiseless scenario we approximately identify sigma correctly.
Estimating the σ term in Figure 6 is more difficult than the other two parameters in the drift
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Figure 5: Lorenz attractor. Boxplots indicate the median of the inferred parameters over 51
generated OU sample paths. Using a low variance for the diffusion term in simulating one random
sample path from the SDE, our approach infers approximately the correct parameters and does not
completely deteriorate if the variance is increased by a factor of 30.

10 20 30 40 50 60
final time

6

7

8

9

10

11
est

10 20 30 40 50 60
final time

25.5

26

26.5

27

27.5

28

28.5
est

10 20 30 40 50 60
final time

2.1

2.2

2.3

2.4

2.5

2.6

2.7

est

Figure 6: Lorenz attractor. Increasing the time interval of the observed process leads to a conver-
gence towards the true parameters opposed to the results in [Vrettas et al., 2011, Figure 29].

function of the Lorenz attractor system, since the variance of the diffusion and the observation noise
unfortunately lead to an identifiability problem for the parameter sigma, which is why longer time
periods in Figure 6 do not improve the estimation accuracy for σ.
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Figure 7: Lorenz96. Left hand side shows the accuracy of the parameter estimation with increasing
diffusion variance (right to left) for a 40 dimensional system, while the plot on the right hand side
shows the accuracy with decreasing number of observations. Red dots show the results of the
approach of Archambeau et al. [2008] when available as reported in Vrettas et al. [2011]. The correct
parameter has the value 8 and our approach performs significantly better, while having a lower
runtime and is furthermore able to include unobserved variables (right)

For the Lorenz96 system our parameter estimation approach is likewise robust to the variance in the
diffusion term (figure 7). It furthermore outperforms the approach of Archambeau et al. [2008] in the
cases where results were reported in Vrettas et al. [2011]. The performance level is equal when, for
our approach, we assume that only one third of the variables are unobserved.
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The estimated trajectories for one sample path of the Lorenz96 system are shown in section 5.3 of the
supplementary material.

5 Discussion

Parameter inference in stochastic systems is a challenging but important problem in many disciplines.
Current approaches are based on exploration in the parameter space which is computationally
expensive and infeasible for larger systems. Using a gradient matching formulation and adapting it to
the inference of random ordinary differential equations, our proposal is a flexible framework which
allows to use deterministic calculus for inference in stochastic systems. While our approach tackles
a much more difficult problem by combining state and parameter estimation in one step, it offers
improved accuracy and is orders of magnitude faster compared to current state of the art methods
based on variational inference.
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