
A Linear Speedup Analysis of Distributed Deep
Learning with Sparse and Quantized Communication

Peng Jiang
The Ohio State University
jiang.952@osu.edu

Gagan Agrawal
The Ohio State University

agrawal@cse.ohio-state.edu

Abstract

The large communication overhead has imposed a bottleneck on the performance
of distributed Stochastic Gradient Descent (SGD) for training deep neural networks.
Previous works have demonstrated the potential of using gradient sparsification
and quantization to reduce the communication cost. However, there is still a lack
of understanding about how sparse and quantized communication affects the con-
vergence rate of the training algorithm. In this paper, we study the convergence
rate of distributed SGD for non-convex optimization with two communication
reducing strategies: sparse parameter averaging and gradient quantization. We
show that O(1/

p
MK) convergence rate can be achieved if the sparsification and

quantization hyperparameters are configured properly. We also propose a strategy
called periodic quantized averaging (PQASGD) that further reduces the communi-
cation cost while preserving the O(1/

p
MK) convergence rate. Our evaluation

validates our theoretical results and shows that our PQASGD can converge as fast
as full-communication SGD with only 3% � 5% communication data size.

1 Introduction

The explosion of data and an increase in model size has led to great interest in training deep
neural networks on distributed systems. In particular, distributed stochastic gradient descent has
been extensively studied in both deep learning and high-performance computing communities,
with the goal of accelerating large-scale learning tasks [13, 10, 9, 47, 3, 14, 30, 31, 6, 44, 38].
In today’s mainstream deep learning frameworks such as Tensorflow, Torch, MXNet, Caffe, and
CNTK [22, 1, 11, 8, 36], data-parallel distributed SGD is widely adopted to exploit the compute
capacity of multiple machines.

The idea of data-parallel distributed SGD is that each machine holds a copy of the entire model and
computes stochastic gradients with local mini-batches, and the local model parameters or gradients
are frequently synchronized to achieve a global consensus of the learned model. In this context,
a well-known performance bottleneck is the high bandwidth cost for synchronizing the gradients
or model parameters among multiple machines [3, 27, 20, 28, 9, 42, 29]. A popular approach to
overcome such a bottleneck is to perform compression of the gradients [33, 4, 46, 5, 37]. For example,
Aji et al. [4] propose to sparsify the gradients and transmit only the components with absolute values
larger than a threshold. Their sparsification method reduces the gradient exchange and achieve 22%
speedup gain on 4 GPUs for a neural machine translation task. Wen et al. [46] propose to aggressively
quantize the gradients to three numerical levels {-1, 0, 1}. Their quantization method reduces the
communication cost with none or little accuracy lost on image classification.

Though numerous variants of gradient quantization and/or sparsification have been proposed and
successfully applied to different deep learning tasks [42, 45, 37, 48, 18, 7, 16], their impact to the
convergence rate of distributed SGD (especially for non-convex optimization) is still unclear. Most
of the research efforts involve a simple empirical demonstration of convergence. Wen et al. [46]

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

show the convergence of their ternary gradient method with a strong assumption on the gradient
bound, and yet no convergence rate is given. Alistarh et al. [5] analyze the convergence rate of
SGD with quantized gradients – however, their result on non-convex optimization shows that the
“variance blowup” caused by quantization is constant. Overall, there is not a good understanding of
how gradient sparsification and quantization impact the convergence rate of distributed SGD, whether
they are worth applying in general, and how they can be applied properly to achieve the optimal
convergence rate and performance.

To fill these gaps in theory, this paper studies the convergence rate of distributed SGD with sparse
and quantized communication for the following non-convex stochastic optimization problem:

min
x2RN

f(x) := E⇠⇠DF (x; ⇠), (1)

where x 2 RN are the model variables, D is a predefined distribution and ⇠ is a random variable
referring to a data sample, both F (x; ⇠) and f(x) are smooth (but not necessarily convex) functions.
This formulation summarizes many popular machine learning models including deep learning [25].

Contributions We first analyze the convergence rate of distributed SGD with two communication
reducing techniques: sparse parameter averaging and gradient quantization. For sparse parameter
averaging, we prove that distributed SGD can maintain its asymptotic O(1/

p
MK) convergence rate

as long as we can make sure all of the parameter components are exchanged in a limited number
of consecutive iterations. Here, M is the total mini-batch size on n nodes, and K is the number of
iterations. As a corollary, we prove that distributed SGD that averages the model parameters only
once every p iterations can converge at rate O(1/

p
MK).

For gradient quantization, we prove that if using unbiased stochastic quantization function, distributed
SGD will converge at rate O((1 + q)/

p
MK) or O((1 + qm)/

p
MK), depending on if the training

data are shared or partitioned among nodes. Here, m is the mini-batch size on a single node, and q
is a bound of the expected quantization error we define later. This result suggests that choosing a
quantization function that ensures q = ⇥(1) and q = ⇥(1/m) can achieve O(1/

p
MK) convergence

rate for distributed SGD in the two scenarios.

The O(1/
p
MK) convergence rate is usually desired in distributed training as it implies linear

speedup across multiple machines w.r.t computation complexity [14, 32]. Our analysis results
indicate that distributed SGD with sparse and quantized communication can converge as fast as
full-precision SGD if configured properly. Intuitively, the O(1/

p
MK) convergence rate can be

preserved because the additional deviation of the gradient introduced by sparsification or quantization
can be relatively small compared with the deviation caused by the stochastic method itself.

According to the analysis results, to ensure the optimal convergence rate, sparsification or quantization
alone achieves limited compression ratio. To further reduce the communication cost without impairing
the convergence rate, we propose to communicate quantized changes of model parameters once every
p iterations. We prove that our algorithm converges at rate O((1 + q)/

p
MK) if the training data

are shared among all nodes, and converges at rate O((1 + mpq)/
p
MK) if the training data are

partitioned. By properly setting p and q, we achieve O(1/
p
MK) convergence rate for our algorithm.

2 Related Work
Many gradient sparsification and quantization techniques have been proposed to reduce the communi-
cation overhead in distributed training.

Gradient Sparsification Strom [42] proposed to only send gradient components larger than a
predefined threshold – however, the threshold is hard to determine in practice. Aji et al. [4] presented a
heuristic approach to truncate the smallest gradient components and only communicate the remaining
large ones. They saved 99% of gradient exchange with 0.3% loss of BLEU score on a machine
translation task. Lin et al. [33] showed that techniques such as momentum correction and local
gradient clipping can help the convergence of distributed SGD with sparse gradient exchange. They
achieved a gradient compression ratio from 270x to 600x for a wide range CNNs and RNNs without
losing accuracy. Despite the good performance in practice, the gradient sparsification methods in
previous works are largely heuristic and no convergence guarantee has been established.

2

Gradient Quantization Seide et al. [37] proposed to use only 1-bit to represent the gradient. They
achieve 10x speedup for a speech application. Alistarh et al. [5] proposed a quantization method
named QSGD and gave its convergence rate for both convex and non-convex optimization; however,
their convergence bound for the non-convex case has a constant term that does not converge over
iterations. Wen et al. [46] proposed to aggressively quantize the gradients to three levels {-1,0,1}.
They proved that their algorithm converges almost surely under a strong assumption on the gradient
bound; however, no convergence rate is given. Moreover, none of the previous works have considered
the impact of partitioned training data to the convergence rate of distributed SGD with gradient
quantization.

There are also efforts that quantize the entire model including the gradients. For example, Buck-
wild! [12] showed the convergence guarantee of low-precision SGD with assumptions on convexity
and gradient sparsity. Li et al. [26] studied different training methods for quantized neural network.
They prove that convergence is guaranteed for training quantized neural network with convexity
assumption. They also explained the inherent difficulty in training quantized neural network for
non-convex cases. In this work, we focus on full precision neural network with quantized gradients,
and we show that convergence rate is guaranteed on non-convex optimization if a good quantization
function is used.

3 Analysis of Sparse Parameter Averaging and Gradient Quantization

In this section, we analyze the convergence rates of distributed SGD with two communication
reducing techniques: sparse parameter averaging and gradient quantization.

3.1 Notation and Assumptions

We focus on synchronous data-parallel distributed SGD. The original objective defined in (1) can be
rewritten as:

min
x2RN

f(x) :=
1

n

nX

i=1

E⇠⇠DiFi(x; ⇠)
| {z }

=:fi(x)

, (2)

where Di is a predefined distribution on the ith node. If the training data are shared among all nodes,
then Di

0s are the same as D. If data are partitioned and placed on different nodes and each node
defines a distribution for sampling local data, then Di

0s are different.

Notation

• k·k2 denotes the `2 norm of a vector or the spectral norm of a matrix.
• kvk1 :=

P
i |vi| denotes the `1 norm of a vector.

• kvk1 := maxi |vi| denotes the maximum norm of a vector.
• k·kF denotes the Frobenius norm of a matrix.
• rf(·) denotes the gradient of a function f .
• 1n denotes the column vector in Rn with 1 for all elements.
• ei denotes the column vector in Rn with 1 for the ith element and 0 for others.
• f⇤ denotes the optimal solution of (2).

Assumptions

• All rfi(·)0s are Lipschitz continuous with respect to the `2 norm, that is,��rfi(x) � rfi(y)
��
2

 Lkx � yk2 8x, 8y, 8i. (3)

• The stochastic gradient rFi(x; ⇠) is unbiased, that is,
E⇠⇠DirFi(x; ⇠) = rfi(x) 8x. (4)

• The variance of stochastic gradient is bounded, that is,

E⇠⇠Di

��rFi(x; ⇠) � rfi(x)
��2
2

 �2
8x, 8i. (5)

3

Algorithm 1 The procedure on the ith node of distributed SGD with sparse gradients
Require: initial point x0,i, number of iterations K, and learning rate �

1: for j = 0, 1, 2, . . . ,K � 1 do
2: Randomly select m training samples indexed by ⇠j,i = [⇠j,i,0, ⇠j,i,1, . . . , ⇠j,i,m�1]
3: Compute a local stochastic gradient based on ⇠j,i: rFi(xj,i; ⇠j,i)
4: Update the model parameters locally: xj+ 1

2 ,i
= xj,i � �rFi(xj,i; ⇠j,i)

5: Select a subset of parameter components indexed by vj and let Pj = vjvTj
6: Average the selected parameter components: xj+1,i = 1

n

Pn
k=1 Pjxj+ 1

2 ,k
+(I �Pj)xj+ 1

2 ,i

7: end for

• The variance of gradient among nodes is bounded, that is,
Ei⇠U(1,n)

��rfi(x) � rf(x)
��2
2

 &2 8x, (6)
where U(1, n) is a discrete uniform distribution of integers from 1 to n. If all nodes share
the same training data, & = 0.

These assumptions are commonly used in previous works for analyzing convergence rate of distributed
SGD [46, 31, 5, 17].

3.2 Sparse Parameter Averaging

Sparse parameter averaging aims to reduce the communication overhead by exchanging only a subset
of gradient or model parameter components in each iteration. Algorithm 1 gives a procedure of
distributed SGD with sparse parameter averaging. All nodes are initialized with an identical initial
point x0. In each iteration, it first computes a stochastic gradient based on the current value of model
parameters and a local mini-batch. Then, the model parameters are updated locally with the stochastic
gradients. Next, a subset of parameter components are selected (Line 5). The selected components
are denoted as a binary vector vj in the algorithm – the pth element in vj is 1 if the pth component
is selected; otherwise it is 0. We require that all nodes share the same vj in the jth iteration, i.e.,
all nodes are communicating the same components. This is a reasonable requirement as averaging
different components from different nodes leads to inconsistent model parameters. The selection is
applied to the model parameters via a projection Pj = vjvTj which is a diagonal matrix with the pth
element in the diagonal being 1 if the pth component is selected. In the synchronization step (Line 6),
the selected components are updated with the average values from all nodes while the unselected
components keep their local values. Note that Algorithm 1 is different from asynchronous SGD [35]
as all nodes are synchronized before updating the selected local model parameters in this algorithm.

Convergence Rate Throughout the paper, we discuss the convergence rate of training algorithms
in terms of the average of the `2 norm of the gradients. Specifically, we say an algorithm gives an
✏-approximation solution if

1

K

0

@
K�1X

j=0

���rf
�
xj

����
2

2

1

A  ✏. (7)

This metric is conventionally used in the analysis for non-convex optimization [17, 32, 31]. Instead
of considering any specific sparsification strategy, we require Algorithm 1 to exchange all parameter
components in any p consecutive iterations. More formally, we require

kY

t=j

�
I � Pj

�
= 0 8(k � j) � p. (8)

If this condition holds, we have the following convergence rate for distributed SGD with any gradient
sparsification method:
Theorem 1. Under the assumptions in §3.1, if L�  1 and 1 > 6np2L2�2, Algorithm 1 has the
following convergence rate:

1

K

0

@
K�1X

j=0

�����rf

✓
Xj1n

n

◆�����

2

2

1

A 
2
�
f (x0) � f⇤�D1

�K
+
L��2D1

M
+
pn2L2�2�2D2

M
+3np2L2�2&2D2,

(9)

4

where

D1 =

1 � 3np2L2�2

1 � 6np2L2�2

!
, D2 =

✓
1

1 � 6np2L2�2

◆
. (10)

In Theorem 1, Xj = [xj,1, xj,2, . . . , xj,n] 2 RN⇥n are the model parameters on n nodes and Xj1n

n =
1
n

Pn
i=1 xj,i is their average. Theorem 1 indicates that Algorithm 1 has guaranteed convergence if

L�  1 and 1 > 6np2L2�2. The result applies to any sparsification strategy as long as a limited p is
ensured. Our analysis shows that the threshold used in different sparsification strategies for selecting
gradient components actually does not affect the convergence rate of SGD directly; instead, it is the
variance of model parameters among different computing nodes that really matters. (See Proof to
Theorem 1 in supplemental for more details.) Intuitively, a larger threshold means fewer exchanges
of gradient components, which leads to a larger variance of model parameters among nodes, and thus,
a slower convergence of the training process. The analysis also provides a theoretical basis for tuning
the threshold for selecting gradient components in sparse-communication SGD: we should adjust the
threshold adaptively to keep a small variance of model parameters among nodes.

With a proper learning rate, we can obtain the following result from Theorem 1:

Corollary 1. Under the assumptions in §3.1, if setting � = ✓
p

M/K where ✓ > 0 is a constant, we
have the convergence rate for Algorithm 1 as:

1

K

0

@
K�1X

j=0

�����rf

✓
Xj1n

n

◆�����

2

2

1

A 
4✓�1

�
f (x0) � f⇤�+ 2✓L�2

p
MK

+
2pn2✓2L2�2 + 6nM✓2p2L2&2

K

(11)
if the total number of iterations is large enough:

K � 12nM✓2p2L2. (12)

If K is large enough, the second term in (11) will be dominated by the first term, and the algorithm
will converge at rate O(1/

p
MK). In practice, K is usually set as a fixed number. Corollary 1

indicates that there is a trade-off between the communication overhead and the convergence rate. A
larger p leads to a smaller communication overhead, but a larger second term in (11).

Linear Speedup With O(1/
p
MK) convergence rate, Algorithm 1 achieves ✏-approximation solu-

tion when mK / 1/(n✏2). That is, the amount of computation required on each node is inversely
proportional to n. Thus, linear speedup can be achieved by Algorithm 1 asymptotically w.r.t compu-
tational complexity.

Periodic Averaging As a particular sparsification strategy, we can average the model parameters
once every p iterations. That is, Pj = I if p divides j, and Pj = 0 if p does not divide j. This
strategy obviously satisfies the condition in (8). Therefore, we have the following result:
Corollary 2. If we periodically average the model parameters once every p iterations, distributed
SGD still converges at rate O(1/

p
MK) when K is large enough.

One advantage of this simple strategy is that it not only decreases the average communication data size
but also reduces the average latency by a factor of p. This approach has been used in practice [34, 43];
however, its convergence has not been well studied. Our result illustrates the interaction of p with
other training hyperparameters and shows its influence to the convergence rate of distributed SGD.

3.3 Gradient Quantization

As an orthogonal approach to sparse parameter averaging, gradient quantization aims to reduce the
communication cost by representing the gradients with fewer bits. The local stochastic gradient on
each node is given to a quantization function before synchronizing with other nodes. The model
parameters are then updated with the average of the quantized gradients.

Convergence Rate Previous works have shown the convergence of distributed SGD with unbiased
stochastic quantization functions [5, 46]. However, no convergence rate is given in [46], and the
convergence analysis on non-convex optimization in [5] shows that the average `2 norm of the
gradients has a constant variance blowup term. We now give a more general convergence result for

5

distributed SGD using unbiased stochastic quantization functions. Suppose the quantization function
is Q, our result is based on the bound of expected error of a quantization function defined as follows:

q = sup
x2RN

��Q(x) � x
��2
2

kxk
2
2

. (13)

With this definition, we have the following convergence result for distributed SGD with gradient
quantization:
Theorem 2. Under the assumptions in §3.1, if using an unbiased quantization function with an error
bound q as defined in (13) and (1 + q

n)L� < 2, distributed SGD has the following convergence rate:

1

K

0

@
K�1X

j=0

���rf
�
xj

����
2

2

1

A 
(f(x0) � f⇤)D

�K
+

(1 + q)L��2D

2M
+

qL�&2D

2n
, (14)

where

D =
2

2 � (1 + q
n)L�

(15)

Setting a proper learning rate, we can obtain the following result:
Corollary 3. Under the assumptions in §3.1, if using a quantization function with an error bound of
q and setting � = ✓

p
M/K where ✓ > 0 is a constant, we have the following convergence rate for

distributed SGD:

1

K

0

@
K�1X

j=0

���rf
�
xj

����
2

2

1

A 
2✓�1

�
f(x0) � f⇤�+ (1 + q)✓L�2

p
MK

+
m

p
MK

✓qL&2 (16)

if the total number of iterations is large enough:

K � ML2✓2(1 +
q

n
)2. (17)

Corollary 3 suggests that if all nodes share the same training data (i.e. & = 0), q = ⇥(1) is a sufficient
condition for distributed SGD to achieve O(1/

p
MK) convergence rate. If each node can access

only a partition of the training data (i.e. & 6= 0), distributed SGD can still achieve O(1/
p
MK)

convergence rate by using a quantization function that ensures q = ⇥(1/m).

Comparison of QSGD and TernGrad Based on the above results, we now discuss the performance
of the quantization functions proposed in the two previous works: QSGD [5] and TernGrad [46]. The
quantization function in QSGD has a configurable level s. A gradient component vi is quantized to
either l/s or (l + 1)/s based on a Bernoulli distribution defined as8

<

:
P{bi = (l + 1)/s} = s|vi|

kvk2
� l

P{bi = l/s} = 1 �
s|vi|
kvk2

+ l.
(18)

The quantized value of vi is defined as Qs(vi) = bi · sign(vi) · kvk2. Alistarh et al. have shown that
Qs has q  min{N/s2,

p
N/s}, while a more accurate bound is q = min{N/(4s2),

p
N/s} (see

supplemental material B for more explanation). This indicates that s =
p
N/2 is enough to achieve

q = 1 (thus O(1/
p
MK) convergence rate) on shared training data. For training with partitioned

data (i.e., & 6= 0), we can increase the quantization level of QSGD to
p
mN/2 to achieve q = 1/m.

Note that s is not the actual quantization level of Qs, though Alistarh et al. called so in their paper [5].
The actual number of different values of l in Qs is (s · kvk1 /kvk2). That is, the number of bits used
to encode a quantized component is dlog2

�
s · kvk1 /kvk2

�
e. To see this, we can consider QSGD with

s levels in range [0, kvk2] as quantization with (s · kvk1 /kvk2) levels in range [0, kvk1] because
both use classification interval of size kvk2/s. This also illustrates that the TernGrad proposed by
Wen et al. [46] is equivalent to QSGD with s = kvk2/ kvk1 (see supplemental material B and C
for more explanation). Therefore, when the gradient components are more evenly distributed (i.e.,
s = kvk2/ kvk1 !

p
N), the fewer quantization levels Qs needs and the better convergence rate

TernGrad can achieve. (Consider the extreme case when the gradient is a vector of same value; It is
apparent that quantization level of 1 suffices to encode the gradient.) In general, TernGrad does not
achieve O(1/

p
MK) convergence rate.

6

4 Periodic Quantized Averaging SGD (PQASGD)

Algorithm 2 The procedure on the ith node of PQASGD
Require: initial point x0,i, number of iterations K, and learning rate �

1: for j = 0, 1, 2, . . . ,K � 1 do
2: Randomly select m training samples indexed by ⇠j,i = [⇠j,i,0, ⇠j,i,1, ..., ⇠j,i,m�1]
3: Compute a local stochastic gradient based on ⇠j,i: rFi(xj,i; ⇠j,i)
4: Update the model parameters locally: xj+1,i = xj,i � �rFi(xj,i; ⇠j,i)
5: if ((j + 1) mod p) = 0 then
6: Compute the change of parameters since last synchronization: Gj,i = xj+1,i � xj+1�p,i

7: Quantize the change of parameters: �j,i = Q(Gj,i)
8: Average the quantized changes on all nodes: �j = 1

n

Pn
k=1 �j,k

9: Update the model parameters: xj+1,i = xj+1�p,i + �j

10: end if
11: end for

In the previous section, we show that sparse parameter averaging and gradient quantization can
achieve O(1/

p
MK) convergence rate for distributed SGD. However, the compression ratio is

limited by using either of the two strategies alone. With sparse parameter averaging, a large p may
impair the convergence rate and even lead to divergence. With gradient quantization, even if the
gradient components are evenly distributed and the optimal convergence rate can be achieved with
2-bit quantization (one bit for the sign and one bit for the level as in TernGrad), the compression
ratio is at most 32/2 = 16 (if no other compression is applied).

We now propose a simple strategy that combines sparsification and quantization to further reduce
the communication overhead while preserving the O(1/

p
MK) convergence rate. The idea is to

communicate the quantized changes of model parameters once every p iterations. The procedure
is shown in Algorithm 2. All nodes are initialized with the same initial point. In each iteration,
each node computes a stochastic gradient based on a local mini-batch and updates its local model
parameters. If the iterate number (j + 1) is not a multiple of p, the algorithm continues to the next
iteration without any communication. If j + 1 is a multiple of p, each node computes the change
of model parameters since last synchronization and quantize the change (Line 6-7). Then, the local
quantized changes are averaged among nodes (Line 8) and the average value is updated to the local
model parameters (Line 9).

Convergence Rate We have the following convergence rate for Algorithm 2:
Theorem 3. Under the assumptions in §3.1, suppose the quantization function is unbiased with
an error bound q and the learning rate � = ✓

p
M/K where ✓ is a constant, Algorithm 2 has the

following convergence rate:

1

K

K�1X

j=0

E
�����rf

✓
Xj

1n

n

◆�����

2

2


2✓�1

�
f(x0) � f⇤�
p
MK

+
2(1 + 2q)L✓�2

p
MK

+
12qpmL✓&2

p
MK

(19)

if the total number of iterations is large enough:

K � max

M✓2

4q2

⇣p
(n2pL)2 + 12np2q2(1 + L2) + n2pL

⌘2
,

144ML2✓2q2p2

n2
, ML2✓2

!

(20)

Theorem 3 implies that PQASGD converges at rate O((1 + q)/
p
MK) if all node share the same

training data, and converges at rate O(1 + mpq)/
p
MK if the training data are partitioned. Thus,

O(1/
p
MK) convergence rate can be achieved in both cases by using quantization functions that

ensure q = 1 and pq = 1/m respectively. Compared with stand-alone gradient quantization, PQASGD
reduces the communication data size by a factor of p on shared training data and a factor of p/ log(p)
on partitioned training data.

7

0 50 100 150 200
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

Lo
ss

FULLSGD
PSGD (p = 2)

PSGD (p = 4)

PSGD (p = 8)

RSGD (p = 2)

RSGD (p = 4)

RSGD (p = 8)

140 160 180 200
0.002

0.006

0.010

0.014

0.018

(a) Training loss: ResNet32 on 8 machines

0 25 50 75 100 125 150 175 200
Epochs

30

40

50

60

70

80

90

T
es

t
A
cc

ur
ac

y
(%

)

FULLSGD

PSGD (p = 2)

PSGD (p = 4)

PSGD (p = 8)

RSGD (p = 2)

RSGD (p = 4)

RSGD (p = 8)

150 175 200
90.5

91.0

91.5

(b) Test Accuracy: ResNet32 on 8 machines

0 20 40 60 80 100 120 140 160
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

Lo
ss

FULLSGD
QSGD-S (s =

p
N/2, ce = 0.231)

QSGD-P (s =
p

N/2, ce = 0.242)

QSGD-P (s =
p

mN/2, ce = 0.297)

PQASGD-P (p = 8, s =
p

mpN/2, ce = 0.044)

PQASGD-S (p = 8, s =
p

N/2, ce = 0.030)

120 130 140 150 160
0.000

0.002

0.004

0.006

(c) Training loss: VGG16 on 8 machines

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
7LPe (seF) 1e3

0

1

2

3

4

5

7
UD

LQ
LQ

g
 L

o
ss

2.7x fDsteU
1.7x fDsteU

)8LL6GD

46GD-3 (s)
0
mN/2, ce)(. 247)

34A6GD-3 (p)8, s)
0
mpN/2, ce)(. (35)

1.301.311.32
1e3

0.00
0.02
0.04
0.06
0.08
0.10

(d) Training loss: ResNet110 on 16 machines
Figure 1: Training loss and test accuracy for different image classification models on CIFAR-10.

5 Experiments
In this section, we validate our theory with experiments on two machine learning tasks: image
classification and speech recognition. For image classification, we train ResNet [19] and VGG [39]
with different number of layers on CIFAR-10 [24]. For speech recognition, we train a 5-layer LSTM
of 800 hidden units per layer on AN4 dataset [2].

Our experiments are conducted on a local HPC cluster. Each machine in the cluster has an NVIDIA
K80 GPU and is considered as a single node in the training. The machines are connected with
100Gbps InfiniBand and have GPUDirect peer-to-peer communication. We use OpenMPI 3.0.0 as the
communication backend, and implement the algorithms in the paper within Pytorch 0.3.1. To make
the benefits of communication reduction more noticeable, we direct OpenMPI to use TCP-based
communication and use trickle to throttle the upload and download bandwidth of the training process
on each node to 5Gbps in order to emulate a 10Gbps connection. In practice, network bandwidth can
always become a bottleneck when training larger models.

There are three aspects in our evaluation:

1) We evaluate two sparse parameter averaging strategies – periodic averaging (PSGD) and rotate
averaging (RSGD), on partitioned training data. PSGD averages the model parameters once every
p iterations as described in the paper. RSGD divides the parameters into p chunks and averages
the ith chunk if j mod p = i where j is the iterate number. It is obvious that RSGD meets the
condition in (8). We compare the convergence rate of PSGD and RSGD with full-communication
SGD (FULLSGD) to see if they can converge at rate O(1/

p
MK) as stated in Theorem 1.

2) We use QSGD [5] with level s =
p
N/2 on both shared and partitioned training data (QSGD-S and

QSGD-P respectively) and compare its convergence rate with FULLSGD. Then, we set the level s
to

p
mN/2 for QSGD-P to validate our conclusion in §3.3 that q = 1/m is enough to achieve

O(1/
p
MK) convergence rate for training on partitioned data.

3) We compare the convergence rate and performance of our PQASGD with FULLSGD, TernGrad and
QSGD. For training on partitioned training data, we set the level s to

p
mpN/2 for PQASGD and

p
mN/2 for QSGD to achieve q = 1 for both algorithms.

5.1 Results on Image Classification
For all experiments on image classification, we use mini-batch size m = 32 on each node. For
training on 4 machines (total mini-batch size M = 128), we initialize the learning rate � to 0.1 and

8

decrease it to 0.01 after 110 epochs. The momentum is set to 0.9. For training on more machines,
the learning rate scales with the number of nodes. For example, the learning rate for training on 16
machines is initialized to 0.4 and decreased to 0.04 after 110 epochs.

Figure 1a shows the training loss for ResNet32 over epochs on 8 machines with partitioned training
data. We can see that PSGD and RSGD with p ranging from 2 to 8 converge almost as fast as FULLSGD.
While there is a small gap between the training loss of FULLSGD and PSGD/RSGD with p = 8, we can
see from the zoomed figure that the gap narrows as the training proceeds. This is observed in all
of the models used in our experiments (we have more results in supplemental material D), which
validate our claim in Theorem 1.

Figure 1b shows the test accuracy over epochs corresponding to the training process in Figure 1a.
We can see that PSGD/RSGD achieve test accuracy comparable to that of FULLSGD, indicating sparse
communication does not cause accuracy loss. In fact, we observe that when p = 2 and 4, PSGD/RSGD
consistently achieve slightly higher accuracy than FULLSGD. As generalization performance of
deep neural networks has not been well explained and current theories are mostly based on strong
hypotheses [21, 15, 23, 41, 40], we suspect that sparse-communication actually helps the training
process escape sharp minimum and avoid overfitting. We will investigate this property of sparse-
communication SGD in future work.

Figure 1c shows the training loss for VGG16 over epochs on 8 machines. The number ce in the figure
is the compression efficiency, which represents the ratio of compressed data size to the original commu-
nication data size of FULLSGD. For QSGD, the compression efficiency = number_of_bits_used/32.
We can see that QSGD-S with s =

p
N/2 matches the convergence rate of FULLSGD with 23.1%

communication data size (i.e., with an average of 0.231 ⇥ 32 ⇡ 7.4 bits used for each gradient com-
ponent). In contrast, there is an apparent gap between the training loss of FULLSGD and QSGD-P with
s =

p
N/2, which indicates that data partitioning does affect the convergence rate of distributed SGD

with quantized gradients. This effect is eliminated by setting s to
p
mN/2. TernGrad achieve 6.3%

compression efficiency; however, its training loss after 160 epochs is around 0.02, which is 10 times
larger than the other methods. We do not plot the training loss for TernGrad in Figure 1c because it
is hard to show its line with other lines in the same scale. From the zoomed figure, we can see that our
PQASGD with p = 8 matches FULLSGD after 130 epochs on both shared and partitioned training data,
while it only incurs 3% and 4.4% communication overhead respectively. Compared with TernGrad,
our PQASGD converges much faster while achieving even higher compression ratio. This indicates
that instead of simply pursuing more aggressive quantization, combining with sparsification is a more
effective approach to reduce the communication overhead for distributed SGD.

Figure 1d shows the training loss for ResNet110 over time on 16 GPUs. We run FULLSGD, QSGD,
TernGrad and PQASGD on partitioned training data for 200 epochs. QSGD uses s =

p
mN/2 and

PQASGD uses p = 8 and s =
p
mpN/2. The mini-batch size and learning rate are the same as

described above, except that we set the learning rate to 0.04 in the first 10 epochs for warmup.
TernGrad diverges occasionally for training this model, so we do not include its result here. We can
see that our PQASGD achieves 2.7x speedup against FULLSGD and 1.7x against QSGD as it requires
only 3.5% communication data size compared with FULLSGD. The test error of PQASGD after 200
epochs is 0.0635, which is in consistent with the best accuracy reported in [19]. Thus, our PQASGD
does not impair the generalization.

5.2 Results on Speech Recognition
The results on speech recognition follow the same pattern as for image classification. Due to space
limit, we leave the results in the supplemental material.

6 Conclusion

In this work, we studied the convergence rate of distributed SGD with two communication reducing
strategies: sparse parameter averaging and gradient quantization. We prove that both strategies
can achieve O(1/

p
MK) convergence rate if configured properly. We also propose a strategy

called PQASGD that combines sparsification and quantization while preserving the O(1/
p
MK)

convergence rate. The experiments validate our theoretical results and show that our PQASGD
matches the convergence rate of full-communication SGD with only 3%-5% communication data
size.

9

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. CoRR,
abs/1603.04467, 2016.

[2] A. Acero. Acoustical and environmental robustness in automatic speech recognition. 1990.

[3] A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In J. Shawe-Taylor, R. S. Zemel,
P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 24, pages 873–881. Curran Associates, Inc., 2011.

[4] A. F. Aji and K. Heafield. Sparse communication for distributed gradient descent. CoRR, abs/1704.05021,
2017.

[5] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Communication-efficient sgd via
gradient quantization and encoding. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages
1709–1720. Curran Associates, Inc., 2017.

[6] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda. S-Caffe: Co-designing MPI Runtimes and
Caffe for Scalable Deep Learning on Modern GPU Clusters. In Proceedings of the 22nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’17, pages 193–205, New York,
NY, USA, 2017. ACM.

[7] C.-Y. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and K. Gopalakrishnan. Adacomp : Adaptive
residual gradient compression for data-parallel distributed training. CoRR, abs/1712.02679, 2017.

[8] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. Mxnet: A flex-
ible and efficient machine learning library for heterogeneous distributed systems. CoRR, abs/1512.01274,
2015.

[9] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project adam: Building an efficient and scalable
deep learning training system. In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI’14, pages 571–582, Berkeley, CA, USA, 2014. USENIX Association.

[10] A. Coates, B. Huval, T. Wang, D. J. Wu, A. Y. Ng, and B. Catanzaro. Deep learning with cots hpc systems.
In Proceedings of the 30th International Conference on International Conference on Machine Learning -
Volume 28, ICML’13, pages III–1337–III–1345. JMLR.org, 2013.

[11] R. Collobert, S. Bengio, and J. Marithoz. Torch: A modular machine learning software library, 2002.

[12] C. M. De Sa, C. Zhang, K. Olukotun, C. Ré, and C. Ré. Taming the wild: A unified analysis of hogwild-
style algorithms. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems 28, pages 2674–2682. Curran Associates, Inc., 2015.

[13] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior,
P. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume 1, NIPS’12, pages 1223–
1231, USA, 2012. Curran Associates Inc.

[14] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction using
mini-batches. J. Mach. Learn. Res., 13(1):165–202, Jan. 2012.

[15] L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio. Sharp minima can generalize for deep nets. In D. Precup
and Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages 1019–1028, International Convention Centre, Sydney,
Australia, 06–11 Aug 2017. PMLR.

[16] R. Garg and R. Khandekar. Gradient descent with sparsification: An iterative algorithm for sparse recovery
with restricted isometry property. In Proceedings of the 26th Annual International Conference on Machine
Learning, ICML ’09, pages 337–344, New York, NY, USA, 2009. ACM.

[17] S. Ghadimi and G. Lan. Stochastic first- and zeroth-order methods for nonconvex stochastic programming.
SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[18] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning with limited numerical
precision. CoRR, abs/1502.02551, 2015.

10

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR, abs/1512.03385,
2015.

[20] Q. Ho, J. Cipar, H. Cui, J. K. Kim, S. Lee, P. B. Gibbons, G. A. Gibson, G. R. Ganger, and E. P. Xing.
More effective distributed ml via a stale synchronous parallel parameter server. In Proceedings of the
26th International Conference on Neural Information Processing Systems - Volume 1, NIPS’13, pages
1223–1231, USA, 2013. Curran Associates Inc.

[21] E. Hoffer, I. Hubara, and D. Soudry. Train longer, generalize better: closing the generalization gap in
large batch training of neural networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages
1731–1741. Curran Associates, Inc., 2017.

[22] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings of the 22Nd ACM International
Conference on Multimedia, MM ’14, pages 675–678, New York, NY, USA, 2014. ACM.

[23] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch training for
deep learning: Generalization gap and sharp minima. CoRR, abs/1609.04836, 2016.

[24] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[25] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436 EP –, 05 2015.

[26] H. Li, S. De, Z. Xu, C. Studer, H. Samet, and T. Goldstein. Training quantized nets: A deeper understanding.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages 5811–5821. Curran Associates, Inc., 2017.

[27] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y.
Su. Scaling distributed machine learning with the parameter server. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation, OSDI’14, pages 583–598, Berkeley, CA,
USA, 2014. USENIX Association.

[28] M. Li, D. G. Andersen, A. J. Smola, and K. Yu. Communication efficient distributed machine learning with
the parameter server. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 19–27. Curran Associates, Inc.,
2014.

[29] M. Li, J. Dean, B. Póczos, R. Salakhutdinov, and A. J. Smola. Scaling distributed machine learning with
system and algorithm co-design. 2016.

[30] X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous parallel stochastic gradient for nonconvex optimization.
In Proceedings of the 28th International Conference on Neural Information Processing Systems, NIPS’15,
pages 2737–2745, Cambridge, MA, USA, 2015. MIT Press.

[31] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu. Can decentralized algorithms outperform
centralized algorithms? a case study for decentralized parallel stochastic gradient descent. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 5330–5340. Curran Associates, Inc., 2017.

[32] X. Lian, H. Zhang, C.-J. Hsieh, Y. Huang, and J. Liu. A comprehensive linear speedup analysis for
asynchronous stochastic parallel optimization from zeroth-order to first-order. In Advances in Neural
Information Processing Systems 29, pages 3054–3062. 2016.

[33] Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally. Deep gradient compression: Reducing the communication
bandwidth for distributed training. In International Conference on Learning Representations, 2018.

[34] D. Povey, X. Zhang, and S. Khudanpur. Parallel training of deep neural networks with natural gradient and
parameter averaging. CoRR, abs/1410.7455, 2014.

[35] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic gradient
descent. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 24, pages 693–701. Curran Associates, Inc., 2011.

[36] F. Seide and A. Agarwal. Cntk: Microsoft’s open-source deep-learning toolkit. In Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages
2135–2135, New York, NY, USA, 2016. ACM.

11

[37] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and application to data-parallel
distributed training of speech dnns, September 2014.

[38] R. Shi, Y. Gan, and Y. Wang. Evaluating scalability bottlenecks by workload extrapolation. In 2018 IEEE
26th International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), Milwaukee, WI, USA, Sept 2018.

[39] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
CoRR, abs/1409.1556, 2014.

[40] S. L. Smith, P.-J. Kindermans, and Q. V. Le. Don’t decay the learning rate, increase the batch size. In
International Conference on Learning Representations, 2018.

[41] S. L. Smith and Q. V. Le. A bayesian perspective on generalization and stochastic gradient descent. In
International Conference on Learning Representations, 2018.

[42] N. Strom. Scalable distributed dnn training using commodity gpu cloud computing. In INTERSPEECH,
2015.

[43] H. Su and H. Chen. Experiments on parallel training of deep neural network using model averaging. CoRR,
abs/1507.01239, 2015.

[44] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and T. Kraska. Superneurons: Dynamic gpu
memory management for training deep neural networks. In Proceedings of the 23rd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’18, pages 41–53, New York, NY,
USA, 2018. ACM.

[45] J. Wangni, J. Wang, J. Liu, and T. Zhang. Gradient sparsification for communication-efficient distributed
optimization. CoRR, abs/1710.09854, 2017.

[46] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li. Terngrad: Ternary gradients to reduce
communication in distributed deep learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages
1509–1519. Curran Associates, Inc., 2017.

[47] S. Zhang, A. Choromanska, and Y. LeCun. Deep learning with elastic averaging sgd. In Proceedings of
the 28th International Conference on Neural Information Processing Systems - Volume 1, NIPS’15, pages
685–693, Cambridge, MA, USA, 2015. MIT Press.

[48] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou. Dorefa-net: Training low bitwidth convolutional
neural networks with low bitwidth gradients. CoRR, abs/1606.06160, 2016.

12

