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Abstract

Recently, continuous cache models were proposed as extensions to recurrent neural
network language models, to adapt their predictions to local changes in the data
distribution. These models only capture the local context, of up to a few thousands
tokens. In this paper, we propose an extension of continuous cache models, which
can scale to larger contexts. In particular, we use a large scale non-parametric
memory component that stores all the hidden activations seen in the past. We
leverage recent advances in approximate nearest neighbor search and quantization
algorithms to store millions of representations while searching them efficiently. We
conduct extensive experiments showing that our approach significantly improves
the perplexity of pre-trained language models on new distributions, and can scale
efficiently to much larger contexts than previously proposed local cache models.

1 Introduction

Language models are a core component of many natural language processing applications such
as machine translation [3], speech recognition [2] or dialogue agents [50]. In recent years, deep
learning has led to remarkable progress in this domain, reaching state of the art performance on many
challenging benchmarks [31]. These models are known to be over-parametrized, and large quantities
of data are needed for them to reach their full potential [12]. Consequently, the training time can be
very long (up to weeks) even when vast computational resources are available [31]. Unfortunately, in
many real-world scenarios, either such quantity of data is not available, or the distribution of the data
changes too rapidly to permit very long training. A common strategy to circumvent these problems is
to use a pre-trained model and slowly finetune it on the new source of data. Such adaptive strategy is
also time-consuming for parametric models since the specificities of the new dataset must be slowly
encoded in the parameters of the model. Additionally, such strategy is also prone to overfitting and
dramatic forgetting of crucial information from the original dataset. These difficulties directly result
from the nature of parametric models.

In contrast, non-parametric approaches do not require retraining and can efficiently incorporate
new information without damaging the original model. This makes them particularly suitable for
settings requiring rapid adaptation to a changing distribution or to novel examples. However, non-
parametric models perform significantly worse than fully trained deep models [12]. In this work,
we are interested in building a language model that combines the best of both non-parametric and
parametric approaches: a deep language model to model most of the distribution and a non-parametric
one to adapt it to the change of distribution.

This solution has been used in speech recognition under the name of cache models [36, 37]. Cache
models exploit the unigram distribution of a recent context to improve the predictive ability of the
model. Recently, Grave et al. [22] and Merity et al. [43] showed that this solution could be applied to
neural networks. However, cache models depend on the local context. Hence, they can only adapt a
parametric model to a local change in the distribution. These specificities limit their usefulness when
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the context is unavailable (e.g., tweets) or is enormous (e.g., book reading). This work overcomes
this limitation by introducing a fast non-parametric retrieval system into the hybrid approach. We
demonstrate that this novel combination of a parametric neural language model with a non-parametric
retrieval system can smoothly adapt to changes in the distribution while remaining as consistent as
possible with the history of the data. Our approach is as a generalization of cache models which
scales to millions of examples.

2 Related work

This section reviews different settings that require models to adapt to changes in the data distribution,
like transfer learning or open set (continual) learning. We also discuss solutions specific to language
models, and we briefly explain large-scale retrieval methods.

Transfer Learning. Transfer learning [10] is a well-established component of machine learning
practitioners’ toolbox. It exploits the commonalities between different tasks to improve the predictive
performance of the models trained to solve them. Notable variants of transfer learning are multitask
learning [10], domain adaptation [6], and curriculum learning [8]. Multitask learning jointly trains
several models to promote sharing of statistical strength. Domain adaptation reuses existing infor-
mation about a given problem (e.g., data or model) to solve a new task. Curriculum learning takes
one step further by adapting an existing model across a (large) sequence of increasingly difficult
tasks. Models developed for these settings have proven useful in practice. However, they are chiefly
designed for supervised learning and do not scale to the size of the problem we consider in this work.

Class-incremental and Open Set Learning. These methods are concerned with problems where
the set of targets is not known in advance but instead, increases over time. The main difficulty
in this scenario lies in the deterioration of performance on previously seen classes when trying to
accommodate new ones. Kuzborskij et al. [39] proposed to reduce the loss of accuracy when adding
new classes by partly retraining the existing classifier. Muhlbaier et al. [47] introduced an ensemble
model to deal with an increasingly large number of concepts. However, their approach relies on
unrealistic assumptions on the data distribution. Zero-shot learning [41] can deal with new classes
but often requires additional descriptive information about them [1]. Scheirer et al. [49] proposed a
framework for open set recognition based on one-class SVMs.

Adaptive language models. Adaptive language models change their parameters according to the
recent history. Therefore, they implement a form of domain adaptation. A popular approach adds
a cache to the model and has shown early success in the context of speech recognition [36, 38, 37].
Jelinek et al. further extended this strategy [29] into a smoothed trigram language model, reporting a
reduction in both perplexity and word error rates. Della Pietra et al.[15] adapt the cache to a general
n-gram model such that it satisfies marginal constraints obtained from the current document. Closer
to our work, Grave et al. [21] have shown that this strategy can improve modern language models
like recurrent networks without retraining. However, their model assumes that the data distribution
changes smoothly over time, by using a context window to improve the performance. Merity et
al. [43] proposed a similar model, where the cache is jointly trained with the language model.

Other adaptive language models have been proposed in the past: Kneser and Steinbiss [35] and, Iyer
and Ostendorf [26] dynamically adapt the parameters of their model to recent history using different
weight interpolation schemes. Bellegarda [5] and Coccaro and Jurafsky [14] use latent semantic
analysis to adapt their models to current context. Similarly, topic features have been used with either
maximum entropy models [33] or recurrent networks [46, 53]. Finally, Lau et al. [42] propose to use
pairs of distant of words to capture long-range dependencies.

Large scale retrieval approaches. The standard method for large-scale retrieval is to compress
vectors and query them using a standard efficient algorithm. One of the most popular strategies is
Locality-sensitive hashing (LSH) by Charikar [11], which uses random projections to approximate
the cosine similarity between vectors by a function related to the Hamming distance between their
corresponding binary codes. Several works have built on this initial binarization technique, such as
spectral hashing [54], or Iterative Quantization (ITQ) [19]. Product Quantization (PQ) [28] approxi-
mates the distances between vectors by simultaneously learning the codes and the centroids, using
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k-means. In the context of text, several works have shown that compression does not significantly
reduce the performance of models [17, 24, 30].

3 Approach

In this section, we first briefly review language modeling and the use of recurrent networks for this
task. We then describe our model, called unbounded cache, and explain how to scale it to large
datasets with millions of words.

3.1 Language modeling

A language model evaluates the probability distribution of sequences of words. It is often framed
as learning the conditional probability of words, given their history [4]. Let V be the size of the
vocabulary; each word is represented by a one-hot encoding vector x in RV = V , corresponding
to its index in the dictionary. Using the chain rule, the probability assigned to a sequence of words
x1, . . . , xT can be factorized as

p(x1, ..., xT ) =
T∏

t=1

p(xt | xt−1, ..., x1). (1)

This conditional probability is traditionally approximated with non-parametric models based on
counting statistics [20]. In particular, smoothed N-gram models [32, 34] have been the dominant type
of models historically, achieving good performance in practice [44]. While the use of parametric
models for language modeling is not new [48], their superiority has only been established with the
recent emergence of neural networks [7, 45]. In particular, recurrent networks are now the standard
approach, achieving state-of-the-art performances on several challenging benchmarks [31, 55].

3.2 Recurrent networks.

Recurrent networks are a special case of neural networks specifically designed for sequence modeling.
At each time step, they maintain a hidden representation of the past and make a prediction accordingly.
This representation is maintained by a continuous vector ht ∈ Rd encoding the history xt, ..., x1.
The probability of the next word is then simply parametrized using this hidden vector, i.e.,

p(w | xt, ..., x1) ∝ exp(h>t ow). (2)

The hidden vector ht is computed by recursively applying an update rule:

ht = Φ (xt, ht−1) , (3)

where Φ is a function depending on the architecture of the network. Depending on Φ, the hidden
vectors may have a specific structure adapted to different sequence representation problems. Several
architectures for recurrent networks have been proposed, such as the Elman network [16], the long
short-term memory (LSTM) [25] or the gated recurrent unit (GRU) [13]. For example, the Elman
network [16] is defined by the following update rule

ht = σ (Lxt +Rht−1) , (4)

where σ is a non-linearity such as the logistic or tanh functions, L ∈ Rd×V is a word embedding
matrix and R ∈ Rd×d is the recurrent matrix. Empirical results have validated the effectiveness of
the LSTM architecture to natural language modeling [31]. We refer the reader to [23] for details on
this architecture. In the rest of this paper, we focus on this structure of recurrent networks.

Recurrent networks process a sentence one word at a time and update their weights by backpropagating
the error of the prediction to a fixed window size of past time steps. This training procedure
is computationally expensive, and often requires a significant amount of data to achieve good
performance. To circumvent the need of retraining such network for domain adaptation, we propose
to add a non-parametric model that takes care of the fluctuation in the data distribution.
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3.3 Unbounded cache

An unbounded cache adds a non-parametric and unconstrained memory to a neural network. Our
approach is inspired by the cache model of Khun [36] and can be seen as an extension of Grave et
al. [22] to an unbounded memory structure tailored to deal with out-of-vocabulary and rare words.

Similar to Grave et al. [22], we extend a recurrent neural network with a key-value memory compo-
nent, storing the pairs (hi, wi+1) of hidden representation and corresponding word. This memory
component also shares similarity with the parametric memory component of the pointer network
introduced by Vinyals et al. [52] and extended by Merity et al. [43]. As opposed to these models
and standard cache models, we do not restrict the cache component to recent history but store all
previously observed words. Using the information stored in the cache component, we can obtain a
probability distribution over the words observed up to time t using the kernel density estimator:

pcache(wt | w1, ...wt−1) ∝
t−1∑
i=1

1{w = wi}K
(
‖ht − hi‖

θ

)
, (5)

where K is a kernel, such as Epanechnikov or Gaussian, and θ is a smoothing parameter. If K is
the Gaussian kernel (K(x) = exp(−x2/2)) and the hidden representations are normalized, this is
equivalent to the continuous cache model.

As the memory grows with the amount of data seen by the model, this probability distribution becomes
impossible to compute. Millions of words and their multiple associated context representations are
stored, and exact exhaustive matching is prohibitive. Instead, we use the approximate k-nearest
neighbors algorithm that is described below in Sec. 3.4 to estimate this probability distribution:

pcache(wt | w1, ...wt−1) ∝
∑

i∈N (ht)

1{w = wi}K
(
‖ht − hi‖
θ(ht)

)
, (6)

where N (ht) is the set of nearest neighbors and θ(ht) is the Euclidean distance from ht to its k-th
nearest neighbor. This estimator is known as variable kernel density estimation [51]. It should be
noted that if the kernel K is equal to zero outside of [−1, 1], taking the sum over the k nearest
neighbors is equivalent to taking the sum over the full data.

The distribution obtained using the estimator defined in Eq. 6 assigns non-zero probability to at
most k words, where k is the number of nearest neighbors used. In order to have non-zero probability
everywhere (and avoid getting infinite perplexity), we propose to linearly interpolate this distribution
with the one from the model:

p(wt | w1, ...wt−1) = (1− λ)pmodel(wt | w1, ...wt−1) + λpcache(wt | w1, ...wt−1).

3.4 Fast large scale retrieval

Fast computation of the probability of a rare word is crucial to make the cache grow to millions of
potential words. Their representation also needs to be stored with relatively low memory usage. In this
section, we briefly describe a scalable retrieval method introduced by Jegou et al. [27]. Their approach
called Inverted File System Product Quantization (IVFPQ) combines two methods, an inverted file
system [56] and a quantization method, called Product quantization (PQ) [28]. Combining these two
components offers a good compromise between a fast retrieval of approximate nearest neighbors and
a low memory footprint.

Inverted file system. Inverted file systems [56] are a core component of standard large-scale text
retrieval systems, like search engines. When a query x is compared to a set Y of potential elements,
an inverted file avoids an exhaustive search by providing a subset of possible matching candidates.
In the context of continuous vectors, this subset is obtained by measuring some distance between
the query and predefined vector representations of the set. More precisely, these candidates are
selected through “coarse matching” by clustering all the elements in Y in c groups using k-means.
The centroids are used as the vector representations. Each element of the set Y is associated with
one centroid in an inverted table. The query x is then compared to each centroid and a subset of
them is selected according to their distance to the query. All the elements of Y associated with these
centroids are then compared to the query x. Typically, we take c centroids and keep the cc closest
centroids to a query.
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This procedure is quite efficient but very memory consuming, as each vector in the set Y must be
stored. This can be drastically reduced by quantizing the vectors. Product Quantization (PQ) is
a popular quantization method that has shown competitive performance on many retrieval bench-
marks [28]. Following Jegou et al. [28], we do not directly quantize the vector y but its residual r,
i.e., the difference between the vector and its associated centroids.

Product Quantization. Product quantization is a data-driven compression algorithm with no
overhead during search [28]. While PQ has been designed for image feature compression, Joulin
et al. [30] have demonstrated its effectiveness for text too. PQ compresses real-valued vector by
approximating them with the closest vector in a pre-defined structured set of centroids, called a
codebook. This codebook is obtained by splitting each residual vector r into k subvectors ri, each of
dimension d/k, and running a k-means algorithm with s centroids on each resulting subspace. The
resulting codebook contains cs elements which is too large to be enumerated, and is instead implicitly
defined by its structure: a d-dimensional vector x ∈ Rd is approximated as

x̂ =

k∑
i=1

qi(x), (7)

where qi(x) is the closest centroid to subvector xi. For each subspace, there are s = 2b centroids,
where b is the number of bits required to store the quantization index of the sub-quantizer. Note
that in PQ, the subspaces are aligned with the natural axis and improvements where made by Ge et
al. [18] to align the subspaces to principal axes in the data. The reconstructed vector can take 2kb

distinct reproduction values and is stored in kb bits.

PQ estimates the inner product in the compressed domain as

x>y ≈ x̂>y =

k∑
i=1

qi(x
i)>yi. (8)

In practice, the vector estimate x̂ is trivially reconstructed from the codes, (i.e., from the quantization
indexes) by concatenating these centroids. PQ uses two parameters, namely the number of sub-
quantizers k and the number of bits b per quantization index.

4 Experiments

In this section, we present evaluations of our unbounded cache model on different language modeling
tasks. We first briefly describe our experimental setting and the datasets we used, before presenting
the results.

4.1 Experimental setting

One of the motivations of our model is to be able to adapt to changing data distribution. In particular,
we want to incorporate new words in the vocabulary, as they appear in the test data. We thus consider
a setting where we do not replace any words by the <unk> token, and where the test set contains
out-of-vocabulary words (OOV) which were absent at train time. Since we use the perplexity as the
evaluation metric, we need to avoid probabilities equal to zero in the output of our models (which
would result in infinite perplexity). Thus, we always interpolate the probability distributions of the
various models with the uniform distribution over the full vocabulary:

puniform(wt) =
1

|vocabulary|
.

This is a standard technique, which was previously used to compare language models trained on
datasets with different vocabularies [9].

Baselines We compare our unbounded cache model with the static model interpolated with uniform
distribution, as well as the static model interpolated with the unigram probability distribution observed
up to time t. Our proposal is a direct extension of the local cache model [22]. Therefore, we also
compare to it to highlight the settings where an unbounded cache model is preferable to a local one.
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model Size OoV rate (%)

News 2008 219,796 2.3%
News 2009 218,628 2.4%
News 2010 205,859 2.4%
News 2011 209,187 2.5%

Commentary 144,197 4.2%
Web 321,072 5.9%
Wiki 191,554 5.5%
Books 174,037 3.7%

Table 1: Vocabulary size and out-of-vocabulary rate for various test sets (for a model trained on News
2007).

4.2 Implementation details

We train recurrent neural networks with 256 LSTM hidden units, using the Adagrad algorithm with a
learning rate of 0.2 and 10 epochs. We compute the gradients using backpropagation through time
(BPTT) over 20 timesteps. Because of the large vocabulary sizes, we use the adaptative softmax [21].
We use the IVFPQ implementation from the FAISS open source library.1 We use 4, 096 centroids
and 8 probes for the inverted file. Unless said otherwise, we query the 1, 024 nearest neighbors.

4.3 Datasets

Most commonly used benchmarks for evaluating language models propose to replace rare words
by the <unk> token. On the contrary, we are interested in open vocabulary settings, and therefore
decided to use datasets without <unk>. We performed experiments on data from the five following
domains:

• News Crawl2 is a dataset made of news articles, collected from various online publications.
There is one subset of the data for each year, from 2007 to 2011. This dataset will allow
testing the unbounded cache models on data whose distribution slowly changes over time.
The dataset is shuffled at the sentence level. In the following, we refer to this dataset as
news 2007-2011.

• News Commentary consists of political and economic commentaries from the website
https://www.project-syndicate.org/. This dataset is publicly available from the
Statistical Machine Translation workshop website. In the following, we refer to this dataset
as commentary.

• Common Crawl is a text dataset collected from diverse web sources. The dataset is shuffled
at the sentence level. In the following, we refer to this dataset as web.

• WikiText3 is a dataset derived from high quality English Wikipedia articles, introduced by
Merity et al. [43]. Since we do not to replace any tokens by <unk>, we use the raw version.
In the following, we refer to this dataset as wiki.

• The book Corpus This is a dataset of 3,036 English books, collected from the Project
Gutenberg4 [40]. We use a subset of the books, which have a length around 100,000 tokens.
In the following we refer to this dataset as books.

All these datasets are publicly available. Unless stated otherwise, we use 2 million tokens for training
the static models and 10 million tokens for evaluation. All datasets are lowercased and tokenized
using the europarl dataset tools.5

1https://github.com/facebookresearch/faiss
2http://www.statmt.org/wmt14/translation-task.html
3https://metamind.io/research/the-wikitext-long-term-dependency-language-modeling-dataset/
4http://www.gutenberg.org/
5http://statmt.org/europarl/v7/tools.tgz
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Test set
model 2007 2008 2009 2010 2011

static 220.9 237.6 256.2 259.7 268.8
static + unigram 220.3 235.9 252.6 256.1 264.3
static + local cache 218.9 234.5 250.5 256.2 265.2
static + unbounded cache 166.5 191.4 202.6 204.8 214.3

Table 2: Static model trained on news 2007 and tested on news 2007-2011.
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Figure 1: Performance of our model, as a function of the number k of nearest neighbors, used to
estimate the probability of words in the unbounded cache. We report the entropy difference with the
static+unigram baseline.

Test domain
Train domain model News Commentary Web Wiki Books

static - 342.7 689.3 1003.2 687.1
News static + unigram - 303.5 581.1 609.4 349.1

static + local cache - 288.5 593.4 316.5 240.3
static + unbounded cache - 191.1 383.4 337.4 237.2
static 624.1 484.0 - 805.3 784.3

Web static + unigram 519.2 395.6 - 605.3 352.4
static + local cache 531.4 391.3 - 321.5 235.8
static + unbounded cache 306.3 234.9 - 340.2 223.6
static 638.1 626.3 901.0 - 654.6

Wiki static + unigram 537.9 462.2 688.5 - 346.9
static + local cache 532.8 436.7 694.3 - 228.8
static + unbounded cache 318.7 255.3 456.1 - 223.8

Table 3: Static model trained on news 2007 and tested on data from other domains.

Dataset Static model Local cache Unbounded cache

News 2008 82 664 433
Commentary 78 613 494
Web 85 668 502
Wiki 87 637 540
Books 81 626 562

Table 4: Computational time (in seconds) to process 10M tokens from different test sets for the static
language model, the local cache (size 10,000) and the unbounded cache.
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Figure 2: Performance of the un-
bounded cache model, as a function
of the number of test examples. We
report the entropy difference with the
static+unigram baseline. We observe
that, as the number of test examples
increases (and thus, the information
stored in the cache), the performance
of the unbounded cache increases.

4.4 Results

We demonstrate the effectiveness of using an unbounded cache to complement a language model
as advocated in the previous sections model by performing two types of experiments representing a
near domain and far domain adaptation scenarios. In both experiments, we compare the unigram
static model, the unigram extension, and the unbounded cache model.

Local vs. Unbounded Cache We first study the impact of using an unbounded cache instead of a
local one. To that end, we compare the performance of the two models when trained and tested on
different combinations of the previously described datasets. These datasets can be categorized into
two groups according to their properties and the results obtained by the various models we use.

On the one hand, the Wiki and Books datasets are not shuffled. Hence, the recent history (up to a few
thousands words) contains a wealth of information that can be used by a local cache to reduce the
perplexity of a static model. Indeed, the local cache model achieves respectively 316.5 and 240.3
on the Wiki and Books datasets when trained on the News dataset. This corresponds to about 3×
reduction in perplexity on both datasets in comparison to the static model. A similar trend holds when
the training data is either Web or Wiki dataset. Surprisingly, the unbounded cache model performs
similarly to the cache model despite using orders of magnitude broader context. A static model
trained on News and augmented with an unbounded cache achieves respectively 337.4 and 237.2
of perplexity. It is also worth noting that our approach is more efficient than the local cache, while
storing a much larger number of elements. Thanks to the use of fast nearest neighbor algorithm,
it takes 502 seconds to process 10M tokens from the test set when using the unbounded cache.
Comparatively, it takes 668 seconds for a local cache model of size 10, 000 to perform a similar task.
The timing experiments, reported in Table 4.3, show a similar trend.

On the other hand, the Commentary and Web datasets are shuffled. Therefore, a local cache can
hardly capture the relevant statistics to significantly improve upon the static model interpolated with
the unigram distribution. Indeed, the perplexity of a local cache model on these datasets when the
static model is trained on the News dataset is respectively 288.5 and 593.4. In comparison, the
unbounded cache model achieves on the same datasets respectively a perplexity of 191.1 and 383.4.
That is an average improvement of about 50% over the local cache in both cases (see Table 3).

Near domain adaptation. We study the benefit of using an unbounded cache model when the test
domain is only slightly different from the source domain. We train the static model on news 2007
and test on the corpus news 2008 to news 2011. All the results are reported in Table 1.

We first observe that the unbounded cache brings a 24.6% improvement relative to the static model
on the in-domain news 2007 corpus by bringing the perplexity from 220.9 down to 166.5. In
comparison, neither using the unigram information nor using a local cache lead to significant
improvement. This result underlines two phenomena. First, the simple distributional information
captured by the unigram or the local cache is already captured by the static model. Second, the
unbounded cache enhances the discrimination capabilities of the static model by capturing useful
non-linearities thanks to the combination of the nearest neighbor and the representation extracted from
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the static model. Interestingly, these observations remain consistent when we consider evaluations on
the test sets news 2008-2011. Indeed, the average improvement of unbounded cache relatively to
the static model on the corpus news 2008-2011 is 20.44% while the relative improvement of the
unigram cache is only 1.3%. Similarly to the in-domain experiment, the unigram brings little useful
information to the static model mainly because the source (news 2007) and the target distributions
(news 2008-2011) are very close. In contrast, the unbounded cache still complements the static
model with valuable non-linear information of the target distributions.

Far domain adaptation. Our second set of experiments is concerned with testing on different
domains from the one the static model is trained on. We use the News, Web and Wiki datasets as
source domains, and all five domains as target. The results are reported in Table 3.

First, we observe that the unigram, the local and the unbounded cache significantly help the static
model in all the far domain adaptation experiments. For example, when adapting the static model
from the News domain to the Commentary and Wiki domains, the unigram reduces the perplexity of
the static model by 39.2 and 393.8 in absolute value respectively. The unbounded cache significantly
improves upon the static model and the unigram on all the far domain adaptation experiment. The
smallest relative improvement compared to the static model and the unigram is achieved when
adapting from News to Web and is 79.7% and 51.6% respectively. The more the target domain is
different from the source one, the more interesting is the use of an unbounded cache mode. Indeed,
when adapting to the Books domain (which is the most different from the other domains) the average
improvement given by the unbounded cache relatively to the static model is 69.7%.

Number of nearest neighbors. Figure 1 shows the performance of our model with the number
of nearest neighbors per query. As observed previously by Grave et al [22], the performance of a
language model improves with the size of the context used in the cache. This context is, in some
sense, a constrained version of our set of retained nearest neighbors. Interestingly, we observe the
same phenomenon despite forming the set of possible predictions over a much broader set of potential
candidates than the immediate local context. Since IFVPQ has a linear complexity with the number
of nearest neighbors, setting the number of nearest neighbors to a thousand offers a good trade-off
between speed and accuracy.

Size of the cache. Figure 2 shows the gap between the performance of static language model with
and without the cache as the size of the test set increases. Despite having a much more significant set
of candidates to look from, our algorithm continues to select relevant information. As the test set is
explored, better representations for rare words are stored, explaining this constant improvement.

5 Conclusion

In this paper, we introduce an extension to recurrent networks for language modeling, which stores
past hidden activations and associated target words. This information can then be used to obtain a
probability distribution over the previous words, allowing the language models to adapt to the current
distribution of the data dynamically. We propose to scale this simple mechanism to large amounts of
data (millions of examples) by using fast approximate nearest neighbor search. We demonstrated on
several datasets that our unbounded cache is an efficient method to adapt a recurrent neural network
to new domains dynamically, and can scale to millions of examples.
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