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Abstract

This paper introduces the QMDP-net, a neural network architecture for planning under
partial observability. The QMDP-net combines the strengths of model-free learning and
model-based planning. It is a recurrent policy network, but it represents a policy for a
parameterized set of tasks by connecting a model with a planning algorithm that solves the
model, thus embedding the solution structure of planning in a network learning architecture.
The QMDP-net is fully differentiable and allows for end-to-end training. We train a QMDP-
net on different tasks so that it can generalize to new ones in the parameterized task set
and “transfer” to other similar tasks beyond the set. In preliminary experiments, QMDP-net
showed strong performance on several robotic tasks in simulation. Interestingly, while
QMDP-net encodes the QMDP algorithm, it sometimes outperforms the QMDP algorithm
in the experiments, as a result of end-to-end learning.

1 Introduction

Decision-making under uncertainty is of fundamental importance, but it is computationally hard,
especially under partial observability [24]. In a partially observable world, the agent cannot determine
the state exactly based on the current observation; to plan optimal actions, it must integrate information
over the past history of actions and observations. See Fig. 1 for an example. In the model-based
approach, we may formulate the problem as a partially observable Markov decision process (POMDP).
Solving POMDPs exactly is computationally intractable in the worst case [24]. Approximate POMDP
algorithms have made dramatic progress on solving large-scale POMDPs [17, 25, 29, 32, 37]; however,
manually constructing POMDP models or learning them from data remains difficult. In the model-free
approach, we directly search for an optimal solution within a policy class. If we do not restrict the
policy class, the difficulty is data and computational efficiency. We may choose a parameterized
policy class. The effectiveness of policy search is then constrained by this a priori choice.

Deep neural networks have brought unprecedented success in many domains [16, 21, 30] and
provide a distinct new approach to decision-making under uncertainty. The deep Q-network (DQN),
which consists of a convolutional neural network (CNN) together with a fully connected layer,
has successfully tackled many Atari games with complex visual input [21]. Replacing the post-
convolutional fully connected layer of DQN by a recurrent LSTM layer allows it to deal with partial
observaiblity [10]. However, compared with planning, this approach fails to exploit the underlying
sequential nature of decision-making.

We introduce QMDP-net, a neural network architecture for planning under partial observability.
QMDP-net combines the strengths of model-free learning and model-based planning. A QMDP-net
is a recurrent policy network, but it represents a policy by connecting a POMDP model with an
algorithm that solves the model, thus embedding the solution structure of planning in a network
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(a) (b) (c) (d)

Fig. 1: A robot learning to navigate in partially observable grid worlds. (a) The robot has a map. It
has a belief over the initial state, but does not know the exact initial state. (b) Local observations
are ambiguous and are insufficient to determine the exact state. (c, d) A policy trained on expert
demonstrations in a set of randomly generated environments generalizes to a new environment. It
also “transfers” to a much larger real-life environment, represented as a LIDAR map [12].

learning architecture. Specifically, our network uses QMDP [18], a simple, but fast approximate
POMDP algorithm, though other more sophisticated POMDP algorithms could be used as well.

A QMDP-net consists of two main network modules (Fig. 2). One represents a Bayesian filter, which
integrates the history of an agent’s actions and observations into a belief, i.e. a probabilistic estimate
of the agent’s state. The other represents the QMDP algorithm, which chooses the action given the
current belief. Both modules are differentiable, allowing the entire network to be trained end-to-end.

We train a QMDP-net on expert demonstrations in a set of randomly generated environments. The
trained policy generalizes to new environments and also “transfers” to more complex environments
(Fig. 1c–d). Preliminary experiments show that QMDP-net outperformed state-of-the-art network
architectures on several robotic tasks in simulation. It successfully solved difficult POMDPs that
require reasoning over many time steps, such as the well-known Hallway2 domain [18]. Interestingly,
while QMDP-net encodes the QMDP algorithm, it sometimes outperformed the QMDP algorithm in
our experiments, as a result of end-to-end learning.

2 Background

2.1 Planning under Uncertainty

A POMDP is formally defined as a tuple (S,A,O, T, Z,R), where S, A and O are the state, action,
and observation space, respectively. The state-transition function T (s, a, s0) = P (s0|s, a) defines the
probability of the agent being in state s0 after taking action a in state s. The observation function
Z(s, a, o) = p(o|s, a) defines the probability of receiving observation o after taking action a in
state s. The reward function R(s, a) defines the immediate reward for taking action a in state s.

In a partially observable world, the agent does not know its exact state. It maintains a belief, which is
a probability distribution over S. The agent starts with an initial belief b0 and updates the belief bt at
each time step t with a Bayesian filter:

bt(s
0
) = ⌧(bt�1, at, ot) = ⌘Z(s0, at, ot)

P
s2S T (s, at, s

0
)bt�1(s), (1)

where ⌘ is a normalizing constant. The belief bt recursively integrates information from the entire
past history (a1, o1, a2, o2, . . . , at, ot) for decision making. POMDP planning seeks a policy ⇡ that
maximizes the value, i.e., the expected total discounted reward:

V⇡(b0) = E
�P1

t=0 �
tR(st, at+1)

�� b0,⇡
�
, (2)

where st is the state at time t, at+1 = ⇡(bt) is the action that the policy ⇡ chooses at time t, and
� 2 (0, 1) is a discount factor.

2.2 Related Work

To learn policies for decision making in partially observable domains, one approach is to learn models
[6, 19, 26] and solve the models through planning. An alternative is to learn policies directly [2, 5].
Model learning is usually not end-to-end. While policy learning can be end-to-end, it does not exploit
model information for effective generalization. Our proposed approach combines model-based and
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model-free learning by embedding a model and a planning algorithm in a recurrent neural network
(RNN) that represents a policy and then training the network end-to-end.

RNNs have been used earlier for learning in partially observable domains [4, 10, 11]. In particular,
Hausknecht and Stone extended DQN [21], a convolutional neural network (CNN), by replacing
its post-convolutional fully connected layer with a recurrent LSTM layer [10]. Similarly, Mirowski
et al. [20] considered learning to navigate in partially observable 3-D mazes. The learned policy
generalizes over different goals, but in a fixed environment. Instead of using the generic LSTM,
our approach embeds algorithmic structure specific to sequential decision making in the network
architecture and aims to learn a policy that generalizes to new environments.

The idea of embedding specific computation structures in the neural network architecture has been
gaining attention recently. Tamar et al. implemented value iteration in a neural network, called
Value Iteration Network (VIN), to solve Markov decision processes (MDPs) in fully observable
domains, where an agent knows its exact state and does not require filtering [34]. Okada et al.
addressed a related problem of path integral optimal control, which allows for continuous states
and actions [23]. Neither addresses the issue of partial observability, which drastically increases
the computational complexity of decision making [24]. Haarnoja et al. [9] and Jonschkowski and
Brock [15] developed end-to-end trainable Bayesian filters for probabilistic state estimation. Silver
et al. introduced Predictron for value estimation in Markov reward processes [31]. They do not
deal with decision making or planning. Both Shankar et al. [28] and Gupta et al. [8] addressed
planning under partial observability. The former focuses on learning a model rather than a policy.
The learned model is trained on a fixed environment and does not generalize to new ones. The
latter proposes a network learning approach to robot navigation in an unknown environment, with a
focus on mapping. Its network architecture contains a hierarchical extension of VIN for planning
and thus does not deal with partial observability during planning. The QMDP-net extends the prior
work on network architectures for MDP planning and for Bayesian filtering. It imposes the POMDP
model and computation structure priors on the entire network architecture for planning under partial
observability.

3 Overview

We want to learn a policy that enables an agent to act effectively in a diverse set of partially
observable stochastic environments. Consider, for example, the robot navigation domain in Fig. 1.
The environments may correspond to different buildings. The robot agent does not observe its own
location directly, but estimates it based on noisy readings from a laser range finder. It has access
to building maps, but does not have models of its own dynamics and sensors. While the buildings
may differ significantly in their layouts, the underlying reasoning required for effective navigation is
similar in all buildings. After training the robot in a few buildings, we want to place the robot in a
new building and have it navigate effectively to a specified goal.

Formally, the agent learns a policy for a parameterized set of tasks in partially observable stochastic
environments: W⇥ = {W (✓) | ✓ 2 ⇥}, where ⇥ is the set of all parameter values. The parameter
value ✓ captures a wide variety of task characteristics that vary within the set, including environments,
goals, and agents. In our robot navigation example, ✓ encodes a map of the environment, a goal,
and a belief over the robot’s initial state. We assume that all tasks in W⇥ share the same state space,
action space, and observation space. The agent does not have prior models of its own dynamics,
sensors, or task objectives. After training on tasks for some subset of values in ⇥, the agent learns a
policy that solves W (✓) for any given ✓ 2 ⇥.

A key issue is a general representation of a policy for W⇥, without knowing the specifics of W⇥ or its
parametrization. We introduce the QMDP-net, a recurrent policy network. A QMDP-net represents a
policy by connecting a parameterized POMDP model with an approximate POMDP algorithm and
embedding both in a single, differentiable neural network. Embedding the model allows the policy
to generalize over W⇥ effectively. Embedding the algorithm allows us to train the entire network
end-to-end and learn a model that compensates for the limitations of the approximate algorithm.

Let M(✓)=(S,A,O, fT (·|✓), fZ(·|✓), fR(·|✓)) be the embedded POMDP model, where S,A and
O are the shared state space, action space, observation space designed manually for all tasks
in W⇥ and fT (·|·), fZ(·|·), fR(·|·) are the state-transition, observation, and reward functions to
be learned from data. It may appear that a perfect answer to our learning problem would have
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Fig. 2: QMDP-net architecture. (a) A policy maps a history of actions and observations to a new
action. (b) A QMDP-net is an RNN that imposes structure priors for sequential decision making
under partial observability. It embeds a Bayesian filter and the QMDP algorithm in the network. The
hidden state of the RNN encodes the belief for POMDP planning. (c) A QMDP-net unfolded in time.

fT (·|✓), fZ(·|✓), and fR(·|✓) represent the “true” underlying models of dynamics, observation, and
reward for the task W (✓). This is true only if the embedded POMDP algorithm is exact, but not
true in general. The agent may learn an alternative model to mitigate an approximate algorithm’s
limitations and obtain an overall better policy. In this sense, while QMDP-net embeds a POMDP
model in the network architecture, it aims to learn a good policy rather than a “correct” model.

A QMDP-net consists of two modules (Fig. 2). One encodes a Bayesian filter, which performs
state estimation by integrating the past history of agent actions and observations into a belief. The
other encodes QMDP, a simple, but fast approximate POMDP planner [18]. QMDP chooses the
agent’s actions by solving the corresponding fully observable Markov decision process (MDP) and
performing one-step look-ahead search on the MDP values weighted by the belief.

We evaluate the proposed network architecture in an imitation learning setting. We train on a
set of expert trajectories with randomly chosen task parameter values in ⇥ and test with new
parameter values. An expert trajectory consist of a sequence of demonstrated actions and observations
(a1, o1, a2, o2, . . .) for some ✓ 2 ⇥. The agent does not access the ground-truth states or beliefs
along the trajectory during the training. We define loss as the cross entropy between predicted and
demonstrated action sequences and use RMSProp [35] for training. See Appendix C.7 for details. Our
implementation in Tensorflow [1] is available online at http://github.com/AdaCompNUS/qmdp-net.

4 QMDP-Net

We assume that all tasks in a parameterized set W⇥ share the same underlying state space S, action
space A, and observation space O. We want to learn a QMDP-net policy for W⇥, conditioned on the
parameters ✓ 2 ⇥. A QMDP-net is a recurrent policy network. The inputs to a QMDP-net are the
action at 2 A and the observation ot 2 O at time step t, as well as the task parameter ✓ 2 ⇥. The
output is the action at+1 for time step t+ 1.

A QMDP-net encodes a parameterized POMDP model M(✓)=(S,A,O, T =fT (·|✓), Z=

fZ(·|✓), R=fR(·|✓)) and the QMDP algorithm, which selects actions by solving the model approxi-
mately. We choose S, A, and O of M(✓) manually, based on prior knowledge on W⇥, specifically,
prior knowledge on S, A, and O. In general, S 6= S, A 6= A, and O 6= O. The model states,
actions, and observations may be abstractions of their real-world counterparts in the task. In our robot
navigation example (Fig. 1), while the robot moves in a continuous space, we choose S to be a grid
of finite size. We can do the same for A and O, in order to reduce representational and computational
complexity. The transition function T , observation function Z, and reward function R of M(✓) are
conditioned on ✓, and are learned from data through end-to-end training. In this work, we assume
that T is the same for all tasks in W⇥ to simplify the network architecture. In other words, T does
not depend on ✓.

End-to-end training is feasible, because a QMDP-net encodes both a model and the associated
algorithm in a single, fully differentiable neural network. The main idea for embedding the algorithm
in a neural network is to represent linear operations, such as matrix multiplication and summation, by
convolutional layers and represent maximum operations by max-pooling layers. Below we provide
some details on the QMDP-net’s architecture, which consists of two modules, a filter and a planner.
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(a) Bayesian filter module (b) QMDP planner module

Fig. 3: A QMDP-net consists of two modules. (a) The Bayesian filter module incorporates the
current action at and observation ot into the belief. (b) The QMDP planner module selects the action
according to the current belief bt.

Filter module. The filter module (Fig. 3a) implements a Bayesian filter. It maps from a belief,
action, and observation to a next belief, bt+1 = f(bt|at, ot). The belief is updated in two steps. The
first accounts for actions, the second for observations:

b0t(s) =
P

s02S T (s0, at, s)bt(s
0
), (3)

bt+1(s) = ⌘Z(s, ot)b
0
t(s), (4)

where ot 2 O is the observation received after taking action at 2 A and ⌘ is a normalization factor.

We implement the Bayesian filter by transforming Eq. (3) and Eq. (4) to layers of a neural network.
For ease of discussion consider our N⇥N grid navigation task (Fig. 1a–c). The agent does not know
its own state and only observes neighboring cells. It has access to the task parameter ✓ that encodes
the obstacles, goal, and a belief over initial states. Given the task, we choose M(✓) to have a N⇥N
state space. The belief, bt(s), is now an N⇥N tensor.

Eq. (3) is implemented as a convolutional layer with |A| convolutional filters. We denote the
convolutional layer by fT . The kernel weights of fT encode the transition function T in M(✓). The
output of the convolutional layer, b0t(s, a), is a N⇥N⇥|A| tensor.

b0t(s, a) encodes the updated belief after taking each of the actions, a 2 A. We need to select the
belief corresponding to the last action taken by the agent, at. We can directly index b0t(s, a) by at if
A = A. In general A 6= A, so we cannot use simple indexing. Instead, we will use “soft indexing”.
First we encode actions in A to actions in A through a learned function fA. fA maps from at to
an indexing vector wa

t , a distribution over actions in A. We then weight b0t(s, a) by wa
t along the

appropriate dimension, i.e.
b0t(s) =

P
a2A b0t(s, a)w

a
t . (5)

Eq. (4) incorporates observations through an observation model Z(s, o). Now Z(s, o) is a N⇥N⇥|O|
tensor that represents the probability of receiving observation o 2 O in state s 2 S. In our grid
navigation task observations depend on the obstacle locations. We condition Z on the task parameter,
Z(s, o) = fZ(s, o|✓) for ✓ 2 ⇥. The function fZ is a neural network, mapping from ✓ to Z(s, o). In
this paper fZ is a CNN.

Z(s, o) encodes observation probabilities for each of the observations, o 2 O. We need the ob-
servation probabilities for the last observation ot. In general O 6= O and we cannot index Z(s, o)
directly. Instead, we will use soft indexing again. We encode observations in O to observations in O
through fO. fO is a function mapping from ot to an indexing vector, wo

t , a distribution over O. We
then weight Z(s, o) by wo

t , i.e.

Z(s) =
P

o2O Z(s, o)wo
t . (6)

Finally, we obtain the updated belief, bt+1(s), by multiplying b0t(s) and Z(s) element-wise, and
normalizing over states. In our setting the initial belief for the task W (✓) is encoded in ✓. We
initialize the belief in QMDP-net through an additional encoding function, b0 = fB(✓).
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Planner module. The QMDP planner (Fig. 3b) performs value iteration at its core. Q values are
computed by iteratively applying Bellman updates,

Qk+1(s, a) = R(s, a) + �
P

s02S T (s, a, s0)Vk(s
0
), (7)

Vk(s) = maxa Qk(s, a). (8)

Actions are then selected by weighting the Q values with the belief.

We can implement value iteration using convolutional and max pooling layers [28, 34]. In our grid
navigation task Q(s, a) is a N⇥N⇥|A| tensor. Eq. (8) is expressed by a max pooling layer, where
Qk(s, a) is the input and Vk(s) is the output. Eq. (7) is a N⇥N convolution with |A| convolutional
filters, followed by an addition operation with R(s, a), the reward tensor. We denote the convolutional
layer by f 0

T . The kernel weights of f 0
T encode the transition function T , similarly to fT in the filter.

Rewards for a navigation task depend on the goal and obstacles. We condition rewards on the task
parameter, R(s, a) = fR(s, a|✓). fR maps from ✓ to R(s, a). In this paper fR is a CNN.

We implement K iterations of Bellman updates by stacking the layers representing Eq. (7) and Eq. (8)
K times with tied weights. After K iterations we get QK(s, a), the approximate Q values for each
state-action pair. We weight the Q values by the belief to obtain action values,

q(a) =
P

s2S QK(s, a)bt(s). (9)

Finally, we choose the output action through a low-level policy function, f⇡, mapping from q(a) to
the action output, at+1.

QMDP-net naturally extends to higher dimensional discrete state spaces (e.g. our maze navigation
task) where n-dimensional convolutions can be used [14]. While M(✓) is restricted to a discrete
space, we can handle continuous tasks W⇥ by simultaneously learning a discrete M(✓) for planning,
and fA, fO, fB, f⇡ to map between states, actions and observations in W⇥ and M(✓).

5 Experiments

The main objective of the experiments is to understand the benefits of structure priors on learning
neural-network policies. We create several alternative network architectures by gradually relaxing
the structure priors and evaluate the architectures on simulated robot navigation and manipulation
tasks. While these tasks are simpler than, for example, Atari games, in terms of visual perception,
they are in fact very challenging, because of the sophisticated long-term reasoning required to handle
partial observability and distant future rewards. Since the exact state of the robot is unknown, a
successful policy must reason over many steps to gather information and improve state estimation
through partial and noisy observations. It also must reason about the trade-off between the cost of
information gathering and the reward in the distance future.

5.1 Experimental Setup

We compare the QMDP-net with a number of related alternative architectures. Two are QMDP-net
variants. Untied QMDP-net relaxes the constraints on the planning module by untying the weights
representing the state-transition function over the different CNN layers. LSTM QMDP-net replaces
the filter module with a generic LSTM module. The other two architectures do not embed POMDP
structure priors at all. CNN+LSTM is a state-of-the-art deep CNN connected to an LSTM. It is similar
to the DRQN architecture proposed for reinforcement learning under partially observability [10].
RNN is a basic recurrent neural network with a single fully-connected hidden layer. RNN contains no
structure specific to planning under partial observability.

Each experimental domain contains a parameterized set of tasks W⇥. The parameters ✓ encode an
environment, a goal, and a belief over the robot’s initial state. To train a policy for W⇥, we generate
random environments, goals, and initial beliefs. We construct ground-truth POMDP models for the
generated data and apply the QMDP algorithm. If the QMDP algorithm successfully reaches the
goal, we then retain the resulting sequence of action and observations (a1, o1, a2, o2, . . .) as an expert
trajectory, together with the corresponding environment, goal, and initial belief. It is important to note
that the ground-truth POMDPs are used only for generating expert trajectories and not for learning
the QMDP-net.
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For fair comparison, we train all networks using the same set of expert trajectories in each domain. We
perform basic search over training parameters, the number of layers, and the number of hidden units
for each network architecture. Below we briefly describe the experimental domains. See Appendix C
for implementation details.

Grid-world navigation. A robot navigates in an unknown building given a floor map and a goal.
The robot is uncertain of its own location. It is equipped with a LIDAR that detects obstacles in its
direct neighborhood. The world is uncertain: the robot may fail to execute desired actions, possibly
because of wheel slippage, and the LIDAR may produce false readings. We implemented a simplified
version of this task in a discrete n⇥n grid world (Fig. 1c). The task parameter ✓ is represented as
an n⇥n image with three channels. The first channel encodes the obstacles in the environment, the
second channel encodes the goal, and the last channel encodes the belief over the robot’s initial state.
The robot’s state represents its position in the grid. It has five actions: moving in each of the four
canonical directions or staying put. The LIDAR observations are compressed into four binary values
corresponding to obstacles in the four neighboring cells. We consider both a deterministic and a
stochastic variant of the domain. The stochastic variant adds action and observation uncertainties.
The robot fails to execute the specified move action and stays in place with probability 0.2. The
observations are faulty with probability 0.1 independently in each direction. We trained a policy
using expert trajectories from 10, 000 random environments, 5 trajectories from each environment.
We then tested on a separate set of 500 random environments.

Fig. 4: Highly ambiguous observations in
a maze. The four observations (in red) are
the same, despite that the robot states are
all different.

Maze navigation. A differential-drive robot navigates
in a maze with the help of a map, but it does not know its
pose (Fig. 1d). This domain is similar to the grid-world
navigation, but it is significant more challenging. The
robot’s state contains both its position and orientation.
The robot cannot move freely because of kinematic con-
straints. It has four actions: move forward, turn left, turn
right and stay put. The observations are relative to the
robot’s current orientation, and the increased ambiguity
makes it more difficult to localize the robot, especially
when the initial state is highly uncertain. Finally, suc-
cessful trajectories in mazes are typically much longer
than those in randomly-generated grid worlds. Again
we trained on expert trajectories in 10, 000 randomly
generated mazes and tested them in 500 new ones.

(a) (b)

Fig. 5: Object grasping using touch sens-
ing. (a) An example [3]. (b) Simplified
2-D object grasping. Objects from the
training set (top) and the test set (bottom).

2-D object grasping. A robot gripper picks up novel
objects from a table using a two-finger hand with noisy
touch sensors at the finger tips. The gripper uses the
fingers to perform compliant motions while maintaining
contact with the object or to grasp the object. It knows the
shape of the object to be grasped, maybe from an object
database. However, it does not know its own pose relative
to the object and relies on the touch sensors to localize
itself. We implemented a simplified 2-D variant of this
task, modeled as a POMDP [13]. The task parameter ✓
is an image with three channels encoding the object shape, the grasp point, and a belief over the
gripper’s initial pose. The gripper has four actions, each moving in a canonical direction unless it
touches the object or the environment boundary. Each finger has 3 binary touch sensors at the tip,
resulting in 64 distinct observations. We trained on expert demonstration on 20 different objects with
500 randomly sampled poses for each object. We then tested on 10 previously unseen objects in
random poses.

5.2 Choosing QMDP-Net Components for a Task

Given a new task W⇥, we need to choose an appropriate neural network representation for
M(✓). More specifically, we need to choose S,A and O, and a representation for the functions
fR, fT , f

0
T , fZ , fO, fA, fB, f⇡. This provides an opportunity to incorporate domain knowledge in a

principled way. For example, if W⇥ has a local and spatially invariant connectivity structure, we can
choose convolutions with small kernels to represent fT , fR and fZ .
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In our experiments we use S=N⇥N for N⇥N grid navigation, and S=N⇥N⇥4 for N⇥N maze
navigation where the robot has 4 possible orientations. We use |A| = |A| and |O| = |O| for all tasks
except for the object grasping task, where |O| = 64 and |O| = 16. We represent fT , fR and fZ by
CNN components with 3⇥3 and 5⇥5 kernels depending on the task. We enforce that fT and fZ

are proper probability distributions by using softmax and sigmoid activations on the convolutional
kernels, respectively. Finally, fO is a small fully connected component, fA is a one-hot encoding
function, f⇡ is a single softmax layer, and fB is the identity function.

We can adjust the amount of planning in a QMDP-net by setting K. A large K allows propagating
information to more distant states without affecting the number of parameters to learn. However, it
results in deeper networks that are computationally expensive to evaluate and more difficult to train.
We used K = 20 . . . 116 depending on the problem size. We were able to transfer policies to larger
environments by increasing K up to 450 when executing the policy.

In our experiments the representation of the task parameter ✓ is isomorphic to the chosen state
space S. While the architecture is not restricted to this setting, we rely on it to represent fT , fZ , fR by
convolutions with small kernels. Experiments with a more general class of problems is an interesting
direction for future work.

5.3 Results and Discussion

The main results are reported in Table 1. Some additional results are reported in Appendix A. For
each domain, we report the task success rate and the average number of time steps for task completion.
Comparing the completion time is meaningful only when the success rates are similar.

QMDP-net successfully learns policies that generalize to new environments. When evaluated
on new environments, the QMDP-net has higher success rate and faster completion time than the
alternatives in nearly all domains. To understand better the performance difference, we specifically
compared the architectures in a fixed environment for navigation. Here only the initial state and the
goal vary across the task instances, while the environment remains the same. See the results in the
last row of Table 1. The QMDP-net and the alternatives have comparable performance. Even RNN
performs very well. Why? In a fixed environment, a network may learn the features of an optimal
policy directly, e.g., going straight towards the goal. In contrast, the QMDP-net learns a model for
planning, i.e., generating a near-optimal policy for a given arbitrary environment.

POMDP structure priors improve the performance of learning complex policies. Moving
across Table 1 from left to right, we gradually relax the POMDP structure priors on the network
architecture. As the structure priors weaken, so does the overall performance. However, strong priors
sometimes over-constrain the network and result in degraded performance. For example, we found
that tying the weights of fT in the filter and f 0

T in the planner may lead to worse policies. While both
fT and f 0

T represent the same underlying transition dynamics, using different weights allows each
to choose its own approximation and thus greater flexibility. We shed some light on this issue and
visualize the learned POMDP model in Appendix B.

QMDP-net learns “incorrect”, but useful models. Planning under partial observability is in-
tractable in general, and we must rely on approximation algorithms. A QMDP-net encodes both a
POMDP model and QMDP, an approximate POMDP algorithm that solves the model. We then train
the network end-to-end. This provides the opportunity to learn an “incorrect”, but useful model that
compensates the limitation of the approximation algorithm, in a way similar to reward shaping in
reinforcement learning [22]. Indeed, our results show that the QMDP-net achieves higher success
rate than QMDP in nearly all tasks. In particular, QMDP-net performs well on the well-known
Hallway2 domain, which is designed to expose the weakness of QMDP resulting from its myopic
planning horizon. The planning algorithm is the same for both the QMDP-net and QMDP, but the
QMDP-net learns a more effective model from expert demonstrations. This is true even though
QMDP generates the expert data for training. We note that the expert data contain only successful
QMDP demonstrations. When both successful and unsuccessful QMDP demonstrations were used
for training, the QMDP-net did not perform better than QMDP, as one would expect.

QMDP-net policies learned in small environments transfer directly to larger environments.
Learning a policy for large environments from scratch is often difficult. A more scalable approach
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Table 1: Performance comparison of QMDP-net and alternative architectures for recurrent policy
networks. SR is the success rate in percentage. Time is the average number of time steps for task
completion. D-n and S-n denote deterministic and stochastic variants of a domain with environment
size n⇥n.

QMDP QMDP-net Untied LSTM CNN RNN
QMDP-net QMDP-net +LSTM

Domain SR Time SR Time SR Time SR Time SR Time SR Time

Grid D-10 99.8 8.8 99.6 8.2 98.6 8.3 84.4 12.8 90.0 13.4 87.8 13.4
Grid D-18 99.0 15.5 99.0 14.6 98.8 14.8 43.8 27.9 57.8 33.7 35.8 24.5
Grid D-30 97.6 24.6 98.6 25.0 98.8 23.9 22.2 51.1 19.4 45.2 16.4 39.3

Grid S-18 98.1 23.9 98.8 23.9 95.9 24.0 23.8 55.6 41.4 65.9 34.0 64.1

Maze D-29 63.2 54.1 98.0 56.5 95.4 62.5 9.8 57.2 9.2 41.4 9.8 47.0
Maze S-19 63.1 50.5 93.9 60.4 98.7 57.1 18.9 79.0 19.2 80.8 19.6 82.1

Hallway2 37.3 28.2 82.9 64.4 69.6 104.4 82.8 89.7 77.8 99.5 68.0 108.8

Grasp 98.3 14.6 99.6 18.2 98.9 20.4 91.4 26.4 92.8 22.1 94.1 25.7

Intel Lab 90.2 85.4 94.4 107.7 20.0 55.3 - - -
Freiburg 88.4 66.9 93.2 81.1 37.4 51.7 - - -
Fixed grid 98.8 17.4 98.6 17.6 99.8 17.0 97.0 19.7 98.4 19.9 98.0 19.8

would be to learn a policy in small environments and transfer it to large environments by repeating
the reasoning process. To transfer a learned QMDP-net policy, we simply expand its planning module
by adding more recurrent layers. Specifically, we trained a policy in randomly generated 30 ⇥ 30

grid worlds with K = 90. We then set K = 450 and applied the learned policy to several real-life
environments, including Intel Lab (100⇥101) and Freiburg (139⇥57), using their LIDAR maps
(Fig. 1c) from the Robotics Data Set Repository [12]. See the results for these two environments in
Table 1. Additional results with different K settings and other buildings are available in Appendix A.

6 Conclusion

A QMDP-net is a deep recurrent policy network that embeds POMDP structure priors for planning
under partial observability. While generic neural networks learn a direct mapping from inputs to
outputs, QMDP-net learns how to model and solve a planning task. The network is fully differentiable
and allows for end-to-end training.

Experiments on several simulated robotic tasks show that learned QMDP-net policies successfully
generalize to new environments and transfer to larger environments as well. The POMDP structure
priors and end-to-end training substantially improve the performance of learned policies. Interestingly,
while a QMDP-net encodes the QMDP algorithm for planning, learned QMDP-net policies sometimes
outperform QMDP.

There are many exciting directions for future exploration. First, a major limitation of our current
approach is the state space representation. The value iteration algorithm used in QMDP iterates
through the entire state space and is well known to suffer from the “curse of dimensionality”. To
alleviate this difficulty, the QMDP-net, through end-to-end training, may learn a much smaller
abstract state space representation for planning. One may also incorporate hierarchical planning [8].
Second, QMDP makes strong approximations in order to reduce computational complexity. We
want to explore the possibility of embedding more sophisticated POMDP algorithms in the network
architecture. While these algorithms provide stronger planning performance, their algorithmic
sophistication increases the difficulty of learning. Finally, we have so far restricted the work to
imitation learning. It would be exciting to extend it to reinforcement learning. Based on earlier
work [28, 34], this is indeed promising.
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