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Abstract

Hiererachical clustering, that is computing a recursive partitioning of a dataset to
obtain clusters at increasingly finer granularity is a fundamental problem in data
analysis. Although hierarchical clustering has mostly been studied through proce-
dures such as linkage algorithms, or top-down heuristics, rather than as optimization
problems, Dasgupta [9] recently proposed an objective function for hierarchical clus-
tering and initiated a line of work developing algorithms that explicitly optimize an
objective (see also [7, 22, 8]). In this paper, we consider a fairly general random graph
model for hierarchical clustering, called the hierarchical stochastic block model
(HSBM), and show that in certain regimes the SVD approach of McSherry [18] com-
bined with specific linkage methods results in a clustering that give anOp1q approx-
imation to Dasgupta’s cost function. Finally, we report empirical evaluation on syn-
thetic and real-world data showing that our proposed SVD-based method does indeed
achieve a better cost than other widely-used heurstics and also results in a better classi-
fication accuracy when the underlying problem was that of multi-class classification.

1 Introduction

Computing a recursive partitioning of a dataset to obtain a finer and finer classification of the data is a
classic problem in data analysis. Such a partitioning is often refered to as a hierarchical clustering and
represented as a rooted tree whose leaves correspond to data elements and where each internal node
induces a cluster of the leaves of its subtree. There exists a large literature on the design and analysis of
algorithms for hierarchical clustering (see e.g., [21]). Two main approaches have proven to be success-
ful in practice so far: on the one hand divisive heuristics compute the hierarchical clustering tree in a
top-down fashion by recursively partitioning the data (see e.g., [14]). On the other hand, agglomerative
heuristics produce a tree by first defining a cluster for each data elements and successively merging
clusters according to a carefully defined function (see e.g., [19]). These heuristics are widely used in
practice and are now part of the data scientists’ toolkit—standard machine learning libraries contain
implementations of both types of heuristics.
Agglomerative heuristics have several appealing features: they are easy to implement, easy to tune, and
their running time is rOpn2polylognq on a dataset of size n. Standard divisive heuristics based on graph
partitioning or clustering methods (like for example the bisection k-means or the recursive sparsest-cut
approaches) often involve solving or approximating NP-hard problems.1 Therefore, it is natural to

1In some cases, it may be possible to have a very fast algorithms based on heuristics to compute partitions,
however, we are unaware of any such methods that would have provable guarantees for the kinds of graphs that
appear in hierarchical clustering.
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ask how good the solution output by an agglomerative method is compared to the solution output by
a top-down method.
From a qualitative perspective, this question has been addressed in a large body of work (see e.g., [5]).
However, from a quantitative perspective little is known. As Dasgupta observes in his recent work [9],
both agglomerative and divisive heuristics are defined procedurally rather than in term of an objective
function to optimize, a reason why a quantitative comparision of the different heuristics is rather
difficult. Dasgupta introduced an objective function to model the problem of finding a hierarchical clus-
tering of a similarity graph—such an objective can be used to explicitly design optimization algorithms
that minimize this cost function as well as serve as a quantitative measure of the quality of the output.
Given a similarity graph i.e., a graph where vertices represent data elements and edge weights sim-
ilarities between data elements, Dasgupta’s objective function associates a cost to any hierarchical
clustering tree of the graph. He showed that his objective function exhibits several desirable properties:
For example, if the graph is disconnected i.e., data elements in different connected components are very
dissimilar, a tree minimizing this objective function will first split the graph according to the connected
components.
This axiomatic approach to defining a “meaningful” objective function for hierarchical clustering has
been further explored in recent work by Cohen-Addad et al. [8]. Roughly speaking, they characterize
a family of cost functions, which includes Dasgupta’s cost function, that when the input graph has a
“natural” ground-truth hierarchical clustering tree (in other words a natural classification of the data),
this tree has optimal cost (and any tree that is not a “natural” hierarchical clustering tree of the graph
has higher cost). Therefore, the results by Dasgupta and Cohen-Addad et al. indicate that Dasgupta’s
cost function provides a sound framework for a rigorous quantitative analysis of agglomerative and
divisive heuristics.
A suitable objective function to measure the quality of a clustering also allows one to explicitly design
algorithms that minimize the cost. Dasgupta showed that the recursive sparsest-cut heuristic is an
Oplog3{2nq-approximation algorithm for his objective function. His analysis has been improved by
Charikar and Chatziafratis [7] and Cohen-Addad et al. [8] to Op

?
log nq. Unfortunately, Charikar

and Chatziafratis [7] and Roy and Pokutta [22] showed that, for general inputs, the problem cannot be
approximated within any constant factor under the Small-Set Expansion hypothesis. Thus, as suggested
by Charikar and Chatziafratis [7], a natural way to obtain a more fine-grained analysis of the classic
agglomerative and divisive heuristics is to study beyond-worst case scenarios.

Random Graph Model for Hierarchical Clustering. A natural way to analyse a problem beyond the
worst-case is to consider a suitable random input model, which is the focus of this paper. More precisely,
we introduce a random graph model based on the notion of “hierarchical stochastic block model”
(HSBM) introduced by Cohen-Addad et al., which is a natural extensions of the stochastic block
model introduced. Our random graph model relies on the notion of ultrametric, a metric in which the
triangle inequality is strengthened by requiring dpx,yqďmaxpdpx,zq,dpy,zqq. This is a key concept
as ultrametrics exactly capture the notion of data having a “natural” hierarchical structure (cf. [5]).
The random graphs are generated from data that comes from an ultrametric, but the randomness hides
the natural hierarchical structure. Two natural questions are: Given a random graph generated in such a
fashion, when is it possible to identify the underlying ultrametric and is the optimization of Dasgupta’s
cost function easier for graphs generated according to such a model. The former question was partially
addressed by Cohen-Addad et al. and our focus is primarily on developing algorithms that achieve
anOp1q approximation to the expected Dasgupta cost, not on recovering the underlying ultrametric.
More formally, assume that the data elements lie in an unknown ultrametric space pA,distq and so
exhibit a natural hierarchical clustering defined by this ultrametric. The input is a random graph
generated as follows: an edge is added between nodes u,vPAwith probability p“fpdistpu,vqq, where
f is an (unknown) non-increasing function with range p0,1q.Thus, vertices that are very close in the
ultrametric (and so very similar) have a higher probability to have an edge between them than vertices
that are further apart. Given such a random graph, the goal is to obtain a hierarchical clustering tree
that has a good cost for the objective function. The actual ground-truth tree is optimal in expectation
and we focus on designing algorithms that with high probability output a tree whose cost is within
a constant factor of the expected cost of the ground-truth tree. Although, we do not study it in this
work, the question of exact recovery is also an interesting one and the work of Cohen-Addad et al. [8]
addresses this partially in certain regimes.

Algorithmic Results. Even in the case of random graphs, the linkage algorithms may perform quite
poorly, mainly because ties may be broken unfavourably at the very bottom, when the clusters are
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singleton nodes; these choices cannot be easily compensated later on in the algorithm. We thus
consider the LINKAGE++ algorithm which first uses a seeding step using a standard SVD approach
to build clusters of a significant size, which is an extension of the algorithm introduced in [8]. Then,
we show that using these clusters as starting point, the classic single-linkage approach achieves a
p1`εq-approximation for the problem (cf. Theorem 2.4).

Experimental Results. We evaluate the performance of LINKAGE++ on real-world data (Scikit-learn)
as well as on synthetic hierarchical data. The measure of interest is the Dasgupta cost function and
for completeness we also consider the classification error (see e.g., [22]). Our experiments show that 1)
LINKAGE++ performs well on all accounts and 2) that a clustering with a low Dasgupta cost appears to
be correlated with a good classification. On synthetic data LINKAGE++ seems to be clearly superior.

Related Work. Our work follows the line of research initiated by Dasgupta [9] and further studied
by [22, 7, 8]. Dasgupta [9] introduced the cost function studied in this paper and showed that the re-
cursive sparsest-cut approach yields anOplog3{2nq. His analysis was recently improved toOp

?
lognq

by [7, 8]. Roy and Pokutta [22] and Charikar also considered LP and SDP formulations with spreading
constraints to obtain approximation algorithms with approximation factor Oplognq and Op

?
lognq

respectively. Both these works also showed the infeasibility of constant factor approximations under
the small-set expansion hypothesis. Cohen-Addad et al. [8] took an axiomatic approach to identify
suitable cost functions for data generated from ultrametrics, which results in a natural ground-truth
clustering. They also looked at a slightly less general hierarchical stochastic blockmodel (HSBM),
where each bottom-level cluster must have a linear size and with stronger conditions on allowable
probabilities. Their algorithm also has a “seeding phase” followed by an agglomerative approach. We
go beyond their bounds by focusing on approximation algorithms (we obtain a p1`εq-approximation)
whereas they aim at recovering the underlying ultrametric. As the experiments show, this trade-off
seem not to impact the classification error compared to classic other approaches.

There is also a vast literature on graph partitionning problems in random and semi-random models.
Most of this work (see e.g., [18, 11]) focuses on recovering a hidden subgraph e.g., a clique, whereas
we address the problem of obtaining good approximation guarantees w.r.t. an objective function.the
reader may refer to [24, 13] for the definitions and the classic properties on agglomerative and divisive
heuristics. Agglomerative and divisive heuristics have been widely studied from either a qualitative
perspective or for classic “flat” clustering objective like the classic k-median and k-means, see e.g.,
[20, 10, 16, 3, 2]. For further background on hierarchical clustering and its application in machine
learning and data science, the reader may refer to e.g., [15, 23, 12, 6].

Preliminaries In this paper, we work with undirected weighted graphG“pV,E,wq, where V is a set
of vertices,E a set of edges, andw :EÑR`. In the random and semi-random model, we work with
unweighted graphs. We slightly abuse notation and extend the function w to subsets of V . Namely,
for any A,B Ď V , let wpA,Bq “

ř

aPA,bPBwpa,bq. We use weights to model similarity, namely
wpu,vq ąwpu,wq means that data element u is more similar to v than to w. When G is clear from
the context, we let |V | “n and |E| “m. For any subset S of vertices of a graph G, let GrSs be the
subgraph induced by the nodes of S.

In the following, letG“pV,E,wq be a weighted graph on n vertices. A cluster tree or hierarchical
clustering T forG is a rooted binary tree with exactly |V | leaves, each of which is labeled by a distinct
vertex v PV . We denote LCAT pu,vq the lowest common ancestor of vertices u,v in T . Given a tree
T and a nodeN of T , we say that the subtree ofN in T is the the connected subgraph containing all
the leaves of T that are descendant ofN and denote this set of leaves by V pNq. A metric space pX,dq
is an ultrametric if for every x,y,zPX , dpx,yqďmaxtdpx,zq,dpy,zqu.
We borrow the notion of a (similarity) graph generated from an ultrametric and generating tree
introduced by [8]. A weighted graph G “ pV,E,wq is a generated from an ultrametric, if there
exists an ultrametric pX,dq, such that V ĎX , and for every x,y P V,x ‰ y, e “ tx,yu exists, and
wpeq“fpdpx,yqq, where f :R`ÑR` is a non-increasing function.

Definition 1.1 (Generating Tree). LetG“pV,E,wq be a graph generated by a minimal ultrametric
pV,dq. Let T be a rooted binary tree with |V | leaves; let N denote the internal nodes and L the
set of leaves of T and let σ :LÑV denote a bijection between the leaves of T and nodes of V . We
say that T is a generating tree for G, if there exists a weight function W : N Ñ R`, such that for
N1,N2 PN , if N1 appears on the path from N2 to the root, W pN1qďW pN2q. Moreover for every
x,yPV ,wptx,yuq“W pLCAT pσ´1pxq,σ´1pyqqq.
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As noted in [8], the above notion bear similarities to what is referred to as a dendrogram in the machine
learning literature (see e.g., [5]).

Objective Function. We consider the objective function introduced by Dasgupta [9]. LetG“pV,E,wq
be a weighted graph and T “ pN ,Eq be any rooted binary tree with leaves set V . The cost induced
by a node N of T is costT pNq “ |V pNq| ¨wpV pC1q,V pC2qq where C1,C2 are the children of N in
T . The cost of T is costT “

ř

NPN costT pNq. As pointed out by Dasgupta [9], this can be rephrased
as costT “

ř

pu,vqPEwpu,vq¨|V pLCAT pu,vqq|.

2 A General Hierarchical Stochastic Block Model

We introduce a generalization of the HSBM studied by [8] and [17]. Cohen-Addad et al. [8] introduce
an algorithm to recover a “ground-truth” hierarchical clustering in the HSBM setting. The regime
in which their algorithm works is the following: (1) there is a set of hidden clusters that have linear
size and (2) the ratio between the minimum edge probability and the maximum edge probability is
Op1q. We aim at obtaining an algorithm that “works” in a more general setting. We reach this goal
by proposing on p1`εq-approximation algorithms. Our algorithm very similar to the widely-used
linkage approach and remains easy to implement and parallelize. Thus, the main message of our work
is that, on “structured inputs” the agglomerative heuristics perform well, hence making a step toward
explaining their success in practice.
The graphs generated from our model possess an underlying, hidden (because of noise) “ground-truth
hierarchical clustering tree” (see Definition 2.1). This aims at modeling real-world classification
problem for which we believe there is a natural hierarchical clustering but perturbed because of missing
information or measurement erros. For example, in the tree of life, there is a natural hierarchical cluster-
ing hidden that we would like to reconstruct. Unfortunately because of extinct species, we don’t have a
perfect input and must account for noise. We formalize this intuition using the notion of generating tree
(Def 1.1) which, as hinted at by the definition, can be associated to an ultrametric (and so a “natural” hi-
erarchical clustering). The “ground-truth tree” is the tree obtained from a generating tree on k leaves to
which we will refer as “bottom”-level clusters containingn1,n2,...,nk nodes (following the terminology
in [8]). Each edge of a generated graph has a fixed probability of being present, which only depends on
the underlying ground-truth tree. This probability is a function of the clusters in which their endpoints
lie and the underlying graph on k vertices for which the generating tree is generating (as in Def 1.1).
Definition 2.1 (Hierarchical Stochastic Block Model – Generalization of [8]). Let n be a positive
integer. A hierarchical stochastic block model with k bottom-level clusters is defined as follows:
1) Let rGk “ prVk, rEk,wq be a graph generated from an ultrametric, where |rVk| “ k for each e P rEk,
wpeqPp0,1q. let rTk be a tree on k leaves, let rN denote the internal nodes of rT and rL denote the leaves;
let rσ : rLÑrks be a bijection. Let rT be generating for rGk with weight function ĂW : rNÑr0,1q.
2) For each iPrks, let pi Pp0,1s be such that piąĂW pNq, ifN denotes the parent of rσ´1piq in rT .
3) For each iPrks, there is a positive integer ni such that

řk
i“1ni“n.

Then a random graphG“pV,Eq onn nodes is defined as follows. Each vertex iPrns is assigned a label
ψpiqP rks, so that exactly nj nodes are assigned the label j for j P rks. An edge pi,jq is added to the
graph with probability pψpiq ifψpiq“ψpjq and with probability ĂW pNq ifψpiq‰ψpjq andN is the least
common ancestor of rσ´1piq and rσ´1pjq in rT . The graphG“pV,Eq is returned without any labels.

We use, for a generating tree rT , the notation pmin to denote ĂW pN0q, where N0 is the root node of
rT . Let nmin be the size of the smallest cluster (of the k clusters) As in [8], we will use the notion of
expected graph. The expected graph as the is the weighted complete graph Ḡ in which an edge pi,jq
has weight pi,j , where pi,j is the probability with which it appears in the random graphG. We refer
to any tree that is generating for the expected graph Ḡ as a ground-truth tree forG. In order to avoid
ambiguity, we denote by costT pGq and costT pḠq the costs of the cluster tree T for the unweighted
(random) graph G and weighted graph Ḡ respectively. Observe that due to linearity of expectation
for any tree T and any admissible cost function, costT pḠq“ErcostT pGqs, where the expectation is
with respect to the random choices of edges inG. We have

Theorem 2.2. Let n be a positive integer and pmin“ωp
a

logn{nq. Let k be a fixed constant andG
be a graph generated from an HSBM (as per Defn. 2.1) where the underlying graph rGk has k nodes
and minimum probability is pmin. For any binary tree T with n leaves labelled by the vertices ofG,
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the following holds with high probability: |costpT q´ErcostpT qs|ďopErcostpT qsq. The expectation
is taken only over the random choice of edges. In particular if T˚ is a ground-truth tree forG, then,
with high probability, costpT˚qďp1`op1qqminT 1costpT 1q“p1`op1qqOPT.

Algorithm LINKAGE++, a p1`εq-Approximation Algorithm in the HSBM. We consider a simple
algorithm, called LINKAGE++, which works in two phases (see Alg. 1). We use a result of [18] who
considers the planted partition model. His approach however does not allow to recover directly a
hierarchical structure when the input has it.

Algorithm 1 LINKAGE++

1: Input: GraphG“pV,Eq generated from an HSBM.
2: Parameter: An integer k.
3: Apply (SVD) projection algorithm of [18, Thm. 12] with parameters G, k, δ “ |V |´2, to get
ζp1q,...,ζp|V |qPR|V | for vertices in V , where dimpspanpζp1q,...,ζp|V |qqq“k.

4: Run the single-linkage algorithm on the points tζp1q,...,ζp|V |qu until there are exactly k clusters.
Let C“tCζ1 ,...,C

ζ
ku be the clusters (of points ζpiq) obtained. LetCiĎV denote the set of vertices

corresponding to the clusterCζi .
5: Define dist :CˆC ÞÑR`: distpCζi ,C

ζ
j q“wpC

ζ
i ,C

ζ
j q{p|C

ζ
i ||C

ζ
j |q.

6: while there are at least two clusters in C do
7: Take the pair of clustersC 1i,C

1
j of C at max distpC 1i,C

1
jq. Define a new clusterC 1“tC 1iYC

1
ju.

8: Update dist: distpC 1,C 1`q“maxpdistpC 1i,C
1
`q,distpC 1j ,C

1
`qq

9: CÐC z tC 1iu z tC 1ju Y tC 1u
10: end while
11: The sequence of merges in the while-loop (Steps 6 to 10) induces a hierarchical clustering tree

on tCζ1 ,...,C
ζ
ku, say T 1k with k leaves (Cζ1 ,...,C

ζ
k ). Replace each leafCζi of T 1k by the tree obtained

forCζi at Step 4 to obtain T .
12: Repeat the algorithm k1“2klogn times. Let T 1,...T k

1

be the corresponding outputs.
13: Output: Tree T i (out of the k1 candidates) that minimises ΓpTiq.

Theorem 2.3 ([18], Observation 11 and a simplification of Theorem 12). Let δ be the confidence
parameter. Assume that for all u,v belonging to different clusters with adjacency vectors u,v (i.e.,
ui is 1 if the edge pu,iq exists inG and 0 otherwise) satisfy

}Erus´Ervs}22ěc¨k ¨
`

σ2n{nmin`logpn{δq
˘

(1)

for a large enough constant c, where Erus is the entry-wise expectation and σ2“ωplog6n{nq is an
upper bound on the variance. Then, the algorithm of [18, Thm. 12] with parametersG,k,δ projects
the columns of the adjacency matrix of G to points tζp1q,...,ζp|V |qu in a k-dimensional subspace
of R|V | such that the following holds w.p. at least 1´δ over the random graphG and with probability
1{k over the random bits of the algorithm. There exists ηą0 such that for any u in the ith cluster and
v in the jth cluster: 1) if i“j then }ζpuq´ζpvq}22ďη and 2) if i‰j then }ζpuq´ζpvq}22ą2η.

In the remainder we assume δ“1{|V |2. We are ready to state our main theorem.
Theorem 2.4. Let n be a positive integer and εą0 a constant. Assume that the separation of bottom
clusters given by (1) holds, pmin“ωp

a

logn{nq, and nmině
?
n¨log1{4n. Let k be a fixed constant

andG be a graph generated from an HSBM (as per Defn. 2.1) where the underlying graph rGk has
k nodes with satisfying the above constraints.

With high probability, Algorithm 1 with parameter k on graph G outputs a tree T 1 that satisfies
costT 1ďp1`εqOPT.

We note that k might not be known in advance. However, different values of k can be tested and an
Op1q-estimate on k is enough for the proofs to hold. Thus, it is possible to run Algorithm 1Oplog nq
times with different “guesses” for k and take the best of these runs.

Let G “ pV,Eq be the input graph generated according to an HSBM. Let T be the tree output by
Algorithm 1. We divide the proof into two main lemmas that correspond to the outcome of the two
phases mentioned above.
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The algorithm of [18, Thm. 12] might fail for two reasons: The first reason is that the random choices
by the algorithm result in an incorrect clustering. This happens w.p. at most 1´1{k and we can simply
repeat the algorithm sufficiently many times to be sure that at least once we get the desired result, i.e.,
the projections satisfy the conclusion of Thm. 2.3. Lemmas 2.6, 2.7 show that in this case, Steps 6
to 10 of LINKAGE++ produce a tree that has cost close to optimal. Ultimately, the algorithm simply
outputs a tree that has the least cost among all the ones produced (and one of them is guaranteed to
have cost p1`εqOPT) with high probability.

The second reason why the McSherry’s algorithm may fail is that the generated random graphGmight
“deviate” too much from its expectation. This is controlled by the parameter δ (which we set to 1{|V |2).
Deviations from expected behaviour will cause our algorithm to fail as well. We bound this failure
probability in terms of two events. The first bad event is that McSherry’s algorithm fails for either of the
aforementioned reasons. We denote the complement of this event E1. The second bad event it that the
number of edges between the vertices of two nodes of the ground-truth tree deviates from it’s expectation.
Namely, that given two nodesN1,N2 of T˚, we expect the cut to beEpN1,N2q“|V pN1q|¨|V pN1q|¨

W pLCAT˚pN1,N2qq. Thus, we define E2 to be the event that |wpV pN1q,V pN2qq ´EpN1,N2q| ă

ε2EpN1,N2q for all cuts of the k bottom leaves. Note that the number of cuts is bounded by 2k and we
will show that, due to size ofnmin and pmin this even holds w.h.p.. The assumptions on the ground-truth
tree will ensure that the latter holds w.h.p. allowing us to argue that both events hold w.p. at least Ωp1{kq
Thus, from now on we assume that both “good” events E1 and E2 occur. We bound the probability of
event E1 in Lemma 2.5. We now prove a structural properties of the tree output by the algorithm, we
introduce the following definition. We say that a treeT “pN ,Eq is aγ-approximate ground-truth tree for
G and T˚ if there exists a weight functionW 1 :N ÞÑR` such that for any two vertices a,b, we have that

1. γ´1W 1pLCAT pa,bqqďW pLCAT˚pa,bqqďγW 1pLCAT pa,bqq and

2. for any nodeN of T and any nodeN 1 descendant ofN in T ,W pNqďW pN 1q.

Lemma 2.5. LetG be generated by an HSBM. Assume that the separation of bottom clusters given by
(1) holds. LetC˚1 ,...,C

˚
k be the hidden bottom-level clusters, i.e.,C˚i “tv | ψpvq“ iu. With probability

at least Ωp1{kq, the clusters obtained after Step 4 correspond to the assignment ψ, i.e., there exists
a permutation π : rksÑrks, such thatCj“C˚πpjq.

Lemma 2.6. Assume that the separation of bottom clusters given by (1) holds, pmin“ωp
a

logn{nq,
and nmině

?
n ¨ log1{4n. LetG be generated according to an HSBM and let T˚ be a ground-truth

tree forG. Assume that events E1 and E2 occur, and that furthermore, the clusters obtained after Step 4
correspond to the assignment ψ, i.e., there exists a permutation π : rksÑrks such that for each vPCi,
ψpvq“πpiq. Then, the output by the algorithm is a p1`εq-approximate ground-truth tree.

The following lemma allows us to bound the cost of an approximate ground-truth tree.

Lemma 2.7. LetG be a graph generated according to an HSBM and let T˚ be a ground-truth tree
forG. Let Ḡ be the expected graph associated to T˚ andG. Let T be a γ-approximate ground-truth
tree. Then, costT ďγ2OPT.

Proof of Theorem 2.4. Conditioning on E1 and E2 which occur w.h.p. and combining Lemmas 2.5, 2.7,
and 2.6 together with Theorem 2.2 yields the result. As argued before, E1 holds at least w.p. 1{k and it is
possible to boost part of this probability by running Algorithm 1 multiple times. Running it Ωpklognq
times and taking the tree with the smallest cost yields the result. Moreover, E2 also holds w.h.p..

3 Empirical Evaluation

In this section, we evaluate the effectiveness of LINKAGE++ on real-world and synthetic datasets.
We compare our results to the classic agglomerative heuristics for hierarchical clustering both in
terms of the cost function and the classification error. Our goal is answering the question: How good
is LINKAGE++ compared to the classic agglomerative approaches on real-world and synthetic data
that exhibit a ground-truth clustering?

Datasets. The datasets we use are part of the standard Scikit-learn library [4] (and most of them are
available at the UCI machine learning repository [1]). Most of these datasets exhibit a “flat” clustering
structure, with the exception of the newsgroup datasets which is truly hierarchical. The goal of the
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algorithm is to perform a clustering of the data by finding the underlying classes. The datasets are: iris,
digits, newsgroup2, diabetes, cancer, boston. For a given dataset, we define similarity between
data elements using the cosine similarity, this is a standard approach for defining similarity between data
elements (see, e.g., [22]) This induces a weighted similarity graph that is given as input to LINKAGE++.

Synthethic Data. We generate random graphs of sizes n P t256,512,1024u according to the model
described in Section 2.1. More precisely, we define a binary tree on `Pt4,8u bottom clusters/leaves.
Each leaf represents a “class”. We create n{` vertices for each class. The probability of having an
edge between two vertices of class a and b is given by the probability induced by lowest common
ancestor between the leaves corresponding to a and b respectively. We first define pmin“2logn¨`{n.
The probability induced by the vertices of the binary tree are the following: the probability at the root
is p“pmin`p1´pminq{logp`q, and the probability induced by a node at distance d from the root is
pd`1qp. In particular, the probability induced by the leaves is pmin` logp`qp1´pminq{logp`q “ 1.
We also investigate a less structured setting using a ground truth tree on three nodes.

Method. We run LINKAGE++ with 9 different breakpoints at which we switch between phase 1
and phase 2 (which corresponds to “guesses” of k). We output the clustering with the smallest cost.
To evaluate our algorithm, we compare its performances to classic agglomerative heuristics (for the
similarity setting): single linkage, complete linkage, (see also [24, 13] for a complete description)
and to the approach of performing only phase 1 of LINKAGE++ until only one cluster remains; we
will denote the approach as PCA+. Additionally, we compare ourselves to applying only phase 2 of
LINKAGE++, we call this approach density-based linkage. We observe that the running times of the
algorithms are of order rOpn2q stemming already from the agglomerative parts.3 This is close to the
rOpn2qq running time achieved by the classic agglomerative heuristics.
We compare the results by using both the cost of the output tree w.r.t. the hierarchical clustering cost
function and the classification error. The classification error is a classic tool to compare different (usu-
ally flat) clusterings (see, e.g., [22]). For a k-clusteringC :V ÞÑt1,...,ku, the classification error w.r.t.
a ground-truth flat clustering C˚ :V ÞÑ t1,...,ku is defined as minσPSk

`
ř

xPV 1Cpxq‰σpC˚pxqq
˘

{|V |,
where Sk is the set of all permutations σ over k elements.
We note that the cost function is more relevant for the newsgroup dataset since it exhibits a truly
hierarchical structure and so the cost function is presumably capturing the quality of the classification
at different levels. On the other hand, the classification error is more relevant for the others data sets as
they are intrinsically flat. All experiments are repeated at least 10 times and standard deviation is shown.

Results. The results are summarized in Figure 1, 2, and 3 (App. 3). Almost in all experiments
LINKAGE++ performs extremlely well w.r.t. the cost and classification error. Moreover, we observe
that a low cost function correlates with a good classification error. For synthetic data, in both
LINKAGE++ and PCA+, we observe in Figure 2b that classification error drops drastically from
k“4 to k“8, from 0.5 to 0 as the size is number of nodes is increased from n“512 to n“1024. We
observe this threshold phenomena for all fixed k we considered. We can observe that the normalized
cost in Figure 2a for the other linkage algorithms increases in the aforementioned setting.
Moreover, the only dataset where LINKAGE++ and PCA+ differ significantly is the hierarchical
dataset newsgroup. Here the cost function of PCA+ is much higher. While the classification error
of all algorithm is large, it turns out by inspecting the final clustering of LINKAGE++ and PCA+ that
the categories which were being misclassified are mostly sub categories of the same category. On
the dataset of Figure 3 (App. 3) only LINKAGE++ performs well.

Conclusion. Overall both algorithms LINKAGE++ and Single-linkage perform considerably better
when it comes to real-world data and LINKAGE++ and PCA+ dominate on our synthetic datasets.
However, in general there is no reason to believe that PCA+ would perform well in clustering truly
hierarchical data: there are regimes of the HSBM for which applying only phase 1 of the algorithm
might lead to a high missclassification error and high cost and for which we can prove that LINKAGE++
is an p1`εq-approximation.
This is exemplified in Figure 3 (App. 3). Moreover, our experiments suggest that one should use in addi-
tion to LINKAGE++ other linkage algorithm and pick the algorithm with the lowest cost function, which
appears to correlate with the classification error. Nevertheless, a high classification error of hierarchical

2Due to the enormous size of the dataset, we consider a subset consisting of ’comp.graphics’, ’comp.os.ms-
windows.misc’, ’comp.sys.ibm.pc.hardware’, ’comp.sys.mac.hardware’, ’rec.sport.baseball’, ’rec.sport.hockey’

3Top k singular vectors of an nˆn matrix can be approximately computed in time rOpkn2
q.
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(a) (b)

Figure 1: A comparison of the algorithms on real-world data. (a) The figure shows the cost costp¨q of the
algorithm normalized by the the cost of LINKAGE++. (b) The figure shows the percentage of misclassified nodes.
By looking more closely at the output of the algorithm, one can see that a large fraction of the misclassifications
happen in subgroups of the same group.

(a) (b)

Figure 2: A comparison of the algorithms on synthetic data for highly structured ground-truth for different n,k.
PCA+ performs well on these inputs and we conjecture that this due to the highly structured nature of the ground-
truth. (a) The cost of LINKAGE++ and PCA+ are well-below the costs’ of the standard linkage algorithms. (b) We
see a threshold phenomena for k“8 from n“512 to n“1024. Here the classification error drops from 0.5 to 0,
which is explained by concentration of the eigenvalues allowing the PCA to separated the bottom clusters correctly.

data is not a bad sign per se: A misclassification of subcategories of the same categories (as we observe in
our experiments) is arguably tolerable, but ignored by the classification error. On the other hand, the cost
function captures such errors nicely by its inherently hierarchical nature and we thus strongly advocate it.

(a) (b) (c)

Figure 3: The clustering obtained by PCA+ on a ground truth tree on three nodes induced by the adjacency matrix
rr1.,0.49,0.39sr0.49,0.49,0.39sr0.39,0.39,0.62ss and n“999 nodes split equally. Here only LINKAGE++ and
PCA+ classify the bottom clusters of the subtrees correctly. However, the projection to the euclidian space (PCA)
does not preserve the underlying ultramtric causing PCA+ to merge incorrectly. (a) LINKAGE++ recovers the
ground truth. All other algorithm merge incorrectly. (b) LINKAGE++ and PCA+ classify the bottom clusters
correctly causing the classification to be perfect even though PCA+ failed to correctly reconstruct the ground-truth.
This suggests that the classification error is less suitable measure for hierarchical data. (c) PCA+ in contrast
to LINKAGE++ merges incorrectly two bottom clusters of different branches in the ground-truth tree (green and
blue as opposed to green and red).
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