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Abstract

Policy-gradient approaches to reinforcement learning have two common and un-
desirable overhead procedures, namely warm-start training and sample variance
reduction. In this paper, we describe a reinforcement learning method based on a
softmax value function that requires neither of these procedures. Our method com-
bines the advantages of policy-gradient methods with the efficiency and simplicity
of maximum-likelihood approaches. We apply this new cold-start reinforcement
learning method in training sequence generation models for structured output
prediction problems. Empirical evidence validates this method on automatic sum-
marization and image captioning tasks.

1 Introduction

Reinforcement learning is the study of optimal sequential decision-making in an environment [16]. Its
recent developments underpin a large variety of applications related to robotics [11, 5] and games [20].
Policy search in reinforcement learning refers to the search for optimal parameters for a given policy
parameterization [5]. Policy search based on policy-gradient [26, 21] has been recently applied to
structured output prediction for sequence generations. These methods alleviate two common problems
that approaches based on training with the Maximum-likelihood Estimation (MLE) objective exhibit,
namely the exposure-bias problem [24, 19] and the wrong-objective problem [19, 15] (more on this
in Section 2). As a result of addressing these problems, policy-gradient methods achieve improved
performance compared to MLE training in various tasks, including machine translation [19, 7], text
summarization [19], and image captioning [19, 15].

Policy-gradient methods for sequence generation work as follows: first the model proposes a sequence,
and the ground-truth target is used to compute a reward for the proposed sequence with respect to
the reward of choice (using metrics known to correlate well with human-rated correctness, such
as ROUGE [13] for summarization, BLEU [18] for machine translation, CIDEr [23] or SPICE [1]
for image captioning, etc.). The reward is used as a weight for the log-likelihood of the proposed
sequence, and learning is done by optimizing the weighted average of the log-likelihood of the
proposed sequences. The policy-gradient approach works around the difficulty of differentiating the
reward function (the majority of which are non-differentiable) by using it as a weight. However, since
sequences proposed by the model are also used as the target of the model, they are very noisy and
their initial quality is extremely poor. The difficulty of aligning the model output distribution with
the reward distribution over the large search space of possible sequences makes training slow and
inefficient∗. As a result, overhead procedures such as warm-start training with the MLE objective
and sophisticated methods for sample variance reduction are required to train with policy gradient.

∗Search space size is O(V T ), where V is the number of word types in the vocabulary (typically between 104

and 106) and T is the the sequence length (typically between 10 and 50), hence between 1040 and 10300.
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The fundamental reason for the inefficiency of policy-gradient–based reinforcement learning is the
large discrepancy between the model-output distribution and the reward distribution, especially in
the early stages of training. If, instead of generating the target based solely on the model-output
distribution, we generate it based on a proposal distribution that incorporates both the model-output
distribution and the reward distribution, learning would be efficient, and neither warm-start training
nor sample variance reduction would be needed. The outstanding problem is finding a value function
that induces such a proposal distribution.

In this paper, we describe precisely such a value function, which in turn gives us a Softmax Policy
Gradient (SPG) method. The softmax terminology comes from the equation that defines this value
function, see Section 3. The gradient of the softmax value function is equal to the average of the
gradient of the log-likelihood of the targets whose proposal distribution combines both model output
distribution and reward distribution. Although this distribution is infeasible to sample exactly, we
show that one can draw samples approximately, based on an efficient forward-pass sampling scheme.
To balance the importance between the model output distribution and the reward distribution, we use
a bang-bang [8] mixture model to combine the two distributions. Such a scheme removes the need of
fine-tuning the weights across different datasets and throughout the learning epochs. In addition to
using a main metric as the task reward (ROUGE, CIDEr, etc.), we show that one can also incorporate
additional, task-specific metrics to enforce various properties on the output sequences (Section 4).
We numerically evaluate our method on two sequence generation benchmarks, a headline-generation
task and an image-caption–generation task (Section 5). In both cases, the SPG method significantly
improves the accuracy, compared to maximum-likelihood and other competing methods. Finally, it is
worth noting that although the training and inference of the SPG method in the paper is mainly based
on sequence learning, the idea can be extended to other reinforcement learning applications.

2 Limitations of Existing Sequence Learning Regimes

One of the standard approaches to sequence-learning training is Maximum-likelihood Estimation
(MLE). Given a set of inputs X =

{
xi
}

and target sequences Y =
{
yi
}

, the MLE loss function is:

LMLE(θ) =
∑
i

LiMLE(θ), where LiMLE(θ) = − log pθ(y
i|xi). (1)

Here xi and yi =
{
yi1, . . . , y

i
T

}
denote the input and the target sequence of the i-th example,

respectively. For instance, in the image captioning task, xi is the image of the i-th example, and yi is
the groundtruth caption of the i-th example.

Although widely used in many different applications, MLE estimation for sequence learning suffers
from the exposure-bias problem [24, 19]. Exposure-bias refers to training procedures that produce
brittle models that have only been exposed to their training data distribution but not to their own
predictions. At training-time, log pθ(y

i|xi) =
∑
t log pθ(y

i
t|xi,yi1...t−1), i.e. the loss of the t-th

word is conditional on the true previous-target tokens yi1...t−1. However, since yi1...t−1 are unavailable
during inference, replacing them with tokens zi1...t−1 generated by pθ(zi1...t−1|xi) yields a significant
discrepancy between how the model is used at training time versus inference time. The exposure-bias
problem has recently received attention in neural-network settings with the “data as demonstrator” [24]
and “scheduled sampling” [3] approaches. Although improving model performance in practice, such
proposals have been shown to be statistically inconsistent [10], and still need to perform MLE-based
warm-start training.

A more general approach to MLE is the Reward Augmented Maximum Likelihood (RAML)
method [17]. RAML makes the correct observation that, under MLE, all alternative outputs are
equally penalized through normalization, regardless of their relationship to the ground-truth target.
Instead, RAML corrects for this shortcoming using an objective of the form:

LiRAML(θ) = −
∑
zi

rR(zi|yi) log pθ(z
i|xi). (2)

where rR(zi|yi) = exp(R(zi|yi)/τ)∑
zi exp(R(zi|yi)/τ) . This formulation uses R(zi|yi) to denote the value of a

similarity metricR between zi and yi (the reward), with yi = argmaxzi R(zi|yi); τ is a temperature
hyper-parameter to control the peakiness of this reward distribution. Since the sum over all zi for
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the reward distribution rR(zi|yi) in Eq. (2) is infeasible to compute, a standard approach is to
draw J samples zij from the reward distribution, and approximate the expectation by Monte Carlo
integration:

LiRAML(θ) ' − 1

J

J∑
j=1

log pθ(z
ij |xi). (3)

Although a clear improvement over Eq. (1), the sampling for zij in Eq. (3) is solely based on
rR(zi|yi) and completely ignores the model probability. At the same time, this technique does not
address the exposure bias problem at all.

A different approach, based on reinforcement learning methods, achieves sequence learning following
a policy-gradient method [21]. Its appeal is that it not only solves the exposure-bias problem, but also
directly alleviates the wrong-objective problem [19, 15] of MLE approaches. Wrong-objective refers
to the critique that MLE-trained models tend to have suboptimal performance because such models
are trained on a convenient objective (i.e., maximum likelihood) rather than a desirable objective
(e.g., a metric known to correlate well with human-rated correctness). The policy-gradient method
uses a value function VPG, which is equivalent to a loss LPG defined as:

LiPG(θ) = −V iPG(θ), V iPG(θ) = Epθ(zi|xi)[R(zi|yi)]. (4)
The gradient for Eq. (4) is:

∂

∂θ
LiPG(θ) = −

∑
zi

pθ(z
i|xi)R(zi|yi) ∂

∂θ
log pθ(z

i|xi). (5)

Similar to (3), one can draw J samples zij from pθ(z
i|xi) to approximate the expectation by Monte-

Carlo integration:

∂

∂θ
LiPG(θ) ' − 1

J

J∑
j=1

R(zij |yi) ∂
∂θ

log pθ(z
ij |xi). (6)

However, the large discrepancy between the model prediction distribution pθ(zi|xi) and the reward
R(zi|yi)’s values, which is especially acute during the early training stages, makes the Monte-Carlo
integration extremely inefficient. As a result, this method also requires a warm-start phase in which
the model distribution achieves some local maximum with respect to a reward-metric–free objective
(e.g., MLE), followed by a model refinement phase in which reward-metric–based PG updates are
used to refine the model [19, 7, 15]. Although this combination achieves better results in practice
compared to pure likelihood-based approaches, it is unsatisfactory from a theoretical and modeling
perspective, as well as inefficient from a speed-to-convergence perspective. Both these issues are
addressed by the value function we describe next.

3 Softmax Policy Gradient (SPG) Method

In order to smoothly incorporate both the model distribution pθ(zi|xi) and the reward metricR(zi|yi),
we replace the value function from Eq. 4 with a Softmax value function for Policy Gradient (SPG),
VSPG, equivalent to a loss LSPG defined as:

LiSPG(θ) = −V iSPG(θ), V iSPG(θ) = log
(
Epθ(zi|xi)[exp(R(zi|yi))]

)
. (7)

Because the value function for example i is equal to Softmaxzi(log pθ(z
i|xi) + R(zi|yi)), where

Softmaxzi(·) = log
∑

zi exp(·), we call it the softmax value function. Note that the softmax value
function from Eq. (7) is the dual of the entropy-regularized policy search (REPS) objective [5, 16]
L(q) = Eq[R] + KL(q|pθ). However, our learning and sampling procedures are significantly
different from REPS, as shown in what follows.

The gradient for Eq. (7) is:

∂

∂θ
LiSPG(θ) = − 1∑

zi pθ(z
i|xi) exp(R(zi|yi))

(∑
zi

pθ(z
i|xi) exp(R(zi|yi)) ∂

∂θ
log pθ(z

i|xi)

)

= −
∑
zi

qθ(z
i|xi,yi) ∂

∂θ
log pθ(z

i|xi) (8)

where qθ(zi|xi,yi) = 1∑
zi pθ(zi|xi) exp(R(zi|yi))pθ(z

i|xi) exp(R(zi|yi)).
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Figure 1: Comparing the target samples for
MLE, RAML (the rR distribution), PG (the
pθ distribution), and SPG (the qθ distribution).

There are several advantages associated with the gra-
dient from Eq. (8).

First, qθ(zi|xi,yi) takes into account both pθ(zi|xi)
and R(zi|yi). As a result, Monte Carlo integration
over qθ-samples approximates Eq. (8) better, and has
smaller variance compared to Eq. (5). This allows
our model to start learning from scratch without the
warm-start and variance-reduction crutches needed
by previously-proposed PG approaches.

Second, as Figure 1 shows, the samples for the SPG
method (pentagons) lie between the ground-truth tar-
get distribution (triangle and circles) and the model
distribution (squares). These targets are both easier
to learn by pθ compared to ground-truth–only targets
like the ones for MLE (triangle) and RAML (circles),
and also carry more information about the ground-truth target compared to model-only samples (PG
squares). This formulation allows us to directly address the exposure-bias problem, by allowing the
model distribution to learn at training time how to deal with events conditioned on model-generated
tokens, similar with what happens at inference time (more on this in Section 3.2). At the same time,
the updates used for learning rely heavily on the influence of the reward metric R(zi|yi), therefore
directly addressing the wrong-objective problem. Together, these properties allow the model to
achieve improved accuracy.

Third, although qθ is infeasible for exact sampling, since both pθ(zi|xi) and exp(R(zi|yi)) are
factorizable across zit (where zit denotes the t-th word of the i-th output sequence), we can apply
efficient approximate inference for the SPG method as shown in the next section.

3.1 Inference

In order to estimate the gradient from Eq. (8) with Monte-Carlo integration, one needs to be able
to draw samples from qθ(z

i|xi,yi). To tackle this problem, we first decompose R(zi|yi) along the
t-axis:

R(zi|yi) =

T∑
t=1

R(zi1:t|yi)−R(zi1:t−1|yi)︸ ︷︷ ︸
,∆rit(z

i
t|yi,zi1:t−1)

,

where R(zi1:t|yi) − R(zi1:t−1|yi) characterizes the reward increment for zit. Using the reward
increment notation, we can rewrite:

qθ(z
i|xi,yi) =

1

Zθ(xi,yi)

T∏
t=1

exp(log pθ(z
i
t|zi1:t−1,x

i) + ∆rit(z
i
t|yi, zi1:t−1))

where Zθ(xi,yi) is the partition function equal to the sum over all configurations of zi. Since the
number of such configurations grows exponentially with respect to the sequence-length T , directly
drawing from qθ(z

i|xi,yi) is infeasible. To make the inference efficient, we replace qθ(zi|xi,yi)
with the following approximate distribution:

q̃θ(z
i|xi,yi) =

T∏
t=1

q̃θ(z
i
t|xi,yi, zi1:t−1),

where

q̃θ(z
i
t|xi,yi, zi1:t−1) =

1

Z̃θ(xi,yi, zi1:t−1)
exp(log pθ(z

i
t|zi1:t−1,x

i) + ∆rit(z
i
t|yi, zi1:t−1)).

By replacing qθ in Eq. (8) with q̃θ, we obtain:
∂

∂θ
LiSPG(θ) =−

∑
zi

qθ(z
i|xi,yi) ∂

∂θ
log pθ(z

i|xi)

'−
∑
zi

q̃θ(z
i|xi,yi) ∂

∂θ
log pθ(z

i|xi) , ∂

∂θ
L̃iSPG(θ) (9)
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Compared to Zθ(xi,yi), Z̃θ(xi,yi, zi1:t−1) sums over the configurations of one zit only. Therefore,
the cost of drawing one zi from q̃θ(z

i|xi,yi) grows only linearly with respect to T . Furthermore, for
common reward metrics such as ROUGE and CIDEr, the computation of ∆rit(z

i
t|yi, zi1:t−1) can be

done in O(T ) instead of O(V ) (where V is the size of the state space for zit, i.e., vocabulary size).
That is because the maximum number of unique words in yi is T , and any words not in yi have the
same reward increment. When we limit ourselves to J = 1 sample for each example in Eq. (9), the
approximate SPG inference time of each example is similar to the inference time for the gradient of
the MLE objective. Combined with the empirical findings in Section 5 (Figure 3) where the steps
for convergence are comparable, we conclude that the time for convergence for the SPG method is
similar to the MLE based method.

3.2 Bang-bang Rewarded SPG Method

One additional difficulty for the SPG method is that the model’s log-probability values
log pθ(z

i
t|zi1:t−1,x

i) and the reward-increment values R(zi1:t|yi) − R(zi1:t−1|yi) are not on the
same scale. In order to balance the impact of these two factors, we need to weigh them appropriately.
Formally, we achieve this by adding a weight wit to the reward increments: ∆rit(z

i
t|yi, zi1:t−1, w

i
t) ,

wit ·∆rit(zit|yi, zi1:t−1) so that the total rewardR(zi|yi,wi) =
∑T
t=1 ∆rit(z

i
t|yi, zi1:t−1, w

i
t). The ap-

proximate proposal distribution becomes q̃θ(zi|xi,yi,wi) =
∏T
t=1 q̃θ(z

i
t|xi,yi, zi1:t−1, w

i
t), where

q̃θ(z
i
t|xi,yi, zi1:t−1, w

i
t) ∝ exp(log pθ(z

i
t|zi1:t−1,x

i) + ∆rit(z
i
t|yi, zi1:t−1, w

i
t)).

The challenge in this case is to choose an appropriate weight wit, because log pθ(z
i
t|zi1:t−1,x

i) varies
heavily for different i, t, as well as across different iterations and tasks.

In order to minimize the efforts for fine-tuning the reward weights, we propose a bang-bang rewarded
softmax value function, equivalent to a loss LBBSPG defined as:

LiBBSPG(θ) = −
∑
wi

p(wi) log
(
Epθ(zi|xi)[exp(R(zi|yi,wi))]

)
, (10)

and
∂

∂θ
L̃iBBSPG(θ) = −

∑
wi

p(wi)
∑
zi

q̃θ(z
i|xi,yi,wi)

∂

∂θ
log pθ(z

i|xi)︸ ︷︷ ︸
,− ∂

∂θ L̃
i
SPG(θ|wi)

, (11)

where p(wi) =
∏
t p(w

i
t) and p(wit = 0) = pdrop = 1 − p(wit = W ). Here W is a sufficiently

large number (e.g., 10,000), pdrop is a hyper-parameter in [0, 1]. The name bang-bang is borrowed
from control theory [8], and refers to a system which switches abruptly between two extreme states
(namely W and 0).

t 1 2 3 4 5 6 7

yt a man is sitting in the park

W W W 0 W ... ...wt
zt a man is in the ... ...

argmax ᵂr5(z5|y, z1:4) = ‘the’ ≠ y5 = ‘in’

Figure 2: An example of sequence generation
with the bang-bang reward weights. z4 =
”in” is sampled from the model distribution
since w4 = 0. Although w5 = W , z5 =
”the” 6= y5 because z4 = ”in”.

When wit = W , the term ∆rit(z
i
t|yi, zi1:t−1, w

i
t)

overwhelms log pθ(z
i
t|zi1:t−1,x

i), so the sampling of
zit is decided by the reward increment of zit. It is im-
portant to emphasize that in general the groundtruth
label yit 6= argmaxzit ∆rit(z

i
t|yi, zi1:t−1), because

zi1:t−1 may not be the same as yi1:t−1 (see an ex-
ample in Figure 2). The only special case is when
pdrop = 0, which forces wit to always equal W , and
implies zit is always equal† to yit (and therefore the
SPG method reduces to the MLE method).

On the other hand, when wit = 0, by definition
∆rit(z

i
t|yi, zi1:t−1, w

i
t) = 0. In this case, the sam-

pling of zit is based only on the model prediction
distribution pθ(zit|zi1:t−1,x

i), the same situation we
have at inference time. Furthermore, we have the
following lemma (with the proof provided in the Supplementary Material):

†This follows from recursively applying R’s property that yi
t = argmaxzit

∆rit(z
i
t|yi, zi1:t−1 = yi

1:t−1).
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Lemma 1 When wit = 0,∑
zi

q̃θ(z
i|xi,yi,wi)

∂

∂θ
log pθ(z

i
t|xi, zi1:t−1) = 0.

As a result, ∂
∂θ L̃

i
SPG(θ|wi) is very different from traditional PG-method gradients, in that only the zit

with wit 6= 0 are included. To see that, using the fact that log pθ(z
i|xi) =

∑T
t=1 log pθ(z

i
t|xi, zi1:t−1),

∂

∂θ
L̃iSPG(θ|wi) = −

∑
t

∑
zi

q̃θ(z
i|xi,yi,wi)

∂

∂θ
log pθ(z

i
t|xi, zi1:t−1), (12)

Using the result of Lemma 1, Eq. (12) is equal to:
∂

∂θ
L̃iSPG(θ|wi) = −

∑
{t:wit 6=0}

∑
zi

q̃θ(z
i|xi,yi,wi)

∂

∂θ
log pθ(z

i
t|xi, zi1:t−1)

= −
∑
zi

q̃θ(z
i|xi,yi,wi)

∑
{t:wit 6=0}

∂

∂θ
log pθ(z

i
t|xi, zi1:t−1) (13)

Using Monte-Carlo integration, we approximate Eq. (11) by first drawing wij from p(wi) and then
iteratively drawing zijt from q̃θ(z

i
t|xi, zi1:t−1,y

i, w
ij
t ) for t = 1, . . . , T . For larger values of pdrop,

the wij sample contains more wijt = 0 and the resulting zij contains proportionally more samples
from the model prediction distribution (with a direct effect on alleviating the exposure-bias problem).
After zij is obtained, only the log-likelihood of zijt when wijt 6= 0 are included in the loss:

∂

∂θ
L̃iBBSPG(θ) ' − 1

J

J∑
j=1

∑
{
t:w

ij
t 6=0

}
∂

∂θ
log pθ(z

ij
t |xi, z

ij
1:t−1). (14)

The details about the gradient evaluation for the bang-bang rewarded softmax value function are
described in Algorithm 1 of the Supplementary Material.

4 Additional Reward Functions

Besides the main reward function R(zi|yi), additional reward functions can be used to enforce
desirable properties for the output sequences. For instance, in summarization, we occasionally find
that the decoded output sequence contains repeated words, e.g. "US R&B singer Marie Marie Marie
Marie ...". In this framework, this can be directly fixed by using an additional auxiliary reward
function that simply rewards negatively two consecutive tokens in the generated sequence:

DUPit =

{
−1 if zit = zit−1,

0 otherwise.

In conjunction with the bang-bang weight scheme, the introduction of such a reward function has the
immediate effect of severely penalizing such “stuttering” in the model output; the decoded sequence
after applying the DUP negative reward becomes: "US R&B singer Marie Christina has ...".

Additionally, we can use the same approach to correct for certain biases in the forward sampling
approximation. For example, the following function negatively rewards the end-of-sentence symbol
when the length of the output sequence is less than that of the ground-truth target sequence |yi|:

EOSit =

{
−1 if zit = </S> and t < |yi|,
0 otherwise.

A more detailed discussion about such reward functions is available in the Supplementary Material.
During training, we linearly combine the main reward function with the auxiliary functions:

∆rit(z
i
t|yi, zi1:t−1, w

i
t) = wit ·

(
R(zi1:t|yi)−R(zi1:t−1|yi) + DUPit + EOSit

)
,

with W = 10, 000. During testing, since the ground-truth target yi is unavailable, this becomes:
∆rit(z

i
t|yi, zi1:t−1,W ) = W · DUPit.
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5 Experiments

We numerically evaluate the proposed softmax policy gradient (SPG) method on two sequence
generation benchmarks: a document-summarization task for headline generation, and an automatic
image-captioning task. We compare the results of the SPG method against the standard maximum
likelihood estimation (MLE) method, as well as the reward augmented maximum likelihood (RAML)
method [17]. Our experiments indicate that the SPG method outperforms significantly the other
approaches on both the summarization and image-captioning tasks.

We implemented all the algorithms using TensorFlow 1.0 [6]. For the RAML method, we used
τ = 0.85 which was the best performer in [17]. For the SPG algorithm, all the results were obtained
using a variant of ROUGE [13] as the main reward metric R, and J = 1 (sample one target for each
example, see Eq. (14)). We report the impact of the pdrop for values in {0.2, 0.4, 0.6, 0.8}.
In addition to using the main reward-metric for sampling targets, we also used it to weight the loss
for target zij , as we found that it improved the performance of the SPG algorithm. We also applied
a naive version of the policy gradient (PG) algorithm (without any variance reduction) by setting
pdrop = 0.0, W → 0, but failed to train any meaningful model with cold-start. When starting from a
pre-trained MLE checkpoint, we found that it was unable to improve the original MLE result. This
result confirms that variance-reduction is a requirement for the PG method to work, whereas our SPG
method is free of such requirements.

5.1 Summarization Task: Headline Generation

Headline generation is a standard text generation task, taking as input a document and generating a
concise summary/headline for it. In our experiments, the supervised data comes from the English
Gigaword [9], and consists of news-articles paired with their headlines. We use a training set of
about 6 million article-headline pairs, in addition to two randomly-extracted validation and evaluation
sets of 10K examples each. In addition to the Gigaword evaluation set, we also report results on the
standard DUC-2004 test set. The DUC-2004 consists of 500 news articles paired with four different
human-generated groundtruth summaries, capped at 75 bytes.‡ The expected output is a summary of
roughly 14 words, created based on the input article.

Method Gigaword-10K DUC-2004
MLE 35.2 ± 0.3 22.6 ± 0.6

RAML 36.4 ± 0.2 23.1 ± 0.6
SPG 0.2 36.6 ± 0.2 23.5 ± 0.6
SPG 0.4 37.8 ± 0.2 24.3 ± 0.5
SPG 0.6 37.4 ± 0.2 24.1 ± 0.5
SPG 0.8 37.3 ± 0.2 24.6 ± 0.5

Table 1: The F1 ROUGE-L scores (with
standard errors) for headline generation.

We use the sequence-to-sequence recurrent neural net-
work with attention model [2]. For encoding, we use
a three-layer, 512-dimensional bidirectional RNN ar-
chitecture, with a Gated Recurrent Unit (GRU) as the
unit-cell [4]; for decoding, we use a similar three-layer,
512-dimensional GRU-based architecture. Both the en-
coder and decoder networks use a shared vocabulary
and embedding matrix for encoding/decoding the word
sequences, with a vocabulary consisting of 220K word
types and a 512-dimensional embedding. We truncate
the encoding sequences to a maximum of 30 tokens, and the decoding sequences to a maximum of
15 tokens. The model is optimized using ADAGRAD with a mini-batch size of 200, a learning rate
of 0.01, and gradient clipping with norm equal to 4. We use 40 workers for computing the updates,
and 10 parameter servers for model storing and (asynchronous and distributed) updating. We run
the training procedure for 10M steps and pick the checkpoint with the best ROUGE-2 score on the
Gigaword validation set.

We report ROUGE-L scores on the Gigaword evaluation set, as well as the DUC-2004 set, in Table 1.
The scores are computed using the standard pyrouge package§, with standard errors computed using
bootstrap resampling [12]. As the numerical values indicate, the maximum performance is achieved
when pdrop is in mid-range, with 37.8 F1 ROUGE-L at pdrop = 0.4 on the large Gigaword evaluation
set (a larger range for pdrop between 0.4 and 0.8 gives comparable scores on the smaller DUC-2004
set). These numbers are significantly better compared to RAML (36.4 on Gigaword-10K), which in
turn is significantly better compared to MLE (35.2).

‡This dataset is available by request at http://duc.nist.gov/data.html.
§Available at pypi.python.org/pypi/pyrouge/0.1.3
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5.2 Automatic Image-Caption Generation

Validation-4K C40
Method CIDEr ROUGE-L CIDEr

MLE 0.968 37.7 ± 0.1 0.94
RAML 0.997 38.0 ± 0.1 0.97
SPG 0.2 1.001 38.0 ± 0.1 0.98
SPG 0.4 1.013 38.1 ± 0.1 1.00
SPG 0.6 1.033 38.2 ± 0.1 1.01
SPG 0.8 1.009 37.7 ± 0.1 1.00

Table 2: The CIDEr (with the coco-caption
package) and ROUGE-L (with the pyrouge
package) scores for image captioning on
MSCOCO.

For the image-captioning task, we use the standard
MSCOCO dataset [14]. The MSCOCO dataset contains
82K training images and 40K validation images, each
with at least 5 groundtruth captions. The results are
reported using the numerical values for the C40 testset
reported by the MSCOCO online evaluation server¶.
Following standard practice, we combine the training
and validation datasets for training our model, and hold
out a subset of 4K images as our validation set.

Our model architecture is simple, following the ap-
proach taken by the Show-and-Tell approach [25]. We
use a one 512-dimensional RNN architecture with an
LSTM unit-cell, with a dropout rate equal of 0.3 ap-
plied to both input and output of the LSTM layer. We use the same vocabulary size of 8,854
word-types as in [25], with 512-dimensional word-embeddings. We truncate the decoding sequences
to a maximum of 15 tokens. The input image is embedded by first passing it through a pretrained
Inception-V3 network [22], and then projected to a 512-dimensional vector. The model is optimized
using ADAGRAD with a mini-batch size of 25, a learning rate of 0.01, and gradient clipping with
norm equal to 4. We run the training procedure for 4M steps and pick the checkpoint of the best
CIDEr score [23] on our held-out 4K validation set.
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Figure 3: Number of training steps vs.
CIDEr scores (on Validation-4K) for var-
ious learning regimes.

We report both CIDEr and ROUGE-L scores on our
4K Validation set, as well as CIDEr scores on the of-
ficial C40 testset as reported by the MSCOCO online
evaluation server, in Table 2. The CIDEr scores are re-
ported using the coco-caption evaluation toolkit‖, while
ROUGE-L scores are reported using the standard py-
rouge package (note that these ROUGE-L scores are
generally lower than those reported by the coco-caption
toolkit, as it reports an average score over multiple
reference, while the latter reports the maximum).

The evaluation results indicate that the SPG method is
superior to both the MLE and RAML methods. The
maximum score is obtained with pdrop = 0.6, with a
CIDEr score of 1.01 on the C40 testset. In contrast,
on the same testset, the RAML method has a CIDEr
score of 0.97, and the MLE method a score of 0.94. In
Figure 3, we show that the number of steps for SPG to converge is similar to the one for MLE/RAML.
With the per-step inference cost of those methods being similar (see Section 3.1), the overall conver-
gence time for the SPG method is similar to the MLE and RAML methods.

6 Conclusion

The reinforcement learning method presented in this paper, based on a softmax value function, is
an efficient policy-gradient approach that eliminates the need for warm-start training and sample
variance reduction during policy updates. We show that this approach allows us to tackle sequence
generation tasks by training models that avoid two long-standing issues: the exposure-bias problem
and the wrong-objective problem. Experimental results confirm that the proposed method achieves
superior performance on two different structured output prediction problems, one for text-to-text
(automatic summarization) and one for image-to-text (automatic image captioning). We plan to
explore and exploit the properties of this method for other reinforcement learning problems as well
as the impact of various, more-advanced reward functions on the performance of the learned models.

¶Available at http://mscoco.org/dataset/#captions-eval.
‖Available at https://github.com/tylin/coco-caption.
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