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Abstract

Deep latent variable models (DLVMs) combine the approximation abilities of deep
neural networks and the statistical foundations of generative models. Variational
methods are commonly used for inference; however, the exact likelihood of these
models has been largely overlooked. The purpose of this work is to study the
general properties of this quantity and to show how they can be leveraged in
practice. We focus on important inferential problems that rely on the likelihood:
estimation and missing data imputation. First, we investigate maximum likelihood
estimation for DLVMs: in particular, we show that most unconstrained models
used for continuous data have an unbounded likelihood function. This problematic
behaviour is demonstrated to be a source of mode collapse. We also show how to
ensure the existence of maximum likelihood estimates, and draw useful connections
with nonparametric mixture models. Finally, we describe an algorithm for missing
data imputation using the exact conditional likelihood of a DLVM. On several data
sets, our algorithm consistently and significantly outperforms the usual imputation
scheme used for DLVMs.

1 Introduction

Dimension reduction aims at summarizing multivariate data using a small number of features that
constitute a code. Earliest attempts rested on linear projections, leading to Hotelling’s (1933) principal
component analysis (PCA) that has been vastly explored and perfected over the last century (Jolliffe
and Cadima, 2016). In recent years, the field has been vividly animated by the successes of latent
variable models that probabilistically use the low-dimensional features to define powerful generative
models. Usually, these latent variable models transform the random code into parameters of a simple
distribution. Linear mappings were initially considered, giving rise to factor analysis (Bartholomew
et al., 2011) and probabilistic principal component analysis (Tipping and Bishop, 1999). In recent
years, much work has been done regarding nonlinear mappings parametrised by deep neural networks,
following the seminal papers of Rezende et al. (2014) and Kingma and Welling (2014). These
models have led to impressive empirical performance in unsupervised or semi-supervised generative
modelling of images (Siddharth et al., 2017), molecular structures (Kusner et al., 2017; Gómez-
Bombarelli et al., 2018), arithmetic expressions (Kusner et al., 2017), and single-cell gene expression
data (Grønbech et al., 2018). This paper is an investigation of the statistical properties of these models,
which remain essentially unknown.

1.1 Deep latent variable models

In their most common form, deep latent variable models (DLVMs) assume that we are in the presence
of a data matrix X = (x1, ...,xn)T ∈ Xn that we wish to explain using some latent variables
Z = (z1, ..., zn)T ∈ Rn×d. We assume that (xi, zi)i≤n are independent and identically distributed
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(i.i.d.) random variables driven by the following generative model:{
z ∼ p(z)
pθ(x|z) = Φ(x|fθ(z)).

(1)

The unobserved random vector z ∈ Rd is called the latent variable and usually follows marginally a
simple distribution p(z) called the prior distribution. The dimension d of the latent space is called
the intrinsic dimension—and is usually smaller than the dimensionality of the data. The collection
(Φ(·|η))η∈H is a parametric family of densities with respect to a dominating measure (usually the
Lebesgue or the counting measure) called the observation model. The function fθ : Rd → H is
called a decoder or a generative network, and is parametrised by a (deep) neural network whose
weights are stored in θ ∈ Θ. The latent structure of these DLVMs leads to the following marginal
distribution of the data:

pθ(x) =

∫
Rd

pθ(x|z)p(z)dz =

∫
Rd

Φ(x|fθ(z))p(z)dz. (2)

This parametrisation allows to leverage recent advances in deep architectures, such as deep residual
networks (Kingma et al., 2016), recurrent networks (Bowman et al., 2016; Gómez-Bombarelli et al.,
2018), or batch normalisation (Sønderby et al., 2016).

Several observation models have been considered: in case of discrete multivariate data, products
of Bernoulli (or multinomial) distributions; multivariate Gaussian distributions for continuous data;
products of Poisson distributions for multivariate count data (Grønbech et al., 2018). Several specific
proposals for image data have been made, like the discretised logistic mixture of Salimans et al., 2017).
Dirac observation models correspond to deterministic decoders, that are used e.g. within generative
adversarial networks (Goodfellow et al., 2014), or non-volume preserving transformations (Dinh
et al., 2017). Introduced by both Kingma and Welling (2014) and Rezende et al. (2014), the Gaussian
and Bernoulli families are the most widely studied, and will be the focus of this article.

1.2 Scalable learning through amortised variational inference

The log-likelihood function of a DLVM is, for all θ ∈ Θ,

`(θ) = log pθ(X) =

n∑
i=1

log pθ(xi), (3)

which is an extremely challenging quantity to compute that involves potentially high-dimensional
integrals. Estimating θ by maximum likelihood appears therefore out of reach. Consequently,
following Rezende et al. (2014) and Kingma and Welling (2014), inference in DLVMs is usually
performed using amortised variational inference. Variational inference approximatively maximises
the log-likelihood by maximising a lower bound known as the evidence lower bound (ELBO, see
e.g. Blei et al., 2017):

ELBO(θ, q) = EZ∼q

[
log

p(X,Z)

q(Z)

]
= `(θ)− KL(q||p(·|X)) ≤ `(θ), (4)

where the variational distribution q is a distribution over the space of codes Rn×d. The variational
distribution plays the role of a tractable approximation of the posterior distribution of the codes;
when this approximation is perfectly accurate, the ELBO is equal to the log-likelihood. Amortised
inference builds q using a neural network called the inference network gγ : X → K, whose weights
are stored in γ ∈ Γ:

qγ,X(Z) = qγ,X(z1, ..., zn) =

n∏
i=1

Ψ(zi|gγ(xi)), (5)

where (Ψ(·|κ))κ∈K is a parametric family of distributions over Rd—such as Gaussians with diagonal
covariances (Kingma and Welling, 2014). Other kinds of families—built using e.g. normalising
flows (Rezende and Mohamed, 2015; Kingma et al., 2016), auxiliary variables (Maaløe et al., 2016;
Ranganath et al., 2016), or importance weights (Burda et al., 2016; Cremer et al., 2017)—have been
considered for amortised inference, but they will not be central focus of in this paper. Variational

2



inference for DLVMs then solves the optimisation problem maxθ∈Θ,γ∈Γ ELBO(θ, qγ,X) using
variants of stochastic gradient ascent (see e.g. Roeder et al., 2017, for strategies for computing
gradients estimates of the ELBO).

As emphasised by Kingma and Welling (2014), the ELBO resembles the objective function of a
popular deep learning model called an autoencoder (see e.g. Goodfellow et al., 2016, Chapter 14).
This motivates the popular denomination of encoder for the inference network gγ and variational
autoencoder (VAE) for the combination of a DLVM with amortised variational inference.

Contributions. In this work, we revisit DLVMs by asking: Is it possible to leverage the properties
of pθ(x) to understand and improve deep generative modelling? Our main contributions are:

• We show that maximum likelihood is ill-posed for continuous DLVMs and well-posed for discrete
ones. We link this undesirable property of continuous DLVMs to the mode collapse phenomenon,
and illustrate it on a real data set.

• We draw a connection between DLVMs and nonparametric statistics, and show that DLVMs can
be seen as parsimonious submodels of nonparametric mixture models.

• We leverage this connection to provide a way of finding an upper bound of the likelihood based on
finite mixtures. Combined with the ELBO, this bound allows us to provide useful “sandwichings”
of the exact likelihood. We also prove that this bound characterises the large capacity behaviour
of DLVMs.

• When dealing with missing data, we show how a simple modification of an approximate scheme
proposed by Rezende et al. (2014) allows us to draw according to the exact conditional distribution
of the missing data. On several data sets and missing data scenarios, our algorithm consistently
outperforms the one of Rezende et al. (2014), while having the same computational cost.

2 Is maximum likelihood well-defined for deep latent variable models?

In this section, we investigate the properties of maximum likelihood estimation for DLVMs with
Gaussian and Bernoulli observation models.

2.1 On the boundedness of the likelihood of deep latent variable models

Deep generative models with Gaussian observation models assume that the data space is X = Rp, and
that the observation model is the family of p-variate full-rank Gaussian distributions. The conditional
distribution of each data point is consequently

pθ(x|z) = N (x|µθ(z),Σθ(z)), (6)

where µθ : Rd → Rp and Σθ : Rd → S++
p are two continuous functions parametrised by neural

networks whose weights are stored in a parameter θ. These two functions constitute the decoder of
the model. This leads to the log-likelihood

`(θ) =

n∑
i=1

log

(∫
Rd

N (xi|µθ(z),Σθ(z))p(z)dz

)
. (7)

This model can be seen as a special case of infinite mixture of Gaussian distributions. However, it
is well-known that maximum likelihood is ill-posed for finite Gaussian mixtures (see e.g. Le Cam,
1990). Here, by “ill-posed”, we mean that, inside the parameter space, there exists no maximiser
of the likelihood function, which corresponds to the first condition given by Tikhonov and Arsenin
(1977, p.7 ). This happens because the likelihood function is unbounded above. Moreover, the infinite
maxima of the likelihood happen to be very poor generative models, whose density collapse around
some of the data points. This problematic behaviour of a model quite similar to DLVMs motivates
the question: is the likelihood function of DLVMs bounded above?

In this section, we will not make any particular parametric assumption about the prior distribution
of the latent variable z. While Kingma and Welling (2014) and Rezende et al. (2014) originally
proposed to use isotropic Gaussian distributions, more complex learnable priors have also been
proposed (e.g. Tomczak and Welling, 2018). We simply make the natural assumptions that z is
continuous and has zero mean. Many different neural architectures have been explored regarding
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the parametrisation of the decoder. For example, Kingma and Welling (2014) consider multilayer
perceptrons (MLPs) of the form

µθ(z) = V tanh (Wz + a) + b, Σθ(z) = Diag (exp (α tanh (Wz + a) + β)) , (8)

where θ = (W,a,V,b,α, β). The weights of the decoder are W ∈ Rh×d,a ∈ Rh,V,α ∈ Rp×h,
and b,β ∈ Rp. The integer h ∈ N∗ is the (common) number of hidden units of the MLPs. Much
more complex parametrisations exist, but we will see that this one, arguably one of the most rigid, is
already too flexible for maximum likelihood. Actually, we will show that an even much less flexible
family of MLPs with a single hidden unit is problematic and leads the model to collapse around a data
point. Let w ∈ Rp and let (αk)k≥1 be a sequence of nonnegative real numbers such that αk → +∞
as k → +∞. Let us consider i∗ ∈ {1, ..., n}: this arbitrary index will represent the observation
around which the model will collapse. Using the parametrisation (8), we consider the sequences of
parameters θ(i∗,w)

k = (αkw
T , 0,0p,xi∗ , αk1p,−αk1p). This leads to the simplified decoders:

µ
θ
(i∗,w)
k

(z) = xi∗ , Σ
θ
(i∗,w)
k

(z) = exp
(
αk tanh

(
αkw

T z
)
− αk

)
Ip. (9)

As shown by next theorem, these sequences of decoders lead to the divergence of the log-likelihood
function.

Theorem 1. For all i∗ ∈ {1, ..., n} and w ∈ Rd \ {0}, we have limk→+∞ `
(
θ

(i∗,w)
k

)
= +∞.

A detailed proof is provided in Appendix A (all appendices of this paper are available as supplementary
material). Its cornerstone is the fact that the sequence of functions Σ

θ
(i∗,w)
k

converges to a function
that outputs both singular and nonsingular covariances, leading to the explosion of log p

θ
(i∗,w)
k

(xi∗)

while all other terms of the log-likelihood remain bounded below by a constant.

Using simple MLP-based parametrisations such a the one of Kingma and Welling (2014) therefore
brings about an unbounded log-likelihood function. A natural question that follows is: do these
infinite suprema lead to useful generative models? The answer is no. Actually, none of the functions
considered in Theorem 1 are particularly useful, because of the use of a constant mean function. This
is formalised in the next proposition, that exhibits a strong link between likelihood blow-up and the
mode collapse phenomenon.
Proposition 1. For all k ∈ N∗, i∗ ∈ {1, ..., n}, and w ∈ Rd \ {0}, the distribution p

θ
(i∗,w)
k

is
spherically symmetric and unimodal around xi∗ .

A proof is provided in Appendix B. This is a direct consequence of the constant mean function.

The spherical symmetry implies that the distribution of these “optimal” deep generative model will
lead to uncorrelated variables, and the unimodality will lead to poor sample diversity. This behaviour
is symptomatic of mode collapse, which remains one of the most challenging drawbacks of generative
modelling (Arora et al., 2018). While mode collapse has been extensively investigated for adversarial
training (e.g. Arora et al., 2018; Lucas et al., 2018), this phenomenon is also known to affect VAEs
(Richardson and Weiss, 2018).

Unregularised gradient-based optimisation of a tight lower bound of this unbounded likelihood
is therefore likely to follow these (uncountably many) paths to blow-up. This gives a theoretical
foundation to the necessary regularisation of VAEs that was already noted by Rezende et al. (2014)
and Kingma and Welling (2014). For example, using weight decay as in Kingma and Welling
(2014) is likely to help avoiding these infinite maxima. This difficulty to learn the variance was also
experimentally noticed by Takahashi et al. (2018), and may explain the choice made by several authors
to use a constant variance function Σ(z) = σ0Ip, where σ0 can be either fixed (Zhao et al., 2017)
or learned via approximate maximum likelihood (Pu et al., 2016). Dai et al. (2018) independently
showed that the VAE objective is also unbounded in the case where such a constant variance function
is combined with a nonparametric mean function. An interesting feature of our result is that it only
involves a decoder of very low capacity.

Tackling the unboundedness of the likelihood. Let us go back to a parametrisation which is not
necessarily MLP-based. Even in this general context, it is possible to tackle the unboundedness of the
likelihood using additional constraints on Σθ. Specifically, for each ξ ≥ 0, we will consider the set
Sξp = {A ∈ S+

p |min(SpA) ≥ ξ}, where, for all A ∈ S+
p , SpA denotes the spectrum of A. Note

that S0
p = S+

p . This simple spectral constraint allows to end up with a bounded likelihood.
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Proposition 2. Let ξ > 0. If the parametrisation of the decoder is such that the image of Σθ is
included in Sξp for all θ, then the log-likelihood function is upper bounded by −np log

√
2πξ.

Proof. For all i ∈ {1, ..., n}, we have p(xi|µθ,Σθ) ≤ (2πξ)−2p/2, using the fact that the determi-
nant of Σθ(z) is lower bounded by ξp for all z ∈ Rd and that the exponential of a negative number is
smaller than one. Therefore, the likelihood function is bounded above by 1/(2πξ)np/2.

Similar constraints have been proposed to solve the ill-posedness of maximum likelihood for finite
Gaussian mixtures (e.g. Hathaway, 1985; Biernacki and Castellan, 2011). In practice, implementing
such constraints can be easily done by adding a constant diagonal matrix to the output of the
covariance decoder.

What about other parametrisations? We chose a specific and natural parametrisation in order to
obtain a constructive proof of the unboundedness of the likelihood. However, virtually any other deep
parametrisation that does not include covariance constraints will be affected by our result, because of
the universal approximation abilities of neural networks (see e.g. Goodfellow et al., 2016, Section
6.4.1).

Bernoulli DLVMs do not suffer from unbounded likelihood. When X = {0, 1}p, Bernoulli
DLVMs assume that (Φ(·|η))η∈H is the family of p-variate multivariate Bernoulli distributions (i.e.
the family of products of p univariate Bernoulli distributions). In this case, maximum likelihood is
well-posed.
Proposition 3. Given any possible parametrisation, the log-likelihood function of a deep latent
model with a Bernoulli observation model is everywhere negative.

Proof. This directly follows from the fact that the Bernoulli density is always smaller than one.

2.2 Towards data-dependent likelihood upper bounds

We have determined under which conditions maximum likelihood estimates exist, and have computed
simple upper bounds on the likelihood functions. Since they do not depend on the data, these bounds
are likely to be very loose. A natural follow-up issue is to seek tighter, data-dependent upper bounds
that remain easily computable. Such bounds are desirable because, combined with ELBOs, they
would allow sandwiching the likelihood between two bounds.

To study this problem, let us take a step backwards and consider a more general infinite mixture model.
Precisely, given any distribution G over the generic parameter space H , we define the nonparametric
mixture model (see e.g. Lindsay, 1995, Chapter 1) as:

pG(x) =

∫
H

Φ(x|η)dG(η). (10)

Note that there are many ways for a mixture model to be nonparametric (e.g. having some nonpara-
metric components, an infinite but countable number of components, or an uncountable number of
components). In this case, this comes from the fact that the model parameter is the mixing distribution
G, which belongs to the set P of all probability measures over H . The log-likelihood of any G ∈ P
is given by `(G) =

∑n
i=1 log pG(xi).

When G has a finite support of cardinal k ∈ N∗, pG is a finite mixture model with k components.
When the mixing distribution G is generatively defined by the distribution of a random variable η
such that z ∼ p(z), η = fθ(z), we exactly end up with a deep generative model with decoder fθ.
Therefore, the nonparametric mixture is a more general model that the DLVM. The fact that the
mixing distribution of a DLVM is intrinsically low-dimensional leads us to interpret the DLVM as a
parsimonious submodel of the nonparametric mixture model. This also gives us an immediate upper
bound on the likelihood of any decoder fθ: `(θ) ≤ maxG∈P `(G).

Of course, in many cases, this upper bound will be infinite (for example in the case of an unconstrained
Gaussian observation model). However, under the conditions of boundedness of the likelihood of
deep Gaussian models, the bound is finite and attained for a finite mixture model with no more
components than data points.
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Theorem 2. Assume that (Φ(·|η))η∈H is the family of multivariate Bernoulli distributions or the
family of Gaussian distributions with the spectral constraint of Proposition 2. The likelihood of
the corresponding nonparametric mixture model is maximised for a finite mixture model of k ≤ n
distributions from the family (Φ(·|η))η∈H .

A detailed proof is provided in Appendix C. The main tool of the proof of this rather surprising
result is Lindsay’s (1983) geometric analysis of the likelihood of nonparametric mixtures, based on
Minkovski’s theorem. Specifically, Lindsay’s (1983) Theorem 3.1 ensures that, when the trace of
the likelihood curve is compact, the likelihood function is maximised for a finite mixture. For the
Bernoulli case, compactness of the curve is immediate; for the Gaussian case, we use a compactifica-
tion argument inspired by van der Vaart and Wellner (1992).

`(✓)

`(Ĝ)

ELBO(✓, q⇤X)

ELBO(✓, q�,X)

parsimony gap
tight when f✓ has large capacity

tight when g� has large capacity

amortisation gap

approximation gap
tight when the posterior belongs

to the variational family

Figure 1: The parsimony gap represents the amount of
likelihood lost due to the architecture of the decoder. The
approximation gap expresses how far the posterior is from
the variational family, and the amortisation gap appears due
to the limited capacity of the encoder (Cremer et al., 2018).

Assume now that the conditions of The-
orem 2 are satisfied. Let us denote a
maximum likelihood estimate of G as
Ĝ. For all θ, we therefore have

`(θ) ≤ `(Ĝ), (11)

which gives an upper bound on the like-
lihood. We call the difference `(Ĝ)−
`(θ) the parsimony gap (see Fig. 1).
By sandwiching the exact likelihood
between this bound and an ELBO, we
can also have guarantees on how far a
posterior approximation q is from the
true posterior:

KL(q||p(·|X)) ≤ `(Ĝ)−ELBO(θ, q).
(12)

Note that finding upper bounds of the
likelihood of latent variable models
is usually harder than finding lower
bounds (Grosse et al., 2015; Dieng
et al., 2017). From a computational perspective, the estimate Ĝ can be found using the expectation-
maximisation algorithm for finite mixtures (Dempster et al., 1977)—although it only ensures to find
a local optimum. Some strategies guaranteed to find a global optimum have also been developed
(e.g. Lindsay, 1995, Chapter 6, or Wang, 2007).

Now that computationally approachable upper bounds have been derived, the question remains
whether or not these bounds can be tight. Actually, as shown by next theorem, tightness of the
parsimony gap occurs when the decoder has universal approximation abilities. In other words, the
nonparametric upper bound characterises the large capacity limit of the decoder.
Theorem 3 (Tightness of the parsimony gap). Assume that

1. (Φ(·|η))η∈H is the family of multivariate Bernoulli distributions or the family of Gaussian
distributions with the spectral constraint of Proposition 2.

2. The decoder has universal approximation abilities : for any compact C ⊂ Rd and continuous
function f : C → H , for all ε > 0, there exists θ such that ||f − fθ ||∞ < ε.

Then, for all ε > 0, there exists θ ∈ Θ such that `(Ĝ) ≥ `(θ) ≥ `(Ĝ)− ε.

A detailed proof is provided in Appendix D. The main idea is to split the code space into a compact
set made of several parts that will represent the mixture components, and an unbounded set of very
small prior mass. The universal approximation property is finally used for this compact set.

The universal approximation condition is satisfied for example by MLPs with nonpolynomial ac-
tivations (Leshno et al., 1993). Combined with the work of Cremer et al. (2018), who studied the
large capacity limit of the encoder, this result describes the general behaviour of a VAE in the large
capacity limit (see Fig. 1). Note eventually that Rezende and Viola (2018) analysed the large capacity
behaviour of the VAE objective, and also found connections with finite mixtures.
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3 Missing data imputation using the exact conditional likelihood

In this section, we assume that a variational autoencoder has been trained, and that some data is
missing at test time. The couple decoder/encoder obtained after training is denoted by fθ and gγ . Let
x ∈ X be a new data point that consists of some observed features xobs and missing data xmiss. Since
we have a probabilistic model pθ of the data, an ideal way of imputing xmiss would be to generate
some data according to the conditional distribution

pθ(xmiss|xobs) =

∫
Rd

pθ(xmiss|xobs, z)p(z|xobs)dz. (13)

Again, this distribution appears out of reach because of the integration of the latent variable z.
However, it is reasonable to assume that, for all η, it is easy to sample from the marginals of Φ(·|η).
This is for instance the case for Gaussian observation models and factorised observation models
(like products of Bernoulli or Poisson distributions). A direct consequence of this assumption is that,
for all z, it is easy to sample from pθ(xmiss|xobs, z). Under this simple assumption, we will see that
generating data according to the conditional distribution is actually (asymptotically) possible.

3.1 Pseudo-Gibbs sampling

Rezende et al. (2014) proposed a simple way of imputing xmiss by following a Markov chain
(zt, x̂

miss
t )t≥1(initialised by randomly imputing the missing data with x̂miss

0 ). For all t ≥ 1, the chain
alternatively generates zt ∼ Ψ(z|gγ(xobs, x̂miss

t−1)) and x̂miss
t ∼ pθ(xmiss|xobs, z) until convergence.

This scheme closely resembles Gibbs sampling (Geman and Geman, 1984), and actually exactly
coincides with Gibbs sampling when the amortised variational distribution Ψ(z|gγ(xobs, x̂miss))
is equal to the true posterior distribution pθ(z|xobs, x̂miss) for all possible x̂miss. Following the
terminology of Heckerman et al. (2000), we will call this algorithm pseudo-Gibbs sampling. Very
similar schemes have been proposed for more general autoencoder settings (Goodfellow et al., 2016,
Section 20.11). Because of its flexibility, this pseudo-Gibbs approach is routinely used for missing
data imputation using DLVMs (see e.g. Li et al., 2016; Rezende et al., 2016; Du et al., 2018). Rezende
et al. (2014, Proposition F.1) proved that, when these two distributions are close in some sense,
pseudo-Gibbs sampling generates points that approximatively follow the conditional distribution
pθ(xmiss|xobs). Actually, we will see that a simple modification of this scheme allows to generate
exactly according to the conditional distribution.

3.2 Metropolis-within-Gibbs sampling

Algorithm 1 Metropolis-within-Gibbs sampler for missing
data imputation using a trained VAE

Inputs: Observed data xobs, trained VAE (fθ, gγ), number
of iterations T
Outputs: Markov chain of imputations x̂miss

1 , ..., x̂miss
T .

Initialise (z0, x̂
miss
0 )

for t = 1 to T do
z̃t ∼ Ψ(z|gγ(xobs, x̂miss

t−1))

ρ̃t =
Φ(xobs,x̂miss

t−1|fθ(z̃t))p(z̃t)

Φ(xobs,x̂miss
t−1|fθ(zt−1))p(zt−1)

Ψ(zt−1|gγ(xobs,x̂miss
t−1))

Ψ(z̃t|gγ(xobs,x̂miss
t−1))

ρt = min{ρ̃t, 1}

zt =

{
z̃t with probability ρt
zt−1 with probability 1− ρt

x̂miss
t ∼ pθ(xmiss|xobs, zt)

end for

At each step of the chain, rather
than generating codes according to
the approximate posterior distribu-
tion, we may use this approximation
as a proposal within a Metropolis-
Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970), using
the fact that we have access to the
unnormalised posterior density of
the latent codes.

Specifically, at each step, we will
generate a new code z̃t as a pro-
posal using the approximate poste-
rior Ψ(z|gγ(xobs, x̂miss

t−1)). This pro-
posal is kept as a valid code with ac-
ceptance probability ρt, defined in
Algorithm 1. This probability corre-
sponds to a ratio of importance ratios, and is equal to one when the posterior approximation is perfect.
This code-generating scheme exactly corresponds to performing a single iteration of an independent
Metropolis-Hastings algorithm. With the obtained code zt, we can now generate a new imputation
using the exact conditional Φ(xmiss|xobs, fθ(zt)). The obtained algorithm, detailed in Algorithm 1,
is a particular instance of a Metropolis-within-Gibbs algorithm. Actually, it exactly corresponds to
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the algorithm described by Gelman (1993, Section 4.4), and is ensured to asymptotically produce
samples from the true conditional distribution pθ(xmiss|xobs), even if the variational approximation is
imperfect. Note that when the variational approximation is perfect, all proposals are accepted and the
algorithm exactly reduces to Gibbs sampling.

The theoretical superiority of the Metropolis-within-Gibbs scheme compared to the pseudo-Gibbs
sampler comes with almost no additional computational cost. Indeed, all the quantities that need
to be computed in order to compute the acceptance probability need also to be computed within
the pseudo-Gibbs scheme—except for prior evaluations, which are assumed to be computationally
negligible. However, a poor initialisation of the missing values might lead to a lot of rejections at the
beginning of the chain, and to slow convergence. A good initialisation heuristic is to perform a few
pseudo-Gibbs iterations at first in order to begin with a sensible imputation. Note also that, similarly
to the pseudo-Gibbs sampler, our Metropolis-within-Gibbs scheme can be extended to many other
variational approximations—like normalising flows (Rezende and Mohamed, 2015; Kingma et al.,
2016)—in a straightforward manner.

4 Empirical results

In this section, we investigate the empirical realisations of our theoretical findings on DLVMs. For
architecture and implementation details, see Appendix E (in the supplementary material).

4.1 Witnessing likelihood blow-up
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Figure 2: Likelihood blow-up for the Frey Faces data. The
unconstrained ELBO appears to diverge, while finding increas-
ingly poor models.

To investigate if the unboundedness
of the likelihood of a DLVM with
a Gaussian observation model has
actual concrete consequences for
variational inference, we train two
DLVMs on the Frey faces data set:
one with no constraints, and one
with the constraint of Proposition
2 (with ξ = 2−4). The results are
presented in Fig. 2. One can notice
that the unconstrained DLVM finds
models with very high likelihood
but very poor generalisation perfor-
mance. This confirms that the un-
boundedness of the likelihood is not
a merely theoretical concern. We
also display the two upper bounds of
the likelihood. The nonparametric
bound offers a slight but significant
improvement over the naive upper
bound. On this example, using the
nonparametric upper bound as an early stopping criterion for the unconstrained ELBO appears to
provide a good regularisation scheme—that perform better than the covariance constraints on this
data set. This illustrates the potential practical usefulness of the connection that we drew between
DLVMs and nonparametric mixtures.

4.2 Comparing the pseudo-Gibbs and Metropolis-within-Gibbs samplers

We compare the two samplers for single imputation of the test sets of three data sets: Caltech 101
Silhouettes and statically binarised versions of MNIST and OMNIGLOT. We consider two missing
data scenarios: a first one with pixels missing uniformly at random (the fractions of missing data
considered are 40%, 50%, 60%, 70%, and 80%) and one where the top or bottom half of the pixels
was removed. Both samplers use the same trained VAE and perform the same number of iterations.
The imputations are made by computing the means of the chains, which estimate the conditional
expected value of the missing data. Since the imputation of these high-dimensional binary data sets
can be interpreted as imbalanced binary classification problems, we use the F1 score (the harmonic
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Figure 3: Single imputation results (F1 score between the true and imputed values) for the two Markov
chains. Additional results for the bottom missing and the 50% and 70% MAR cases are provided as
supplementary material. The more the conditional distribution is challenging (high-dimensional in
the MAR cases and highly multimodal in the top/bottom cases), the more the performance gain of
our Metropolis-within-Gibbs scheme is important.

mean of precision and recall) as a performance metric. For both schemes, we use 50 iterations
of Pseudo-Gibbs as burn-in. In practice, convergence and mixing of the chains can be monitored
using a validation set of complete data. The results are displayed on Fig. 3 and in Appendix F
(see supplementary material). The chains converge much faster for the missing at random (MAR)
situation than for the top/bottom missing scenario. This is probably due to the fact that the conditional
distribution of the missing half of an image is highly multimodal. The Metropolis-within-Gibbs
sampler consistently outperforms the pseudo-Gibbs scheme, especially for the most challenging
scenarios where the top/bottom of the image is missing. One can see that the pseudo-Gibbs sampler
appears to converge quickly to a stationary distribution that gives suboptimal results. Because of the
rejections, the Metropolis-within-Gibbs algorithm converges slower, but to a much more accurate
conditional distribution.

5 Conclusion

Although extremely difficult to compute in practice, the exact likelihood of DLVMs offers several
important insights on deep generative modelling. An important research direction for future work is
the design of principled regularisation schemes for maximum likelihood estimation.

The objective evaluation of deep generative models remains an open question. Missing data imputation
is often used as a performance metric for DLVMs (e.g. Li et al., 2016; Du et al., 2018). Since both
algorithms have essentially the same computational cost, this motivates to replace pseudo-Gibbs
sampling by Metropolis-within-Gibbs when evaluating these models. Upon convergence, the samples
generated by Metropolis-within-Gibbs do not depend on the inference network, and explicitly depend
on the prior, which allows us to evaluate mainly the generative performance of the models.

We interpreted DLVMs as parsimonious submodels of nonparametric mixture models. While we
used this connection to provide upper bounds of the likelihood, many other applications could be
derived. In particular, the important body of work regarding consistency of maximum likelihood
estimates for nonparametric mixtures (e.g. Kiefer and Wolfowitz, 1956; van de Geer, 2003; Chen,
2017) could be leveraged to study the asymptotics of DLVMs.

9



References
S. Arora, A. Risteski, and Y. Zhang. Do GANs learn the distribution? Some theory and empirics. In

International Conference on Learning Representations, 2018.

D. J. Bartholomew, M. Knott, and I. Moustaki. Latent variable models and factor analysis: A unified
approach, volume 904. John Wiley & Sons, 2011.

C. Biernacki and G. Castellan. A data-driven bound on variances for avoiding degeneracy in univariate
Gaussian mixtures. Pub. IRMA Lille, 71, 2011.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112(518):859–877, 2017.

S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio. Generating sentences
from a continuous space. Proceedings of CoNLL, 2016.

Y. Burda, R. Grosse, and R. Salakhutdinov. Importance weighted autoencoders. International
Conference on Learning Representations, 2016.

J. Chen. Consistency of the MLE under mixture models. Statistical Science, 32(1):47–63, 2017.

C. Cremer, Q. Morris, and D. Duvenaud. Reinterpreting importance-weighted autoencoders. Interna-
tional Conference on Learning Representations (Workshop track), 2017.

C. Cremer, X. Li, and D. Duvenaud. Inference suboptimality in variational autoencoders. In
Proceedings of the 35th International Conference on Machine Learning, 2018.

B. Dai, Y. Wang, J. Aston, G. Hua, and D. Wipf. Connections with robust PCA and the role of
emergent sparsity in variational autoencoder models. The Journal of Machine Learning Research,
19(1):1573–1614, 2018.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society: Series B (Statistical Methodology), pages
1–38, 1977.

A. B. Dieng, D. Tran, R. Ranganath, J. Paisley, and D. Blei. Variational inference via chi upper bound
minimization. In Advances in Neural Information Processing Systems, pages 2732–2741, 2017.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. International
Conference on Learning Representations, 2017.

C. Du, J. Zhu, and B. Zhang. Learning deep generative models with doubly stochastic gradient
MCMC. IEEE Transactions on Neural Networks and Learning Systems, PP(99):1–13, 2018.

A. Gelman. Iterative and non-iterative simulation algorithms. Computing science and statistics,
pages 433–433, 1993.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence, (6):721–741, 1984.

R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-Lengeling,
D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, and A. Aspuru-Guzik. Automatic
chemical design using a data-driven continuous representation of molecules. ACS Central Science,
2018.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems,
pages 2672–2680, 2014.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

C. H. Grønbech, M. F. Vording, P. N. Timshel, C. K. Sønderby, T. H. Pers, and O. Winther. scVAE:
Variational auto-encoders for single-cell gene expression data. bioRxiv, 2018. URL https:
//www.biorxiv.org/content/early/2018/05/16/318295.

10

https://www.biorxiv.org/content/early/2018/05/16/318295
https://www.biorxiv.org/content/early/2018/05/16/318295


R. Grosse, Z. Ghahramani, and R. P. Adams. Sandwiching the marginal likelihood using bidirectional
monte carlo. arXiv preprint arXiv:1511.02543, 2015.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

R. J. Hathaway. A constrained formulation of maximum-likelihood estimation for normal mixture
distributions. The Annals of Statistics, 13(2):795–800, 1985.

D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency networks for
inference, collaborative filtering, and data visualization. Journal of Machine Learning Research, 1
(Oct):49–75, 2000.

H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of
educational psychology, 24(6):417, 1933.

I. T. Jolliffe and J. Cadima. Principal component analysis: a review and recent developments. Philo-
sophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 374(2065), 2016.

J. Kiefer and J. Wolfowitz. Consistency of the maximum likelihood estimator in the presence of
infinitely many incidental parameters. The Annals of Mathematical Statistics, pages 887–906,
1956.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In Proceedings of the International
Conference on Learning Representations, 2014.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. Improved varia-
tional inference with inverse autoregressive flow. In Advances in Neural Information Processing
Systems, pages 4743–4751, 2016.

M. J. Kusner, B. Paige, and J. M. Hernández-Lobato. Grammar variational autoencoder. In Proceed-
ings of the 34th International Conference on Machine Learning, pages 1945–1954, 2017.

L. Le Cam. Maximum likelihood: an introduction. International Statistical Review/Revue Interna-
tionale de Statistique, pages 153–171, 1990.

M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function. Neural Networks, 6(6):861–867,
1993.

C. Li, J. Zhu, and B. Zhang. Learning to generate with memory. In Proceedings of The 33rd
International Conference on Machine Learning, pages 1177–1186, 2016.

B. Lindsay. The geometry of mixture likelihoods: a general theory. The Annals of Statistics, 11(1):
86–94, 1983.

B. Lindsay. Mixture Models: Theory, Geometry and Applications, volume 5 of Regional Conference
Series in Probability and Statistics. Institute of Mathematical Statistics and American Statistical
Association, 1995.

T. Lucas, C. Tallec, J. Verbeek, and Y. Ollivier. Mixed batches and symmetric discriminators for
GAN training. In International Conference on Machine Learning, 2018.

L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther. Auxiliary deep generative models. In
International Conference on Machine Learning, pages 1445–1453, 2016.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state
calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092,
1953.

Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin. Variational autoencoder for deep
learning of images, labels and captions. In Advances in Neural Information Processing Systems,
pages 2352–2360, 2016.

11



R. Ranganath, D. Tran, and D. Blei. Hierarchical variational models. In Proceedings of the 33rd
International Conference on Machine Learning, pages 324–333, 2016.

D. Rezende and S. Mohamed. Variational inference with normalizing flows. In Proceedings of the
32nd International Conference on Machine Learning, pages 1530–1538, 2015.

D. Rezende and F. Viola. Taming VAEs. arXiv preprint arXiv:1810.00597, 2018.

D. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in
deep generative models. In Proceedings of the 31st International Conference on Machine Learning,
pages 1278–1286, 2014.

D. Rezende, S. M. A. Eslami, S. Mohamed, P. Battaglia, M. Jaderberg, and N. Heess. Unsupervised
learning of 3D structure from images. In Advances in Neural Information Processing Systems,
pages 4996–5004, 2016.

E. Richardson and Y. Weiss. On GANs and GMMs. In Advances in Neural Information Processing
Systems, 2018.

G. Roeder, Y. Wu, and D. Duvenaud. Sticking the landing: Simple, lower-variance gradient estimators
for variational inference. In Advances in Neural Information Processing Systems, pages 6928–6937,
2017.

T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma. Pixelcnn++: Improving the pixelcnn with
discretized logistic mixture likelihood and other modifications. Proceedings of the International
Conference on Learning Representations, 2017.

N. Siddharth, B. Paige, J.-W. van de Meent, A. Desmaison, N. Goodman, P. Kohli, F. Wood, and
P. Torr. Learning disentangled representations with semi-supervised deep generative models. In
Advances in Neural Information Processing Systems, pages 5927–5937, 2017.

C. K. Sønderby, T. Raiko, L. Maaløe, S. Kaae Sønderby, and O. Winther. Ladder variational
autoencoders. In Advances in Neural Information Processing Systems, pages 3738–3746, 2016.

H. Takahashi, T. Iwata, Y. Yamanaka, M. Yamada, and S. Yagi. Student-t variational autoencoder for
robust density estimation. In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, pages 2696–2702. International Joint Conferences on Artificial Intelligence
Organization, 2018.

A. N. Tikhonov and V. Y. Arsenin. Solutions of ill-posed problems. New York: Winston, 1977.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 61(3):611–622, 1999.

J. Tomczak and M. Welling. VAE with a VampPrior. In International Conference on Artificial
Intelligence and Statistics, pages 1214–1223, 2018.

S. van de Geer. Asymptotic theory for maximum likelihood in nonparametric mixture models.
Computational Statistics & Data Analysis, 41(3-4):453–464, 2003.

A. W. van der Vaart and J. A. Wellner. Existence and consistency of maximum likelihood in upgraded
mixture models. Journal of Multivariate Analysis, 43(1):133–146, 1992.

Y. Wang. On fast computation of the non-parametric maximum likelihood estimate of a mixing
distribution. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2):
185–198, 2007.

S. Zhao, J. Song, and S. Ermon. Learning hierarchical features from deep generative models. In
Proceedings of the 34th International Conference on Machine Learning, pages 4091–4099, 2017.

12


