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Abstract

We consider the problem of online convex optimization in two different settings:
arbitrary and i.i.d. sequence of convex loss functions. In both settings, we provide
efficient algorithms whose cumulative excess risks are controlled with fast-rate
sparse bounds. First, the excess risks bounds depend on the sparsity of the objective
rather than on the dimension of the parameters space. Second, their rates are
faster than the slow-rate 1/

p
T under additional convexity assumptions on the

loss functions. In the adversarial setting, we develop an algorithm BOA+ whose
cumulative excess risks is controlled by several bounds with different trade-offs
between sparsity and rate for strongly convex loss functions. In the i.i.d. setting
under the Łojasiewicz’s assumption, we establish new risk bounds that are sparse
with a rate adaptive to the convexity of the risk (ranging from a rate 1/

p
T for general

convex risk to 1/T for strongly convex risk). These results generalize previous
works on sparse online learning under weak assumptions on the risk.

1 Introduction

We consider the following setting of online convex optimization where a sequence of random convex
loss functions (`t : Rd ! R)t>1 is sequentially observed. At each iteration t > 1, a learner
chooses a point b✓t�1 2 Rd based on past observations Ft�1 = �

�
{`1, . . . , `t�1}

�
. The learner

aims at minimizing the average excess risk defined as bLT := (1/T )
PT

t=1 Et�1

⇥
`t(b✓t�1)

⇤
where

Et�1 = E[ · |Ft�1]. For any parameter ✓ in some reference set ⇥ ⇢ Rd, the average excess risk can
be decomposed as the sum of the approximation-estimation errors:

bLT =
1

T

TX

t=1

Et�1

⇥
`t(✓)

⇤

| {z }
approximation error

+
1

T

TX

t=1

Et�1

⇥
`t(b✓t�1)

⇤
� 1

T

TX

t=1

Et�1

⇥
`t(✓)

⇤

| {z }
estimation error := RT (✓)

. (1)

Though the final goal is to minimize bLT , a common proxy is to upper-bound the estimation term
RT (✓) (also refereed to as average excess risk1) simultaneously for all ✓ 2 ⇥. If the loss functions
are exp-concave and ⇥ is bounded, several sequential algorithms achieve the uniform bound2 on
the estimation term RT := sup✓2⇥ RT (✓) 6 Õ(d/T ); see [13]. In this paper, we are interested
with non-uniform bounds on RT (✓) increasing with the complexity of ✓. Such non-uniform bounds
are called oracle inequalities and state that the learner achieves the best approximation-estimation

1The average excess risk RT (✓) generalizes the average regret more commonly used in the online learning
literature by considering the Dirac masses on {`t} as conditional distributions so that `t = Et�1[`t], t � 1.

2Throughout the paper . denotes an approximate inequality which holds up to universal constants and Õ

denotes an asymptotic inequality up to logarithmic terms.
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trade-off of (1). Using the `0-norm to measure the complexity of ✓, we are looking for fast-rate sparse
bounds of the form

RT (✓) 6 Õ
 ✓

k✓k0
T

◆ 1
2��

!
, for any ✓ 2 ⇥.

The parameter � 2 [0, 1] depends on the convexity properties of the loss functions and will be specified
later. We call fast-rate bound any bound which provides a better rate than 1/

p
T and sparse bounds any

bound where some dependence on d has been replaced with k✓k0. Our analysis starts from a careful
study of the finite case ⇥ = {✓1, . . . , ✓K}. We consider then online averaging algorithms on adaptive
finite discretization grids that achieve sparse oracle bounds on ⇥ = B1 = {✓ 2 Rd : k✓k1 6 1}.

First contribution: fast-rate high probability quantile bound (finite ⇥, adversarial data) The
case of finite reference set ⇥ = {✓1, . . . , ✓K} corresponds to the setting of prediction with expert ad-
vice (see Section 2.2 or [5]) where a learner makes sequential predictions over a series of rounds with
the help of K experts. Hedge introduced by [19] and [26] achieves the rate RT 6 O(

p
(lnK)/T ).

The latter is optimal for general convex loss functions but better performance can be obtained in
favorable scenarios. The rate RT 6 O((lnK)/T ) is for instance obtained for strongly convex loss
functions in [28]. Another improvement (see [16] and references therein) is devoted to quantile
bounds, i.e. bounds on Ek⇠⇡[RT (✓k)] for any probability distribution ⇡ 2 �K

3. The latter improve
the dependence on the number of experts from lnK to the Kullback divergence K(⇡, b⇡0) for any
prior b⇡0. They are smaller whenever many experts perform well or when a good prior knowledge
is available. Squint [16] achieves a fast-rate quantile bound for adversarial data. Such a bound is
obtained in high-probability by [20] but it suffers an additional gap term.
In Section 2, we extend the analysis of [16] to remove the gap term of [20]. We introduce a weak
version of exp-concavity; see Assumption (A2). It depends on a parameter � 2 [0, 1] which goes
from � = 0 for general convex loss functions to � = 1 for exp-concavity. We show in Theo-
rem 2.1 that BOA [28] and Squint [16] achieve a fast rate quantile bound with high probability: i.e.
E⇡[RT (✓k)] 6 Õ

�
(K(⇡, b⇡0)/T )1/(2��)

�
.

Second contribution: efficient sparse oracle bound (⇥ = B1, adversarial data) The extension
from finite reference sets to convex sets is natural. The seminal paper [15] introduced the Exponen-
tiated Gradient algorithm (EG), a version of Hedge using the sub-gradients of the loss functions.
The latter guarantees RT 6 O(

p
(ln d)/T ) for ⇥ = B1 which is optimal for convex loss functions.

Recently, fast rate RT 6 Õ
�
(d/T )1/(2��)

�
are obtained by [17] under a slightly different assumption

than (A2). Here our purpose is to improve the dependence on d under the sparsity condition k✓k0
small. The literature on learning under sparsity with i.i.d. data is vast; we refer to [12] for a review.
Yet, little work was done on sparsity bounds under adversarial data; see Table 1 for a summary.
The papers [7; 18; 29] focus on providing sparse estimators b✓t rather than sparse guarantees. More
recent works [8; 14] consider sparse approximations of the sub-gradients. Though they also compare
themselves with sparse parameters, they incur a bound larger than O(1/

p
T) which is optimal in their

setting. Fast rate sparse regret bounds involving k✓k0 were, up to our knowledge, only obtained
through non-efficient (exponential time) procedures (see [10]). In Section 3.3, we provide an efficient
algorithm BOA+ which satisfies the oracle inequality

RT (✓) 6 Õ
�
(
p
dk✓k0/T ) ^ (

p
k✓k0/T 3/4)

�
, for any ✓ 2 B1 ,

for strongly-convex loss functions (� = 1). The gain
p

k✓k0/d ^
p
k✓k0/T compared with the

usual rate Õ(d/T ) is significant for sparse parameters ✓.

A crucial step of our analysis is an intermediate result which is interesting in its own. We define an
efficient algorithm with input any finite grid ⇥0 ⇢ B1. We provide in Theorem 3.2 a bound of the
form RT (✓) 6 Õ(D(✓,⇥0)/

p
T ) for a pseudo-metric D and any ✓ 2 B1. We say that this bound is

accelerable as the rate may decrease if D(✓,⇥0) decreases with T . In particular, it yields an oracle
bound of the form RT (✓) 6 O(k✓k1/

p
T ).

3Here and subsequently, �K := {⇡ 2 [0, 1]K ; k⇡k1 = 1} denotes the simplex of dimension K � 1.
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Procedure Rate Polynomial Assumption Sparsity setting

Kale et al. [8; 14] Poly(d)/
p
T Yes Convexity Sparse observed gradients

[7; 18; 29]
q

ln d
T or d

T Yes (Strong) Convexity Produce sparse estimators
SeqSEW [11] d0 ln d

T No Strong Convexity Sparse bound

SABOA
q

ln d
T ^

p
d0d
T ln d Yes Strong Convexity Sparse bound

Table 1: Comparison of sequential optimization procedures in sparse adversarial environment.

Third contribution: sparse regret bound under Łojasiewicz assumption (⇥ = B1, i.i.d. data)

In Section 3.4 we turn to a stochastic setting where the loss functions `1, . . . , `T are i.i.d.. This
setting extends the regression one with random design to general loss functions. The classical Lasso
procedure satisfies, in the regression setting for the quadratic risk (� = 1), RT (✓) 6 Õ(k✓k0/T )
where ✓ is a sparse approximation of ✓⇤ = argmin✓2Rd RT (✓), see [3]. Yet, few procedures
satisfying sparse bounds are sequential; we can cite [1; 8; 9; 14; 23]. We compare in Table 2 their
results and settings.

The first line of work [1; 9; 23] provides sparse rates of order Õ(k✓⇤k0 ln d/T ). Their settings
are close to the one of [3] but their methods differ; the one of [23] uses a `1-penalized gradient
descent whereas the one of [1] and [9] are based on restarting a subroutine centered around the current
estimate on sessions of exponentially growing length. A common limitation of these works is that they
do not provide oracle inequality. They only compete with the global optimum over Rd only, which is
assumed to be (approximately in [1]) sparse with a known `1-bound. In other words, they assume
that the global optimum also realizes the approximation-estimation errors trade-off in (1). In order to
avoid this restriction, our first objective is to obtain the sparse bounds RT (✓⇤(U)) 6 Õ(k✓⇤(U)k0/T )
where ✓⇤(U) 2 argmink✓k16U RT (✓) for any U > 0. For U well chosen so that k✓⇤(U)k1 = U ,
✓⇤(U) is sparse and the approximation-estimation errors trade-off in (1) is achieved. We restrict to the
case U = 1 suppressing the dependence on U in ✓⇤ for the ease of notation. We leave the adaptation
in U > 0 for future research.

The second line of works [14; 8] considers sparse approximation of sub-gradients. Yet, they provide a
sparse regret bound of order O(k✓⇤k20 ln d/T ) where ✓⇤ is the optimum in B1 when the loss functions
are strongly convex. Our second objective is to relax the strong convexity assumption which is too
restrictive in the sequential regression setting. Indeed, the usual restricted eigenvalues conditions
on the Gram matrix cannot hold uniformly for small t’s. We work under Łojasiewicz’s Assumption
introduced by [32; 33]: There exist � > 0 and µ > 0 such that for all ✓ 2 B1, there exists a minimizer
✓⇤ of the risk over B1 satisfying

µ
��✓ � ✓⇤

��2
2
6 E[`t(✓)� `t(✓

⇤)]� .

The Łojasiewicz assumption depends on a parameter � 2 [0, 1] that ranges from general convex risk
function (� = 0) to generalized strongly convex risk function (� = 1). In Theorem 3.4 we show that
our new efficient procedure SABOA achieves a fast rate upper-bound on the average excess risk of
order Õ((k✓⇤k0 ln(d)/T )1/(2��)) when the optimal parameters have `1-norm bounded by 1�� < 1.
Then we recover the optimal rate of [1; 9; 23] in a similar setting, when the global optimum is
assumed to be sparse. When k✓⇤k1 = 1, guaranteeing a good approximation-estimation trade-off
in (1), the bound suffers an additional factor k✓⇤k0. Notice that Łojasiewicz’s Assumption (A3)
allows multiple optima which is important when we are dealing with degenerated co-linear design
(allowing zero eigenvalues in the covariance matrix). It is an open question whether the fast rate
Õ((k✓⇤k20 ln(d)/T )) is optimal for efficient O(dT )-complex procedures such as SABOA under
Łojasiewicz’s Assumption.

Outline of the paper To summarize our contributions, we provide
- the first high-probability quantile bound achieving a fast rate in Theorem 2.1;
- an accelerable bound on RT (✓) that is small whenever ✓ is close to a prior grid ⇥0 (Thm. 3.2);
- two efficient algorithms with sparse regret bounds in the adversarial setting with strongly convex

loss functions (BOA+, Thm. 3.3) and in the i.i.d. setting (SABOA, Thm. 3.4). In the latter setting,
the results are obtained under the Łojasiewicz’s assumption. This generalizes the usual necessary
conditions for obtaining sparse bounds that are too restrictive in our sequential setting.
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Procedure Setting Rate Assumptions / Setting Optimum over

Lasso [3] B d0 ln d/T Mutual Coherence Rd

Kale et al. [8; 14] S d20 ln d/T Strong Convexity + Sparse Gradients B1

[1; 9; 23]+SABOA S d0 ln d/T Strong convexity or Łojasiewicz (� = 1) Rd

SABOA S d20 ln d/T Łojasiewicz (� = 1) B1

Table 2: Comparison of sequential (S) and batched (B) optimization procedures in i.i.d. environment.

2 Finite reference set

In this section, we focus on finite reference set ⇥ := {✓1, . . . , ✓K} ⇢ B1, including the setting of
prediction with expert advice presented in Section 2.2. We consider the following assumptions on the
loss functions:

(A1) Convex Lipschitz
4: the loss functions `t are convex on B1 and there exists G > 0 such that��r`t(✓)

��
1 6 G for all t � 1, ✓ 2 B1.

(A2) Weak exp-concavity: There exist ↵ > 0 and � 2 [0, 1] such that for all t > 1, ✓1, ✓2 2 B1,
almost surely

Et�1

⇥
`t(✓1)�`t(✓2)

⇤
6 Et�1

⇥
r`t(✓1)

>(✓1�✓2)
⇤
�Et�1

h⇣
↵
�
r`t(✓1)

>(✓1 � ✓2)
�2⌘1/�i

.

For convex loss functions (`t), Assumption (A2) is satisfied with � = 0 and ↵ < G�2. Fast rates are
obtained for � > 0. It is worth pointing out that Assumption (A2) is weak even in the strongest case
� = 1. It is implied by several common assumptions such as:

– Strong convexity of the risk: under the boundedness of the gradients, assumption (A2) with
↵ = µ/(2G2) is implied by the µ-strong convexity of the risks (Et�1[`t]), t � 1.

– Exp-concavity of the loss: Lemma 4.2, Hazan [13] states that (A2) with ↵ 6 1
4 min{ 1

8G ,} is
implied by -exp-concavity of the loss functions `t, t � 1. Our assumption is slightly weaker
since it holds in conditional expectation.

2.1 Fast-rate quantile bound with high probability

For prediction with K > 1 expert advice, [28] showed that a fast rate O
�
(lnK)/T

�
can be obtained

by the BOA algorithm under the LIST condition (i.e., Lipschitz and strongly convex loss functions).
In this section, we show that Assumption (A2) is enough and we improve the dependence on the total
number of experts with a quantile bound.

Our algorithm is described in Algorithm 1 and corresponds to a particular case of two algorithms: the
Squint algorithm of [16] used with a discrete prior over a finite set of learning rates and the BOA
algorithm of [28] where each expert is replicated multiple times with different constant learning rates.
The proof (with the exact constants) is deferred to Appendix C.1.
Theorem 2.1. Let T > 1. Assume (A1) and (A2). Apply Algorithm 1, parameter E = 4G/3 and

initial weight vector b⇡0 2 �K . Then, for all ⇡ 2 �K , with probability at least 1� 2e�x
, x > 0,

Ek⇠⇡ [RT (✓k)] .
✓
K(⇡, b⇡0) + ln ln(GT ) + x

↵T

◆ 1
2��

,

where K(⇡, b⇡0) :=
PK

k=1 ⇡k ln(⇡k/b⇡k,0) is the Kullback-Leibler divergence.

A fast rate of this type (without quantiles property) can be obtained in expectation by using Hedge
for exp-concave loss functions. However, Theorem 2.1 is stronger. First, Assumption (A2) is weaker
than the exp-concavity of the loss functions `t as it holds for absolute or quantile loss functions in a
sufficiently regular regression setting. Second, the algorithm uses the so-called gradient trick; See
[24]. Therefore, simultaneously with the fast rate O(T�1/(2��)) with respect to the experts (✓k),

4Throughout the paper, we assume that the Lipschitz constant G in (A1) is known. It can be calibrated online
with standard tricks such as the doubling trick (see [6] for instance) under sub-Gaussian conditions.
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Algorithm 1 Squint – BOA with multiple constant learning rates assigned to each parameter
Parameters: ⇥0 = {✓1, . . . , ✓K} ⇢ B1, E > 0 and b⇡0 2 �K .
Initialization: For 1 6 i 6 ln(ET 2), define ⌘i := (eiE)�1.
For each iteration t = 1, . . . , T do:

– Choose b✓t�1 =
PK

k=1 b⇡k,t�1✓k and observe r`t(b✓t�1),
– Update component-wise for all 1 6 k 6 K

b⇡k,t =

Pln(ET 2)
i=1 ⌘ie

⌘i
Pt

s=1(rk,s�⌘ir
2
k,s)b⇡k,0

Pln(ET 2)
i0=1 Ej⇠b⇡0

⇥
⌘i0e

⌘i0
Pt

s=1(rj,s�⌘i0r
2
j,s)

⇤ , rk,s = r`t(b✓s�1)
>(b✓s�1 � ✓k) .

the algorithm achieves the slow rate O(1/
p
T ) with respect to any convex combination Ek⇠⇡[✓k]

(similarly to EG). Finally, high-probability regret bounds as ours are not satisfied by Hedge (see [2]).
If the algorithm is run with a uniform prior b⇡0 = (1/K, . . . , 1/K), Theorem 2.1 implies that for any
subset ⇥0 ✓ ⇥

max✓2⇥0 RT (✓) .
⇣

ln(K/Card(⇥0))+ln ln(GT )
↵T

⌘ 1
2��

with high probability.

Thanks to the quantile bounds, we pay the proportion of good experts ln(K/Card(⇥0)) in the regret
instead of the total number of experts ln(K). We refer to [16] for more interesting applications. Such
quantile bounds on the risk were studied by Mehta [20, Section 7] in a batch i.i.d. setting (i.e., `t are
i.i.d.). A standard online to batch conversion shows that Theorem 2.1 yields with high probability

ET

h
`T+1(✓̄T )� Ek⇠⇡

⇥
`T+1(✓k)

⇤i
.
⇣

K(⇡,b⇡0)+ln ln(GT )+x
↵T

⌘ 1
2��

, ✓̄T =
1

T

PT
t=1

b✓t�1 .

This improves the bound obtained by [20] who suffers the additional gap
(e� 1) ET

⇥
Ek⇠⇡[`T+1(✓k)]�min⇡⇤2�K `T+1(Ej⇠⇡⇤ [✓j ])

⇤
.

2.2 Prediction with expert advice

The framework of prediction with expert advice is widely considered in the literature (see [5] for
an overview). We recall now this setting and how it can be included in our framework. At the
beginning of each round t, a finite set of K > 1 experts predict f t = (f1,t, . . . , fK,t) 2 [0, 1]K

from the history Ft�1. The learner then chooses a weight vector b✓t�1 in the simplex �K and
produces a prediction bft := b✓>t�1f t 2 R as a convex combination of the experts. Its perfor-
mance at time t is evaluated by a loss function gt : R ! R. The goal of the learner is to
approach the performance of the best expert on a long run. This can be done by minimizing
the average excess risk Rk,T := 1

T

PT
t=1 Et�1[gt( bft)]� Et�1[gt(fk,t)] , with respect to all experts

k 2 {1, . . . ,K}. This setting reduces to our framework with dimension d = K. Indeed, it
suffices to choose the K-dimensional loss function `t : ✓ 7! gt(✓>f t) and the canonical basis
⇥ := {✓ 2 RK

+ : k✓k1 = 1, k✓k0 = 1} in RK as the reference set. Denoting by ✓k the k-th ele-
ment of the canonical basis, we see that ✓>k f t = fk,t, so that `t(✓k) = gt(fk,t). Therefore, Rk,T

matches our definition of RT (✓k) in Equation (1) and we get under the assumptions of Theorem 2.1
a bound of order:

Ek⇠⇡

⇥
Rk,T

⇤
.
⇣

K(⇡,b⇡0)+ln ln(GT )+x
↵T

⌘ 1
2��

.

An important point to note here is that though the parameters ✓k of the reference set are constant,
this method can be used to compare the player with arbitrary strategies fk,t that may evolve over
time and depend on recent data. We do not assume in this section that there is a single fixed expert
k⇤ 2 {1, . . . ,K} which is always the best, i.e., Et�1[gt(fk⇤,t)] 6 mink Et�1[gt(fk,t)]. Hence, we
cannot replace (A2) with the closely related Bernstein assumption (see Ass. (A2’) or [17, Cond. 1]).
Actually one can reformulate Assumption (A2) on the one dimensional loss functions gt as follows:
there exist ↵ > 0 and � 2 [0, 1] such that for all t > 1, for all 0 6 f1, f2 6 1,

Et�1[gt(f1)� gt(f2)] 6 Et�1

⇥
g0t(f1)(f1 � f2)

⇤
� Et�1

⇣
↵
�
g0t(f1)(f1 � f2)

�2⌘1/�
�
, a.s.

It holds with ↵ = /(2G2) for -strongly convex risk Et�1[gt]. For instance, the square loss
gt = ( ·� yt )2 satisfies it with � = 1 and ↵ = 1/8.
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3 Online optimization in the unit `1-ball

The aim of this section is to extend the preceding results to the reference set ⇥ = B1 instead of finite
⇥ = {✓1, . . . , ✓K}. A classical reduction from the expert advice setting to the `1-ball is the so-called
“gradient-trick”. A direct analysis on BOA applied to ⇥0 = {✓ 2 Rd : k✓k0 = 1, k✓k1 = 1} the
2d corners of the `1-ball suffers a slow rate O(1/

p
T) on the average excess risk with respect to any

✓ 2 B1. The goal is to exhibit algorithms that go beyond O(1/
p
T). In Section 3.1 we investigate

non-adaptive discretization grids of the space that yield optimal upper-bounds but suffer exponential
time complexity. In Section 3.2 we introduce a pseudo-metric in order to bound the regret of grids
consisting of the 2d corners and some arbitrary fixed points. From this crucial step, we derive the
adaptive points to add to the 2d corners in the adversarial case (Section 3.3) and in the i.i.d. case
(Section 3.4) in order to obtain two efficient procedures (BOA+ and SABOA respectively) with sparse
guarantees.

3.1 Warmup: fast rate by discretizing the space

As a warmup, we show how to use Theorem 2.1 in order to obtain fast rate on RT (✓) for any ✓ 2 B1.
Basically, if the parameter ✓ could be included into the grid ⇥0, Theorem 2.1 would turn into a bound
on the regret RT (✓) with respect to ✓. However, this is not possible as we do not know ✓ in advance.
A solution consists in approaching B1 with B1("), a fixed finite "-covering in `1-norm of minimal
cardinal so that Card(B1(")) .

�
1/"

�d. We obtain a nearly optimal regret for this procedure.
Proposition 3.1. Let T > 1. Under Assumptions of Theorem 2.1, applying Algorithm 1 with grid

⇥0 = B1(T�2) and uniform prior b⇡0 over �Card(B1(T�2)) satisfies for all ✓ 2 B1

RT (✓) .
⇣d lnT + ln ln(GT ) + x

↵T

⌘ 1
2��

+
G

T 2
, (2)

with probability at least 1� e�x
, x > 0.

Proof. Let " = 1/T2 and ✓ 2 B1 and ✓̃ be its "-approximation in B1("). The proof follows from
Lipschitzness of the loss: RT (✓) 6 RT (✓̃) +G" and by applying Theorem 2.1 on RT (✓̃).

One can improve d to k✓k0 ln d by carefully choosing the prior b⇡0 as in [21]; see Appendix A for
details. The obtained rate is optimal up to log-factors. However, the complexity of the discretization
is prohibitive (of order T d) and non realistic for practical purpose.

3.2 Oracle bound for arbitrary fixed discretization grid

Let ⇥0 ⇢ B1 be a finite set. The aim of this Section is to study the regret of Algorithm 1 with respect
to any ✓ 2 B1. Similarly to Proposition 3.1, the average excess risk may be bounded as

RT (✓) .
⇣

ln Card(⇥0)+ln lnT+x
↵T

⌘ 1
2��

+Gk✓0 � ✓k1 , (3)

for any ✓0 2 ⇥0. We say that a regret bound is accelerable if it provides a fast rate except a term
depending on the distance with the grid (i.e., the term in k✓0 � ✓k1 in (3)) that decreases with T .
This property will be crucial in obtaining fast rates by adapting the grid ⇥0 sequentially. The regret
bound (3) is not accelerable due to the second term that is constant. In order to find an accelerable
regret bound, we introduce the notion of averaging accelerability, a pseudo-metric that replaces the
`1-norm in (3). We give the intuition behind this notion in the sketch of the proof of Theorem 3.2.
Definition 3.1 (Averaging accelerability). For any ✓, ✓0 2 B1, we define

D(✓, ✓0) := min
�
0 6 ⇡ 6 1 : k✓ � (1� ⇡)✓0k1 6 ⇡

 
.

This averaging accelerability has several nice properties. In Appendix B, we provide a few concrete
upper-bounds in terms of classical distances. For instance, Lemma B.1 provides the upper-bound
D(✓, ✓0) 6 k✓ � ✓0k1/(1� k✓0k1 ^ k✓k1). We are now ready to state our regret bound, when Algo-
rithm 1 is applied with an arbitrary approximation grid ⇥0.
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Theorem 3.2. Let ⇥0 ⇢ B1 such that {✓ : k✓k1 = 1, k✓k0 = 1} ✓ ⇥0. Let Assumption (A1) and

(A2) be satisfied. Then, Algorithm 1 applied with uniform prior b⇡0 over the elements of ⇥0 and

E = 8G/3, satisfies with probability 1� e�x
, x > 0,

RT (✓) .
⇣ a

↵T

⌘ 1
2��

+GD(✓,⇥0)

r
a

T
+

aG

T
, ✓ 2 B1 ,

where a = lnCard(⇥0) + ln ln(GT ) + x and D(✓,⇥0) := min✓02⇥0 D(✓, ✓0).

Sketch of proof. The complete proof can be found in Appendix C.2. We give here the high-level
ideas. Let ✓0 2 ⇥0 be a point in the grid ⇥0 minimizing D(✓, ✓0). Then one can decompose
✓ = (1� ")✓0 + "✓00 for a unique point k✓00k1 = 1 and " := D(✓, ✓0). See Appendix C.2 for details.
The regret bound can be decomposed into two terms:

– The first term quantifies the cost of picking the correct ✓0 2 ⇥0, bounded using Theorem 2.1;
– The second one is the cost of learning ✓00 2 B1 rescaled by ". Using a classical slow-rate

bound in B1, it is of order O(1/
p
T ).

The average excess risk RT (✓) is thus of order
(1� ")RT (✓

0)| {z }
Thm 2.1

+ " RT (✓
00)| {z }

G
p

ln(Card⇥0))/T

.
⇣ lnCard(⇥0) + ln ln(GT ) + x

↵T

⌘ 1
2��

+ "G

r
lnCard(⇥0)

T
.

Note that the bound of Theorem 3.2 is accelerable as its second term vanishes to zero on the contrary
to Inequality (3). Theorem 3.2 provides an upper-bound which may improve the rate O(1/

p
T) if

the distance D(✓,⇥0) is small enough. By using the properties of the averaging accelerability (see
Lemma B.1 in Appendix B), Theorem 3.2 provides some interesting properties of the rate in terms of
`1 distance. By including 0 into the grid ⇥0, we get an oracle-bound of order O(k✓k1/

p
T ) for any

✓ 2 B1. Moreover a bound of order RT (✓) 6 O
�
k✓ � ✓kk1/(�

p
T )
�

is obtained for all ✓k 2 ⇥0

and k✓k1 6 1� � < 1.
It is worth pointing out that the bound on the gradient G can be substituted with the average gradient
observed by the learner. The constant G can be improved to the level of the noise in certain situations
with vanishing gradients (see for instance Theorem 3 of [9]).

3.3 Fast-rate sparsity regret bound in the adversarial setting

In this section, we focus on the adversarial case where `t = Et�1[`t] are µ-strongly convex deter-
ministic functions. In this case, Assumption (A2) is satisfied with � = 1 and ↵ = µ/(2G2). Our
algorithm, called BOA+, is defined as follows. For each doubling session i > 0, BOA+ chooses b✓t
from time step ti = 2i to ti+1�1 by restarting Algorithm 1 with uniform prior, parameter E = 4G/3
and updated discretization grid ⇥0 indexed by i:

⇥(i) = {[✓⇤i ]k, k = 0, . . . , d} [ {✓ : k✓k1 = 2, k✓k0 = 1} ,
where ✓⇤i 2 argmin✓2B1

Pti�1
t=1 `t(✓) is the empirical risk minimizer (or the leader) until time

ti � 1. The notation [ · ]k denotes the hard-truncation with k non-zero values. Remark that ✓⇤i for
i = 1, 2, . . . , ln2(T ) can be efficiently computed approximately as the solution of a strongly convex
optimization problem.
Theorem 3.3. Assume the loss functions are µ-strongly convex on B2 := {✓ 2 Rd : k✓k1 6 2} with

gradients bounded by G in `1-norm on B2. The average regret of BOA+ satisfies the oracle bound

RT (✓) 6 Õ

0

@min

8
<

:G

r
ln d

T
,

s
k✓k0
µ

 
G

r
ln d

T

! 3
2

,

p
k✓k0dG2 ln d

µT

9
=

;+
G2 ln d

µT

1

A , ✓ 2 B1 .

The proof is deferred to Appendix C.6. We emphasize that the bound can be rewritten as follows:

RT (✓) 6 Õ
 
min

(
G

r
ln d

T
,
k✓k0G2 ln d

µT

)
min

(
G

r
ln d

T
,
dG2 ln d

µT

)!1/2

, ✓ 2 B1\{0} .

It provides an intermediate rate between known optimal rates without sparsity O(
p
ln d/T ) and

Õ(d/T ) and known optimal rates with sparsity O(
p
ln d/T ) and (for non-efficient procedures only)

Õ(k✓k0/T ). If all ✓⇤i are approximately d0-sparse it is possible to achieve the optimal rate of order
Õ(d0/T ), for any k✓k0 6 d0. We leave for future work whether it is possible to achieve it in general.
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Remark 3.1. The strongly convex assumption on the loss functions can be relaxed (see Inequality (33)
in the proof of Theorem 3.3) by assuming (A2) on B2 and that there exists µ > 0 and � 2 [0, 1] such
that for all t > 1 and ✓ 2 B1

µk✓ � ✓⇤t k22 6
�
1
t

Pt
s=1(`s(✓)� `s(✓⇤t ))

��
, where ✓⇤t 2 argmin✓2B1

Pt
s=1 `s(✓) . (4)

The rates will depend on � as it is the case in Theorem 2.1. A specific interesting case is when
k✓⇤t k1 = 1. Then ✓⇤t is very likely to be sparse. Denote S⇤

t its support. Assumption (4) can be
restricted in this case. Indeed any ✓ 2 B1 satisfies k✓k1 6 k✓⇤t k1, which from Lemma 6 of [1] yields
k✓ � ✓⇤t k1 6 2k[✓ � ✓⇤t ]S⇤

t
k1 where [✓]S = (✓i11i2S)16i6d. One can restrict Assumption (4) to

hold on S⇤
t only. Such restricted conditions for � = 1 are common in the sparse learning literature

and essentially necessary for the existence of efficient and optimal sparse procedures, see [31]. For
obtaining regret bounds on BOA+, the restricted condition (4) with � = 1 should hold at any time
t � 1, which is unlikely in the regression setting.

3.4 Fast-rate sparse excess risk bound in the i.i.d. setting

In this section, we assume the loss functions `t to be i.i.d. We provide an algorithm with fast-rate
sparsity risk-bound on B1 by regularly restarting Algorithm 1 with an updated discretization grid ⇥0

approaching the set of minimizers ⇥⇤ := argmin✓2B1 E[`t(✓)].
In the i.i.d. setting, a close inspection of the proof of Theorem 3.4 shows that we can replace
Assumption (A2) with the Bernstein condition: there exists ↵0 > 0 and � 2 [0, 1], such that for all
✓ 2 B1, all ✓⇤ 2 ⇥⇤ and all t > 1,

↵0E
h�
r`t(✓)

>(✓ � ✓⇤)
�2i 6 E

h
r`t(✓)

>(✓ � ✓⇤)
i�

. (A2’)

This fast-rate type stochastic condition is equivalent to the central condition (see [25, Condition 5.2])
and was already considered to obtain faster rates of convergence for the regret (see [17, Condition 1]).

The Łojasiewicz assumption In order to obtain sparse oracle inequalities we work under Ło-
jasiewicz’s Assumption (A3) which is a relaxed version of strong convexity of the risk.

(A3) Łojasiewicz’s inequality: (`t)t>1 is an i.i.d. sequence and there exist � 2 [0, 1] and
0 < µ 6 1 such that, for all ✓ 2 Rd with k✓k1 6 1 , there exists ✓⇤ 2 ⇥⇤ ✓ B1 satisfying

µ
��✓ � ✓⇤

��2
2
6 E[`t(✓)� `t(✓

⇤)]� .

This assumption is fairly mild. It is indeed satisfied with � = 0 and µ = 1 as soon as the loss function
is convex. For � = 1, this assumption is implied by the strong convexity of the risk E[`t]. Our
framework is more general because

- multiple optima are allowed, which seems to be new when combined with sparsity bounds. An
exception is [21] that provides the optimal sparse rate under a low-rank Gram matrix setting for
the non-efficient ES algorithm;

- on the contrary to [23] or [9], our framework does not compete with the minimizer ✓⇤ over Rd

with a known upper-bound on the `1-norm k✓⇤k1. We consider the minimizer over the `1-ball B1

only. The latter is more likely to be sparse and Assumption (A3) only needs to hold over B1.

Assumption (A2) (or (A2’)) and (A3) are strongly related. Assumption (A3) is more restrictive
because it is design dependent in the regression setting; The constant µ corresponds to the smallest
non-zero eigenvalue of the covariance matrix while ↵ = 1/G2 for the square loss functions. If
⇥⇤ = {✓⇤} is a singleton than Assumption (A3) implies Assumption (A2’) with ↵0 > µ/G2.

Algorithm and excess risk bound Our new procedure called SABOA is described in Algorithm 2.
Again it starts from the accelerable bound provided in Theorem 3.2 which is small if one of the points
in ⇥0 is close to ⇥⇤. As BOA+, SABOA restarts BOA by adding current estimators of ⇥⇤ into an
updated grid ⇥0. The new points added to the grid are slightly different between the two algorithms.
They are truncated versions of the average of past iterates b✓t�1 for SABOA and of the leader for
BOA+. Remark that restart schemes under Łojasiewicz’s Assumption is natural and was already used
by [22]. We get the following upper-bound on the average excess risk. The proof that computes the
exact constants is postponed to Appendix C.7.
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Algorithm 2 SABOA – Sparse Acceleration of BOA
Parameters: E > 0
Initialization: ti = 2i for i > 0,
For each session i = 0, . . . do:

• Define ✓̄(i�1) := 0 if i = 0 and ✓̄(i�1) := 2�i+1
Pti�1

t=ti�1

b✓t�1 otherwise,
• Define ⇥(i) a set of hard-truncated and dilated soft-thresholded versions of ✓̄(i�1) as in (45),
• Denote Ki := Card(⇥(i)) + 2d 6 (i+ 1)(1 + ln d) + 3d ,
• At time step ti, restart Algorithm 1 in �Ki with parameters ⇥0 := ⇥(i) [ {✓ : k✓k1 =
1, k✓k0 = 1} (denote by ✓1, . . . , ✓Ki its elements), E > 0 and uniform prior b⇡0.
In other words, for time steps t = ti, . . . , ti+1 � 1:

– Choose b✓t�1 =
PKi

k=1 b⇡k,t�1✓k and observe r`t(b✓t�1),
– Define component-wise for all 1 6 k 6 Ki, denoting ⌘j := (ejE)�1,

b⇡k,t =

Pln(ET 2)
j=1 ⌘je

⌘j
Pt

s=ti
(rk,s�⌘jr

2
k,s)b⇡k,0

Pln(ET 2)
j=1 Ek0⇠b⇡0

⇥
⌘je

⌘j
Pt

s=ti
(rk0,s�⌘jr2k0,s)

⇤ ,

where rk,s = r`t(b✓s�1)>(b✓s�1 � ✓k).

Theorem 3.4. Under Assumptions (A1), (A2) and (A3), Algorithm 2 with E = 4/3G > 1 satisfies

with probability at least 1� e�x
, x > 0, the average excess risk bound

RT (✓
⇤) .

✓
ln d+ ln ln(GT ) + x

T

✓
1

↵
+

G2

µ

⇣
d20 ^

d0
�2

⌘◆◆ 1
2��

,

where d0 = max✓⇤2⇥⇤ k✓⇤k0 and 0 6 � 6 1 satisfies ⇥⇤ ✓ B1�� .

We conclude with some important remarks about Theorem 3.4. First, we point out that SABOA
adapts automatically to unknown parameters �, �, ↵, µ and d0 to fulfill the rate of Theorem 3.4.

On the radius of L1 ball. We provide the analysis into B1, the `1-ball of radius U = 1 only.
However, one might need to compare with points into B1(U), the `1-ball of radius U > 0, in order to
obtain a good approximation-estimation trade-off. This can be done by rescaling the loss functions
✓ 2 B1 7! `t(U✓) and applying our results with UG, U2µ and ↵ under Assumptions (A1), (A2) and
(A3) on B1(U). The main rate of convergence of Theorem 3.4 is unchanged. The optimal choice of
the radius, if it is not imposed by the application, is left for future research.

Support recovery. When all ✓⇤ 2 ⇥⇤ lie on the border of the `1-ball, they are likely to be sparse.
One can relax Assumption (A3) to hold in sup-norm and in a restricted version similar as done in
the end of Remark 3.1. In this interesting setting, we could not avoid a factor d20. The reason is that
our sequential algorithm recovers the (largest) support of ✓⇤ (see Configuration 3 of Figure 1) in a
framework where the necessary (for the rate k✓⇤k0) Irreprensatibility Condition [27] does not hold.

Conclusion In this paper, we show that BOA is an optimal online algorithm for aggregating experts
under very weak conditions on the loss. Then we aggregate sparse versions of the leader (BOA+)
or of the average of BOA’s iterates (SABOA) in the adversarial or in the i.i.d. setting, respectively.
Aggregating both achieves sparse fast-rates of convergence in any case. These rates are deteriorated
compared with the ideal one Õ

�
(k✓k0/T )1/(2��)

�
that requires restrictive assumption for efficient

algorithm. Our main condition (A3) is weaker and more realistic than the usual ones when seeking
for sequential sparse rate bounds for any t � 1.
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