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Abstract
We introduce a new RL problem where the agent is required to generalize to a
previously-unseen environment characterized by a subtask graph which describes a
set of subtasks and their dependencies. Unlike existing hierarchical multitask RL
approaches that explicitly describe what the agent should do at a high level, our
problem only describes properties of subtasks and relationships among them, which
requires the agent to perform complex reasoning to find the optimal subtask to
execute. To solve this problem, we propose a neural subtask graph solver (NSGS)
which encodes the subtask graph using a recursive neural network embedding. To
overcome the difficulty of training, we propose a novel non-parametric gradient-
based policy, graph reward propagation, to pre-train our NSGS agent and further
finetune it through actor-critic method. The experimental results on two 2D visual
domains show that our agent can perform complex reasoning to find a near-optimal
way of executing the subtask graph and generalize well to the unseen subtask
graphs. In addition, we compare our agent with a Monte-Carlo tree search (MCTS)
method showing that our method is much more efficient than MCTS, and the
performance of NSGS can be further improved by combining it with MCTS.

1 Introduction
Developing the ability to execute many different tasks depending on given task descriptions and
generalize over unseen task descriptions is an important problem for building scalable reinforcement
learning (RL) agents. Recently, there have been a few attempts to define and solve different forms
of task descriptions such as natural language [1, 2] or formal language [3, 4]. However, most of the
prior works have focused on task descriptions which explicitly specify what the agent should do at a
high level, which may not be readily available in real-world applications.
To further motivate the problem, let’s consider a scenario in which an agent needs to generalize
to a complex novel task by performing a composition of subtasks where the task description and
dependencies among subtasks may change depending on the situation. For example, a human user
could ask a physical household robot to make a meal in an hour. A meal may be served with different
combinations of dishes, each of which takes a different amount of cost (e.g., time) and gives a
different amount of reward (e.g., user satisfaction) depending on the user preferences. In addition,
there can be complex dependencies between subtasks. For example, a bread should be sliced before
toasted, or an omelette and an egg sandwich cannot be made together if there is only one egg left.
Due to such complex dependencies as well as different rewards and costs, it is often cumbersome
for human users to manually provide the optimal sequence of subtasks (e.g., “fry an egg and toast
a bread”). Instead, the agent should learn to act in the environment by figuring out the optimal
sequence of subtasks that gives the maximum reward within a time budget just from properties and
dependencies of subtasks.
The goal of this paper is to formulate and solve such a problem, which we call subtask graph execution,
where the agent should execute the given subtask graph in an optimal way as illustrated in Figure 1.
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Figure 1: Example task and our agent’s trajectory. The agent is required to execute subtasks in the optimal
order to maximize the reward within a time limit. The subtask graph describes subtasks with the corresponding
rewards (e.g., subtask L gives 1.0 reward) and dependencies between subtasks through AND and OR nodes. For
instance, the agent should first get the firewood (D) OR coal (G) to light a furnace (J). In this example, our agent
learned to execute subtask F and its preconditions (shown in red) as soon as possible, since it is a precondition of
many subtasks even though it gives a negative reward. After that, the agent mines minerals that require stone
pickaxe and craft items (shown in blue) to achieve a high reward.

A subtask graph consists of subtasks, corresponding rewards, and dependencies among subtasks in
logical expression form where it subsumes many existing forms (e.g., sequential instructions [1]).
This allows us to define many complex tasks in a principled way and train the agent to find the
optimal way of executing such tasks. Moreover, we aim to solve the problem without explicit search
or simulations so that our method can be more easily applicable to practical real-world scenarios,
where real-time performance (i.e., fast decision-making) is required and building the simulation
model is extremely challenging.
To solve the problem, we propose a new deep RL architecture, called neural subtask graph
solver (NSGS), which encodes a subtask graph using a recursive-reverse-recursive neural network
(R3NN) [5] to consider the long-term effect of each subtask. Still, finding the optimal sequence of
subtasks by reflecting the long-term dependencies between subtasks and the context of observation
is computationally intractable. Therefore, we found that it is extremely challenging to learn a good
policy when it’s trained from scratch. To address the difficulty of learning, we propose to pre-train the
NSGS to approximate our novel non-parametric policy called graph reward propagation policy. The
key idea of the graph reward propagation policy is to construct a differentiable representation of the
subtask graph such that taking a gradient over the reward results in propagating reward information
between related subtasks, which is used to find a reasonably good subtask to execute. After the
pre-training, our NSGS architecture is finetuned using the actor-critic method.
The experimental results on 2D visual domains with diverse subtask graphs show that our agent
implicitly performs complex reasoning by taking into account long-term subtask dependencies as
well as the cost of executing each subtask from the observation, and it can successfully generalize to
unseen and larger subtask graphs. Finally, we show that our method is computationally much more
efficient than Monte-Carlo tree search (MCTS) algorithm, and the performance of our NSGS agent
can be further improved by combining with MCTS, achieving a near-optimal performance.
Our contributions can be summarized as follows: (1) We propose a new challenging RL problem and
domain with a richer and more general form of graph-based task descriptions compared to the recent
works on multitask RL. (2) We propose a deep RL architecture that can execute arbitrary unseen
subtask graphs and observations. (3) We demonstrate that our method outperforms the state-of-the-art
search-based method (e.g., MCTS), which implies that our method can efficiently approximate the
solution of an intractable search problem without performing any search. (4) We further show that
our method can also be used to augment MCTS, which significantly improves the performance of
MCTS with a much less amount of simulations.

2 Related Work
Programmable Agent The idea of learning to execute a given program using RL was introduced
by programmable hierarchies of abstract machines (PHAMs) [6–8]. PHAMs specify a partial policy
using a set of hierarchical finite state machines, and the agent learns to execute the partial program.
A different way of specifying a partial policy was explored in the deep RL framework [4]. Other
approaches used a program as a form of task description rather than a partial policy in the context of
multitask RL [1, 3]. Our work also aims to build a programmable agent in that we train the agent to
execute a given task. However, most of the prior work assumes that the program specifies what to do,
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and the agent just needs to learn how to do it. In contrast, our work explores a new form of program,
called subtask graph (see Figure 1), which describes properties of subtasks and dependencies between
them, and the agent is required to figure out what to do as well as how to do it.

Hierarchical Reinforcement Learning Many hierarchical RL approaches have been proposed to
solve complex decision problems via multiple levels of temporal abstractions [9–13]. Our work
builds upon the prior work in that a high-level controller focuses on finding the optimal subtask, while
a low-level controller focuses on executing the given subtask. In this work, we focus on how to train
the high-level controller for generalizing to novel complex dependencies between subtasks.

Classical Search-Based Planning One of the most closely related problems is the planning prob-
lem considered in hierarchical task network (HTN) approaches [14–18] in that HTNs also aim to find
the optimal way to execute tasks given subtask dependencies. However, they aim to execute a single
goal task, while the goal of our problem is to maximize the cumulative reward in RL context. Thus,
the agent in our problem not only needs to consider dependencies among subtasks but also needs to
infer the cost from the observation and deal with stochasticity of the environment. These additional
challenges make it difficult to apply such classical planning methods to solve our problem.

Motion Planning Another related problem to our subtask graph execution problem is motion
planning (MP) problem [19–23]. MP problem is often mapped to a graph, and reduced to a graph
search problem. However, different from our problem, the MP approaches aim to find an optimal
path to the goal in the graph while avoiding obstacles similar to HTN approaches.

3 Problem Definition
3.1 Preliminary: Multitask Reinforcement Learning and Zero-Shot Generalization
We consider an agent presented with a task drawn from some distribution as in [4, 24]. We model each
task as Markov Decision Process (MDP). Let G ∈ G be a task parameter available to agent drawn
from a distribution P (G) where G defines the task and G is a set of all possible task parameters. The
goal is to maximize the expected reward over the whole distribution of MDPs:

∫
P (G)J(π,G)dG,

where J(π,G) = Eπ[
∑T
t=0 γ

trt] is the expected return of the policy π given a task defined by G, γ
is a discount factor, π : S × G → A is a multitask policy that we aim to learn, and rt is the reward
at time step t. We consider a zero-shot generalization where only a subset of tasks Gtrain ⊂ G is
available to agent during training, and the agent is required to generalize over a set of unseen tasks
Gtest ⊂ G for evaluation, where Gtest ∩ Gtrain = φ.

3.2 Subtask Graph Execution Problem
The subtask graph execution problem is a multitask RL problem with a specific form of task parameter
G called subtask graph. Figure 1 illustrates an example subtask graph and environment. The task of
our problem is to execute given N subtasks in an optimal order to maximize reward within a time
budget, where there are complex dependencies between subtasks defined by the subtask graph. We
assume that the agent has learned a set of options (O) [11, 25, 9] that performs subtasks by executing
one or more primitive actions.

Subtask Graph and Environment We define the terminologies as follows:
• Precondition: A precondition of subtask is defined as a logical expression of subtasks in sum-of-

products (SoP) form where multiple AND terms are combined with an OR term (e.g., the precondition
of subtask J in Figure 1 is OR(AND(D), AND(G)).

• Eligibility vector: et = [e1t , . . . , e
N
t ] where eit = 1 if subtask i is eligible (i.e., the precondition of

subtask is satisfied and it has never been executed by the agent) at time t, and 0 otherwise.
• Completion vector: xt = [x1t , . . . , x

N
t ] where xit = 1 if subtask i has been executed by the agent

while it is eligible, and 0 otherwise.
• Subtask reward vector: r = [r1, . . . , rN ] specifies the reward for executing each subtask.
• Reward: rt = ri if the agent executes the subtask i while it is eligible, and rt = 0 otherwise.
• Time budget: stept ∈ R is the remaining time-steps until episode termination.
• Observation: obst ∈ RH×W×C is a visual observation at time t as illustrated in Figure 1.
To summarize, a subtask graph G defines N subtasks with corresponding rewards r and the precon-
ditions. The state input at time t consists of st = {obst,xt, et, stept}. The goal is to find a policy
π : st, G 7→ ot which maps the given context of the environment to an option (ot ∈ O).
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Figure 2: Neural subtask graph solver architecture. The task module encodes subtask graph through a bottom-up
and top-down process, and outputs the reward score preward

t . The observation module encodes observation
using CNN and outputs the cost score pcost

t . The final policy is a softmax policy over the sum of two scores.

Challenges Our problem is challenging due to the following aspects:
• Generalization: Only a subset of subtask graphs (Gtrain) is available during training, but the

agent is required to execute previously unseen and larger subtask graphs (Gtest).
• Complex reasoning: The agent needs to infer the long-term effect of executing individual subtasks

in terms of reward and cost (e.g., time) and find the optimal sequence of subtasks to execute without
any explicit supervision or simulation-based search. We note that it may not be easy even for
humans to find the solution without explicit search due to the exponentially large solution space.

• Stochasticity: The outcome of subtask execution is stochastic in our setting (for example, some
objects are randomly moving). Therefore, the agent needs to consider the expected outcome when
deciding which subtask to execute.

4 Method
Our neural subtask graph solver (NSGS) is a neural network which consists of a task module and
an observation module as shown in Figure 2. The task module encodes the precondition of each
subtask via bottom-up process and propagates the information about future subtasks and rewards to
preceding subtasks (i.e., pre-conditions) via the top-down process. The observation module learns
the correspondence between a subtask and its target object, and the relation between the locations
of objects in the observation and the time cost. However, due to the aforementioned challenge (i.e.,
complex reasoning) in Section 3.2, learning to execute the subtask graph only from the reward is
extremely challenging. To facilitate the learning, we propose graph reward propagation policy
(GRProp), a non-parametric policy that propagates the reward information between related subtasks
to model their dependencies. Since our GRProp acts as a good initial policy, we train the NSGS to
approximate the GRProp policy through policy distillation [26, 27], and finetune it through actor-critic
method with generalized advantage estimation (GAE) [28] to maximize the reward. Section 4.1
describes the NSGS architecture, and Section 4.2 describes how to construct the GRProp policy.

4.1 Neural Subtask Graph Solver
Task Module Given a subtask graph G, the remaining time steps stept ∈ R, an eligibility vector
et and a completion vector xt, we compute a context embedding using recursive-reverse-recursive
neural network (R3NN) [5] as follows:

φibot,o = bθo

xit, eit, stept, ∑
j∈Childi

φjbot,a

 , φjbot,a = bθa

 ∑
k∈Childj

[
φkbot,o, w

j,k
+

] , (1)

φitop,o = tθo

φibot,o, ri, ∑
j∈Pari

[
φjtop,a, w

i,j
+

] , φjtop,a = tθa

φjbot,a, ∑
k∈Parj

φktop,o

 , (2)

where [·] is a concatenation operator, bθ, tθ are the bottom-up and top-down encoding function,
φibot,a, φ

i
top,a are the bottom-up and top-down embedding of i-th AND node respectively, and
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φibot,o, φ
i
top,o are the bottom-up and top-down embedding of i-th OR node respectively (see Ap-

pendix for the detail). The wi,j+ , Childi, and Parenti specifies the connections in the subtask graph
G. Specifically, wi,j+ = 1 if j-th OR node and i-th AND node are connected without NOT operation,
−1 if there is NOT connection and 0 if not connected, and Childi, Parenti represent a set of i-th
node’s children and parents respectively. The embeddings are transformed to reward scores via:
prewardt = Φ>topv, where Φtop = [φ1top,o, . . . , φ

N
top,o] ∈ RE×N , E is the dimension of the top-down

embedding of OR node, and v ∈ RE is a weight vector for reward scoring.

Observation Module The observation module encodes the input observation obst using a convo-
lutional neural network (CNN) and outputs a cost score:

pcostt = CNN(obst, stept). (3)
where stept is the number of remaining time steps. An ideal observation module would learn to
estimate high score for a subtask if the target object is close to the agent because it would require less
cost (i.e., time). Also, if the expected number of step required to execute a subtask is larger than the
remaining step, ideal agent would assign low score. The NSGS policy is a softmax policy:

π(ot|st,G) = Softmax(prewardt + pcostt ), (4)
which adds reward scores and cost scores.

4.2 Graph Reward Propagation Policy: Pre-training Neural Subtask Graph Solver
Intuitively, the graph reward propagation policy is designed to put high probabilities over subtasks
that are likely to maximize the sum of modified and smoothed reward Ũt at time t, which will be
defined in Eq. 9. Let xt be a completion vector and r be a subtask reward vector (see Section 3 for
definitions). Then, the sum of reward until time-step t is given as:

Ut = rTxt. (5)
We first modify the reward formulation such that it gives a half of subtask reward for satisfying the
preconditions and the rest for executing the subtask to encourage the agent to satisfy the precondition
of a subtask with a large reward:

Ût = rT (xt + et)/2. (6)

Let yjAND be the output of j-th AND node. The eligibility vector et can be computed from the subtask
graph G and xt as follows:

eit = OR
j∈Childi

(
yjAND

)
, yjAND = AND

k∈Childj

(
x̂j,kt

)
, x̂j,kt = xktw

j,k + (1− xkt )(1− wj,k),

(7)
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Figure 3: Visualization of OR, ÕR, AND,
and ÃND operations with three inputs
(a,b,c). These smoothed functions are
defined to handle arbitrary number of
operands (see Appendix).

where wj,k = 0 if there is a NOT connection between j-th node
and k-th node, otherwise wj,k = 1. Intuitively, x̂j,kt = 1 when
k-th node does not violate the precondition of j-th node. Note
that Ũt is not differentiable with respect to xt because AND(·)
and OR(·) are not differentiable. To derive our graph reward
propagation policy, we propose to substitute AND(·) and OR(·)
functions with “smoothed” functions ÃND and ÕR as follows:

ẽit = ÕR
j∈Childi

(
ỹjAND

)
, ỹjAND = ÃND

k∈Childj

(
x̂j,kt

)
, (8)

where ÃND and ÕR were implemented as scaled sigmoid and
tanh functions as illustrated by Figure 3 (see Appendix for
details). With the smoothed operations, the sum of smoothed
and modified reward is given as:

Ũt = rT (xt + ẽt)/2. (9)
Finally, the graph reward propagation policy is a softmax policy,

π(ot|xt, G) = Softmax
(
∇xtŨt

)
= Softmax

(
1

2
rT +

1

2
rT∇xt ẽt

)
, (10)

that is the softmax of the gradient of Ũt with respect to xt.
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4.3 Policy Optimization
The NSGS is first trained through policy distillation by minimizing the KL divergence between NSGS
and teacher policy (GRProp) as follows:

∇θL1 = EG∼Gtrain
[
Es∼πGθ

[
∇θDKL

(
πGT ||πGθ

)]]
, (11)

where θ is the parameter of NSGS, πGθ is the simplified notation of NSGS policy with subtask graph
G, πGT is the simplified notation of teacher (GRProp) policy with subtask graph G, DKL is KL
divergence, and Gtrain is the training set of subtask graphs. After policy distillation, we finetune
NSGS agent in an end-to-end manner using actor-critic method with GAE [28] as follows:

∇θL2 = EG∼Gtrain

[
Es∼πGθ

[
−∇θ log πGθ

∞∑
l=0

(
l−1∏
n=0

(γλ)kn

)
δt+l

]]
, (12)

δt = rt + γktV πθ′ (st+1, G)− V πθ′ (st, G), (13)

where kt is the duration of option ot, γ is a discount factor, λ ∈ [0, 1] is a weight for balancing
between bias and variance of the advantage estimation, and V πθ′ is the critic network parameterized

by θ′. During training, we update the critic network to minimize E
[
(Rt − V πθ′ (st, G))

2
]
, where Rt

is the discounted cumulative reward at time t. The complete procedure for training our NSGS agent
is summarized in Algorithm 1. We used ηd=1e-4, ηc=3e-6 for distillation and ηac=1e-6, ηc=3e-7 for
fine-tuning in the experiment.

Algorithm 1 Policy optimization

1: for iteration n do
2: Sample G ∼ Gtrain
3: D = {(st,ot, rt, Rt, stept), . . .} ∼ πGθ . do rollout
4: θ′ ← θ′ + ηc

∑
D (∇θ′V πθ′ (st, G)) (Rt − V πθ′ (st, G)) . update critic

5: if distillation then
6: θ ← θ + ηd

∑
D∇θDKL

(
πGT ||πGθ

)
. update policy

7: else if fine-tuning then
8: Compute δt from Eq. 13 for all t
9: θ ← θ + ηac

∑
D∇θ log πGθ

∑∞
l=0

(∏l−1
n=0 (γλ)kn

)
δt+l . update policy

5 Experiment
In the experiment, we investigated the following research questions: 1) Does GRProp outperform
other heuristic baselines (e.g., greedy policy, etc.)? 2) Can NSGS deal with complex subtask
dependencies, delayed reward, and the stochasticity of the environment? 3) Can NSGS generalize to
unseen subtask graphs? 4) How does NSGS perform compared to MCTS? 5) Can NSGS be used to
improve MCTS?

5.1 Environment
We evaluated the performance of our agents on two domains: Mining and Playground that are
developed based on MazeBase [29]. We used a pre-trained subtask executer for each domain. The
episode length (time budget) was randomly set for each episode in a range such that GRProp agent
executes 60%− 80% of subtasks on average. The subtasks in the higher layer in subtask graph are
designed to give larger reward (see Appendix for details).

Mining domain is inspired by Minecraft (see Figures 1 and 5). The agent may pickup raw materials
in the world, and use it to craft different items on different craft stations. There are two forms of
preconditions: 1) an item may be an ingredient for building other items (e.g., stick and stone are
ingredients of stone pickaxe), and 2) some tools are required to pick up some objects (e.g., agent need
stone pickaxe to mine iron ore). The agent can use the item multiple times after picking it once. The
set of subtasks and preconditions are hand-coded based on the crafting recipes in Minecraft, and used
as a template to generate 640 random subtask graphs. We used 200 for training and 440 for testing.

Playground is a more flexible and challenging domain (see Figure 6). The subtask graph in Play-
ground was randomly generated, hence its precondition can be any logical expression and the reward
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may be delayed. Some of the objects randomly move, which makes the environment stochastic.
The agent was trained on small subtask graphs, while evaluated on much larger subtask graphs (See
Table 1). The set of subtasks isO = Aint×X , whereAint is a set of primitive actions to interact with
objects, and X is a set of all types of interactive objects in the domain. We randomly generated 500
graphs for training and 2,000 graphs for testing. Note that the task in playground domain subsumes
many other hierarchical RL domains such as Taxi [30], Minecraft [1] and XWORLD [2]. In addition,
we added the following components into subtask graphs to make the task more challenging:
• Distractor subtask: A subtask with only NOT connection to parent nodes in the subtask graph.

Executing this subtask may give an immediate reward, but it may make other subtasks ineligible.
• Delayed reward: Agent receives no reward from subtasks in the lower layers, but it should execute

some of them to make higher-level subtasks eligible (see Appendix for fully-delayed reward case).

5.2 Agents
Subtask Graph Setting

Playground Mining
Task D1 D2 D3 D4 Eval

Depth 4 4 5 6 4-10
Subtask 13 15 16 16 10-26

Zero-Shot Performance
Playground Mining

Task D1 D2 D3 D4 Eval
NSGS (Ours) .820 .785 .715 .527 8.19

GRProp (Ours) .721 .682 .623 .424 6.16
Greedy .164 .144 .178 .228 3.39

Random 0 0 0 0 2.79
Adaptation Performance

Playground Mining
Task D1 D2 D3 D4 Eval

NSGS (Ours) .828 .797 .733 .552 8.58
Independent .346 .296 .193 .188 3.89

Table 1: Generalization performance on unseen and larger
subtask graphs. (Playground) The subtask graphs in D1 have
the same graph structure as training set, but the graph was
unseen. The subtask graphs in D2, D3, and D4 have (unseen)
larger graph structures. (Mining) The subtask graphs in
Eval are unseen during training. NSGS outperforms other
compared agents on all the task and domain.

We evaluated the following policies:
• Random policy executes any eligible sub-

task.
• Greedy policy executes the eligible sub-

task with the largest reward.
• Optimal policy is computed from exhaus-

tive search on eligible subtasks.
• GRProp (Ours) is graph reward propaga-

tion policy.
• NSGS (Ours) is distilled from GRProp

policy and finetuned with actor-critic.
• Independent is an LSTM-based base-

line trained on each subtask graph inde-
pendently, similar to Independent model
in [4]. It takes the same set of input as
NSGS except the subtask graph.

To our best knowledge, existing work on
hierarchical RL cannot directly address our
problem with a subtask graph input. Instead,
we evaluated an instance of hierarchical RL
method (Independent agent) in adaptation
setting, as discussed in Section 5.3.

5.3 Quantitative Result
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Figure 4: Learning curves on Mining and Playground do-
main. NSGS is distilled from GRProp on 77K and 256K
episodes, respectively, and finetuned after that.

Training Performance The learning
curves of NSGS and performance of other
agents are shown in Figure 4. Our GRProp
policy significantly outperforms the Greedy
policy. This implies that the proposed idea
of back-propagating the reward gradient
captures long-term dependencies among
subtasks to some extent. We also found that
NSGS further improves the performance
through fine-tuning with actor-critic method.
We hypothesize that NSGS learned to
estimate the expected costs of executing
subtasks from the observations and consider
them along with subtask graphs.

Generalization Performance We considered two different types of generalization: a zero-shot
setting where agent must immediately achieve good performance on unseen subtask graphs without
learning, and an adaptation setting where agent can learn about task through the interaction with
environment. Note that Independent agent was evaluated in adaptation setting only since it has no
ability to generalize as it does not take subtask graph as input. Particularly, we tested agents on larger
subtask graphs by varying the number of layers of the subtask graphs from four to six with a larger
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Figure 5: Example trajectories of Greedy, GRProp, and NSGS agents given 75 steps on Mining domain. We
used different colors to indicate that agent has different types of pickaxes: red (no pickaxe), blue (stone pickaxe),
and green (iron pickaxe). Greedy agent prefers subtasks C, D, F, and G to H and L since C, D, F, and G gives
positive immediate reward, whereas NSGS and GRProp agents find a short path to make stone pickaxe, focusing
on subtasks with higher long-term reward. Compared to GRProp, the NSGS agent can find a shorter path to
make an iron pickaxe, and succeeds to execute more number of subtasks.
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in environment for the controlled experiment. Greedy agent executes the distractors since they give positive
immediate rewards, which makes it impossible to execute the subtask K which gives the largest reward. GRProp
and NSGS agents avoid distractors and successfully execute subtask K by satisfying its preconditions. After
executing subtask K, the NSGS agent found a shorter path to execute remaining subtasks than the GRProp agent
and gets larger reward.
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number of subtasks on Playground domain. Table 1 summarizes the results in terms of normalized
reward R̄ = (R−Rmin)/(Rmax−Rmin) where Rmin and Rmax correspond to the average reward
of the Random and the Optimal policy respectively. Due to large number of subtasks (>16) in Mining
domain, the Optimal policy was intractable to be evaluated. Instead, we reported the un-normalized
mean reward. Though the performance degrades as the subtask graph becomes larger as expected,
NSGS generalizes well to larger subtask graphs and consistently outperforms all the other agents on
Playground and Mining domains in zero-shot setting. In adaptation setting, NSGS performs slightly
better than zero-shot setting by fine-tuning on the subtask graphs in evaluation set. Independent agent
learned a policy comparable to Greedy, but performs much worse than NSGS.

5.4 Qualitative Result
Figure 5 visualizes trajectories of agents on Mining domain. Greedy policy mostly focuses on
subtasks with immediate rewards (e.g., get string, make bow) that are sub-optimal in the long run.
In contrast, NSGS and GRProp agents focus on executing subtask H (make stone pickaxe) in order
to collect materials much faster in the long run. Compared to GRProp, NSGS learns to consider
observation also and avoids subtasks with high cost (e.g., get coal).
Figure 6 visualizes trajectories on Playground domain. In this graph, there are distractors (e.g., D,
E, and H) and the reward is delayed. In the beginning, Greedy chooses to execute distractors, since
they gives positive reward while subtasks A, B, and C do not. However, GRProp observes non-zero
gradient for subtasks A, B, and C that are propagated from the parent nodes. Thus, even though
the reward is delayed, GRProp can figure out which subtask to execute. NSGS learns to understand
long-term dependencies from GRProp, and finds shorter path by also considering the observation.

5.5 Combining NSGS with Monte-Carlo Tree Search
We further investigated how well our NSGS agent performs compared to conventional search-based
methods and how our NSGS agent can be combined with search-based methods to further improve
the performance. We implemented the following methods (see Appendix for the detail):
• MCTS: An MCTS algorithm with UCB [31] criterion for choosing actions.
• MCTS+NSGS: An MCTS algorithm combined with our NSGS agent. NSGS policy was used

as a rollout policy to explore reasonably good states during tree search, which is similar to
AlphaGo [32].
• MCTS+GRProp: An MCTS algorithm combined with our GRProp agent similar to MCTS+NSGS.
The results are shown in Figure 7. It turns out that our NSGS performs as well as MCTS method
with approximately 32K simulations on Playground and 11K simulations on Mining domain, while
GRProp performs as well as MCTS with approximately 11K simulations on Playground and 1K
simulations on Mining domain. This indicates that our NSGS agent implicitly performs long-term
reasoning that is not easily achievable by a sophisticated MCTS, even though NSGS does not use any
simulation and has never seen such subtask graphs during training. More interestingly, MCTS+NSGS
and MCTS+GRProp significantly outperforms MCTS, and MCTS+NSGS achieves approximately
0.97 normalized reward with 33K simulations on Playground domain. We found that the Optimal
policy, which corresponds to normalized reward of 1.0, uses approximately 648M simulations on
Playground domain. Thus, MCTS+NSGS performs almost as well as the Optimal policy with only
0.005% simulations compared to the Optimal policy. This result implies that NSGS can also be used
to improve simulation-based planning methods by effectively reducing the search space.

6 Conclusion
We introduced the subtask graph execution problem which is an effective and principled framework
of describing complex tasks. To address the difficulty of dealing with complex subtask dependencies,
we proposed a graph reward propagation policy derived from a differentiable form of subtask graph,
which plays an important role in pre-training our neural subtask graph solver architecture. The
empirical results showed that our agent can deal with long-term dependencies between subtasks
and generalize well to unseen subtask graphs. In addition, we showed that our agent can be used
to effectively reduce the search space of MCTS so that the agent can find a near-optimal solution
with a small number of simulations. In this paper, we assumed that the subtask graph (e.g., subtask
dependencies and rewards) is given to the agent. However, it will be very interesting future work
to investigate how to extend to more challenging scenarios where the subtask graph is unknown (or
partially known) and thus need to be estimated through experience.
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