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Abstract

In most of existing deep convolutional neural networks (CNNs) for classification,
global average (first-order) pooling (GAP) has become a standard module to sum-
marize activations of the last convolution layer as final representation for prediction.
Recent researches show integration of higher-order pooling (HOP) methods clearly
improves performance of deep CNNs. However, both GAP and existing HOP
methods assume unimodal distributions, which cannot fully capture statistics of
convolutional activations, limiting representation ability of deep CNNs, especially
for samples with complex contents. To overcome the above limitation, this paper
proposes a global Gated Mixture of Second-order Pooling (GM-SOP) method to
further improve representation ability of deep CNNs. To this end, we introduce
a sparsity-constrained gating mechanism and propose a novel parametric SOP as
component of mixture model. Given a bank of SOP candidates, our method can
adaptively choose Top-K (K > 1) candidates for each input sample through the
sparsity-constrained gating module, and performs weighted sum of outputs of K
selected candidates as representation of the sample. The proposed GM-SOP can
flexibly accommodate a large number of personalized SOP candidates in an efficient
way, leading to richer representations. The deep networks with our GM-SOP can be
end-to-end trained, having potential to characterize complex, multi-modal distribu-
tions. The proposed method is evaluated on two large scale image benchmarks (i.e.,
downsampled ImageNet-1K and Places365), and experimental results show our
GM-SOP is superior to its counterparts and achieves very competitive performance.
The source code will be available at http://www.peihuali.org/GM-SOP.

1 Introduction

Deep convolutional neural networks (CNNs) have achieved great success in a variety of computer
vision tasks, especially image classification [25]]. During the past years, deep CNN architectures have
been widely studied and achieved remarkable progress [34} 36, |13, [17]]. As one standard module in
deep CNN architectures [36, |13} |17, 15, [16], global average pooling (GAP) summarizes activations of
the last convolution layer for final prediction. However, GAP only collects first-order statistics while
neglecting richer higher-order ones, suffering from limited representation ability [[7]. Recently, some
researchers propose to integrate trainable higher-order pooling (HOP) methods (e.g., second-order
and third-order pooling) into deep CNNs [19, 291 39} 27, [8]], which distinctly improve representation
ability of deep CNNs. However, both GAP and existing HOP methods adopt the unimodal distribution
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Figure 1: Overview of deep CNNss with the proposed global Gated Mixture of Second-order Pooling
(GM-SOP). The sparsity-constrained gating module adaptively selects Top- K parametric SR-SOP
(indicated by solid rectangles) from a bank of N candidate component models given a sample X, and
the final representation is generated by weighted sum of outputs of K selected CMs. For brevity here
we take N = 4, K = 2 as an example.

assumption to collect statistics of convolutional activations. As illustrated in Figure[T] input images
often contain multiple objects or parts, leading their distributions of convolutional activations usually
are very complex (e.g., mixture of multiple unimodal models). As such, unimodal distributions
cannot fully capture statistics of convolutional activations, which will limit performance of deep
CNNEs.

One natural idea to overcome the above limitation is ensemble of multiple models for summarizing
convolutional activations. However, direct ensemble of all component models (CMs) in mixture
model will suffer from very high computational cost as number of CMs gets large, while a small
number of CMs may be insufficient for characterizing complex distributions. Moreover, simple direct
ensemble will make all CMs tend to learn similar characteristics, since they receive identical training
samples. These factors heavily limit the representation ability of mixture model (refer to the results
in Section [3.2). Inspired by recent work [33]], we propose an idea of gated mixture model to solve the
above issues. Our gated mixture model is composed of a sparsity-constrained gating module and a
bank of candidate CMs. Given an input sample, the sparsity-constrained gating module adaptively
selects Top-K CMs from N (N >> K) candidates according to assigned weights, and then weighted
sum of outputs of K selected CMs is used to generate final representation. In this way, our gated
mixture model can accommodate efficiently a large number of CMs because only K ones are trained
and used to generate representation given a sample. Furthermore, different CMs will receive different
training samples so that they can capture personalized characteristics of convolutional activations
during training. As suggested in [33]], we employ an extra balance loss to eliminate self-reinforcing
phenomenon, guaranteeing as many candidate CMs as possible be adequately trained.

The CM plays a key role in gated mixture model. Compared with first-order GAP, HOP can
capture more statistical information, achieving remarkable improvement in either shallow models
[4, 23] or deep architectures [19, 29} 8, [27]. As shown in [26], the comparisons on both large-
scale image classification [9] and fine-grained visual recognition demonstrate matrix square-root
normalized second-order pooling (SR-SOP) outperforms other HOP methods and achieves promising
performance in deep architectures. In view of effectiveness of SR-SOP, it seems to be a good
choice for CM. However, there exist two problems lying in usage of SR-SOP. Firstly, SR-SOP is
a parameter-free model, which cannot be individually learned. Meanwhile, SR-SOP assumes data
distribution obeys a Gaussian, which may not always hold true. To address these problems, this paper
proposes a parametric SR-SOP methocﬂ which enables candidate CMs to be individually trained with
negligible additional cost. Besides, underlying the parametric SR-SOP is estimation of covariance
in the generalized Gaussian setting which has better modeling capability than SR-SOP. Based on
the parametric SR-SOP, we propose a global Gated Mixture of Second-order Pooling (GM-SOP),

“We reasonably introduce a group of trainable parameters into SR-SOP, and use the recently proposed fast
iterative algorithm [26] to speed up matrix square-root normalization on GPU.



which is illustrated in Figure[T} Our GM-SOP can effectively exploit a large bank of personalized
SOP models to generate more discriminative representations.

We evaluate the proposed GM-SOP method on two large scale image benchmarks, i.e., downsampled
ImageNet-1K [9]] and Places365 [44] that are introduced by [6] and this paper, respectively. As
described in [6], downsampled ImageNet is a promising alternative to CIFAR10/100 datasets, as it
is large-scale and more challenging, which postpones the saturation risk on CIFAR (as observed in
http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/). Compared
with standard-size ImageNet, downsampled ImageNet allows much faster experiments and lower com-
putation requirement while maintaining similar characteristics with respect to analysis of networks[6].
The contributions of our paper are three-fold. (1) We, for the first time, introduce a global gated
mixture of pooling model into prevalent deep CNN architectures. This goes beyond the existing global
average/covariance (second-order) pooling, possessing the potential to capture complex, multi-modal
distributions of convolutional activations. (2) We propose parametric second-order models as essential
components of mixture model. These components can be trained individually for modeling richer
feature characteristics than simple second-order pooling. (3) We perform extensive experiments on
two large-scale benchmarks for evaluating and validating the proposed methods, which have proven
to achieve much better results than the counterparts.

2 Gated Mixture of Second-order Pooling (GM-SOP)

In this section, we introduce the proposed Gated Mixture of Second-order Pooling (GM-SOP) method.
We first describe a general idea of gated mixture model, and then propose a parametric matrix square-
root normalized second-order pooling (SR-SOP) method as our component model. Finally, the
GM-SOP is integrated into deep CNNSs in an end-to-end learning manner.

2.1 Gated Mixture Model

Mixture Model The mixture model (e.g., finite mixture distributions [12,[30] or mixture of experts
[21} 22]) is widely used to characterize complex data distribution or improve discrimination ability
of supervised system through ensemble of multiple component models (CMs). In general, mixture
model can be formulated as the weighted sum of all CMs, i.e.,

N N
y= Zwi(X)Mi(X)a s.t., Zwi(x) =1 )
=1 =1

where N is the number of CMs. w;(X) and M;(X) indicate weight and output of i-th CM given
input X, respectively. The mixture model in Eq. (I)) consists of a weight (probability) function and a
set of parametric CMs. Given specific forms of weight function and parametric CMs, mixture model
in Eq. (I) can be learned by using gradient learning algorithm [21]] or Expectation-Maximization
(EM) algorithm [22} 30].

Sparsity-constrained Gating Module Given an input sample, contribution of each CM in mixture
model is decided by the corresponding weight through either computation of posterior probability in
mixture distributions [[12} [30] or a gating network in mixture of experts [21} 22]. However, they both
acquiesce to allow every input sample to participate in training of all CMs. It will suffer from high
computational cost when number of CMs is large. Meanwhile, CMs with small weights may bring
noise into final representation [41]]. Inspired by [33]], we exploit a sparsity-constrained gating module
as the weight function to overcome the above issues, where weights are learned by explicitly imposing
a sparse constraint. As illustrated in Figure |1} we first pass X throughout a group of prediction layers
with parameters 0, i.e., f(6,; X). Then, weights are outputted by using a fully-connected layer with
additional noise perturbations, i.e.,

Hi(f(04:X)) = WY (04 X) + 7 - log(1 + exp(W] f(6y; X))). 2)

Here, WY and W are i-th row of parameters of fully-connected layer and additional noise, respec-
tively. «y is a random variable sampled from a normal distribution. To make the learned weights
H(f(04;X)) be sparse, only the K largest weights are kept and remaining ones are set to be negative
infinity, denoted as Top-K (H;(f(6,4;X))). Finally, a softmax function is used to normalize the
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weights. To sum up, the weight function can be written as

wi(X) = P (Top-K (Hi(f(65: X))

. 3
S exp(Top-K (Hy(f(95: X)) ®

Balance Loss The sparsity-constrained gating module makes each sample participate in training
of K CMs. However, as shown in [33]] and the results of Section [3.2] such gating module has a
self-reinforcing phenomenon (i.e., only the same few CMs receive almost all samples while remaining
ones have rarely been trained), decreasing representation ability of mixture model. As suggested in
[33]], we introduce an extra balance loss which is a function of weights defined as follows:

Ly a(std@fl w<xs>>)2
= = ,
P w(Xs))
where X is s-th training sample in a mini-batch of S samples and w(X;) = [w1(X;),...,wn(X;)]
is the weight function in Eq. (B); std(v) and p(v) denote standard deviation and mean of vector

v, respectively; « is a tunable parameter. The loss L is to constrain that all CMs are adequately
trained.

“4)

2.2 Component Model of GM-SOP

Besides the weight function, component model (CM) plays an indispensable role in gated mixture
model. Motivated by success of matrix square-root normalized second-order pooling (SR-SOP) in
deep CNN architectures [39} 27]], we propose a parametric SR-SOP as CM of our GM-SOP.

Parametric SR-SOP  Given an input X € R%*? containing L features of d-dimension, the SR-SOP
of X is computed as

1

=% =UAUT, J=—(1- 511T), (5)

N

T4 1
Z = (X' JX) i
where ¥ = UAUT is eigenvalue decomposition (EIG) of 3. T and 1 are identity matrix and
L-dimension vector with all elements being one, respectively. 3 is sample covariance (second-order
statistics) of X estimated by the classical maximum likelihood estimation (MLE). Since X is a
set of convolutional activations in deep CNNs, dimension of X is usually very high (128 in our
case) while number of features is very small (~ 100). It is well known that the classical MLE
is not robust in the above scenario [10]. As explained in [40]], performing matrix square root on
covariance amounts to robust covariance estimation, very suitable for the scenario of high dimension
and small sample. In addition, matrix square-root normalization can be regarded as a special case of
Power-Euclidean metric [T1]] between covariance matrices, i.e., | £7 — Ef |? with 3 = 0.5, which is
an approximation of Log-Euclidean metric [2] (hence making use of Riemannian geometry lying in
covariance matricesE]) while overcoming some downsides of Log-Euclidean metric [11].

Although SR-SOP in Eq. (5)) benefits from some merits and achieves promising performance, it is a
parameter-free model, which can not be trained as personalized CMs. Meanwhile, covariance 3 in
Eq. (9) is calculated based on assumption that X is sampled from a Gaussian distribution, which may
not always hold true. To handle above two problems, we propose a parametric second-order pooling
(SOP), i.e.,

2(Q)) = X"Q,;X = (P;X)" (P;X). (6)

Different from the original sample covariance ¥ with constant matrix J.Q ; in Eq. @ is a learnable
parameter, and Q; is a symmetric positive semi-definite matrix with Q; = PjTP ;- Note that our
parametric SOP in Eq. (€ shares similar philosophy with estimating covariance by assuming features
follow a multivariate generalized Gaussian distribution with zero mean [32], i.e.,

_ (d/2) 5 1 ol
S 6re) = ~ (%3
p(Xh 767 8) 7Td/2r(d/2(5)2d/26 €d/2|2|1/2 €xXp ( (Xl X ) ) (7)

SCovariance matrices are symmetric positive definite matrices, whose space forms a non-linear Riemannian
manifold [2].



where ¢ and ¢ are parameters of scale and shape, respectively; X is covariance matrix, and I is
a Gamma function. Compared with assumption of data distribution being a Gaussian in Eq. (3)),
generalized Gaussian distribution in Eq. (7) is more general and captures more complex characteristics.

Given 0 and ¢, covariance matrix 3 can be estimated using iterative reweighed methods [3}43]], and
specifically, for the j-th iteration

L
S 1 Ld
X = 7 Z J IV1—5 7o
=+ () 0 s (ay)

L
1 _
xx= 1) fika) x[x=XTG; X, ®)
=1

where q{ = xli j—1x! and éj is a diagonal matrix with diagonal elements being
{fj(x1)/L,..., fj(xr)/L}. It is worth mentioning at this point that our parametric SOP in Eq. (6)
learns a more informative, full matrix, instead of only the diagonal one in traditional iterative

reweighted methods [3}43]].

Obviously our parametric SOP in Eq. (6) can be regarded as single step of iterative estimation. To
accomplish multi-step iterative estimation, we can learn a sequence of parameters Q;, j =1,...,J.
After that, we perform matrix square-root normalization to obtain better performance. In practice
we adopt two-step estimation (i.e., J = 2) to balance efficiency and effectiveness. We mention that
implementation of each one of the two step estimation (i.e., P;X) in Eq. (@) can be conveniently
implemented using 1 X 1 convolution. As a result, our parametric SR-SOP can be transformed into
learning multiple sequential 1 x 1 convolution operations following by computation of SR-SOP.

Fast Iterative Algorithm The computation of matrix square root in our parametric SR-SOP de-
pends on EIG, which is limited supported on GPU, slowing down training speed of the whole network.
Therefore, we employ the recently proposed iterative method [26] to speed up computing matrix
square root. This method is based on Newton-Schulz iteration [[14], which computes approximate
matrix square root through iterative matrix multiplications as

1 1
~ Aj : {A; = §A5_1(3I — Bj—lAj—l);Bj = 5(31 — Bj—lAj—l)Bj—l}i::l,---,j’ (9)

Nl

b))

where Ay = ¥ and By = L. Clearly, Eq. (9) involves only matrix multiplications, more suitable
for GPU implementation, and its back-propagation algorithm can be derived based on matrix back-
propagation method [20]]. Readers can refer to [26] for more details.

2.3 Deep CNN with GM-SOP

The overview of deep CNNs with our GM-SOP is illustrated in Figure[I} Notably, the proposed GM-
SOP, rather than global average pooling or second-order pooling, is inserted after the last convolution
layer. In our GM-SOP, the outputs of the last convolution layer are simultaneously fed into sparsity-
constrained gating module and the bank of parametric CMs. In terms of the Top-K results, the
gating module allocates individual training samples to different CMs, and for each sample the final
representation is a weighted sum of the outputs of K selected CMs. We add a batch normalization
[18]] layer and a dropout [35] layer with drop rate of 0.2 after final representation. Finally, we use a
fully-connected layer and a softmax layer for classification. The sparsity-constrained gating module
is composed of prediction layers, Top-K and softmax operations, where the prediction layers share
the same architecture with CMs to keep pace with representation. The parametric SR-SOP contains a
set of convolution operations and iterative matrix multiplications. Clearly back-propagation of all
involved layers can be accomplished according to traditional chain rule and matrix back-propagation
method [20], and thus the deep CNNs with GM-SOP can be trained in an end-to-end manner.

3 Experiments

To evaluate the proposed method, we conduct experiments on two large-scale image benchmarks,
i.e., downsampled ImageNet-1K [6] and Places365 [44]]. We first describe implementation details
of different competing methods, and then assess the effect of key parameters on our method using
downsampled ImageNet-1K. Finally, we report the comparison results on two benchmarks.



Table 1: Modified ResNet-18 and ResNet-50 for downsampled ImageNet-1K and Places365.

convl conv2_x conv3_x conv4_x conv5_x
3x3,16 [3x3,16 3% 3,32 3 % 3,64 3% 3,128
ResNet-18 - (quride=1) [3 x 3, 16] x2 [3 x 3,32} x 2 [3 x 3,64} x 2 [3 x 3, 128] x 2 GAP
3%3,16 [3x3,16 3% 3,32 3 % 3,64 3% 3,128
ResNet-30ride=1) [3 x 3, 16} x 6 [3 x 3,32} x 6 [3 x 3,64} 6 [3 x 3, 128] x 6 GAP
Outout i 64 x 64 64 x 64 32 x 32 16 x 16 8 x 8 ImageNet-1K
UIPULSIZE 96 % 96 96 x 96 48 x 48 24 x 24 12 x 12 Places365

3.1 Implementation Details

In this work, we implement several methods for comparison, and consider two basic CNN models
including ResNet [[13] of 18 and 50 layers. All competing methods are described as follows.

(1) ResNet-18/ResNet-50 indicate original ResNets with first-order GAP.

(2) ResNet-18-Xd/ResNet-50-Xd denote ResNets with a parametric GAP, which is achieved by
insertinga 1 X 1 x X convolution layer before GAP. Such method can be regarded as a special
case of gated mixture of first-order GAP with single CM.

(3) Ave-GAP-K performs simple average of K parametric GAPs without gating module.

(4) GM-GAP-N-K selects K parametric GAPs from N GAP candidates through sparsity-constrained
gating module, and performs weighted sum of K selected parametric GAPs.

(5) Parametric SR-SOP is achieved by adding two convolution layers of {1 x 1 x 128 x 256} and
{1 x 1 x 256 x 128} before SR-SOP.

(6) Ave-SOP-K performs simple average of K parametric SR-SOPs without gating module.

(7) GM-SOP-N-K selects K parametric SR-SOP models from N candidates with sparsity-constrained
gating module, and performs weighted sum of K selected candidates.

In our experiments, image sizes of downsampled ImageNet-1K and Places365 respectively are
64 x 64 and 100 x 100, so we modify ResNet architectures in [[13] to fit image sizes in our case. The
architectures of modified ResNet-18 and ResNet-50 are given in Table[T} As suggested in [26]], we
compute approximate matrix square root in Eq. (9) within five iterations to balance the effectiveness
and efficiency. For training the whole network, we employ mini-batch stochastic gradient descent
with batchsize of 256 and momentum of 0.9. The parameter of weight decay is set to 5e-4. The
program is implemented using MatConvNet toolkit [37]], and runs on a PC equipped with an Intel
i7-4790K@4.00GHz CPU, a single NVIDIA GeForce GTX1080 GPU and 64G RAM.
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Figure 2: Left: Numbers of receiving samples in each CM by setting o = 0 and o = 100. o = 0
indicates balance loss is not employed. Right: Results of GM-GAP-16-4 with various a.

3.2 Ablation Studies on Downsampled ImageNet-1K

Our gated mixture model has three key parameters, i.e., weight parameter «v of balance loss in Eq. (),
number of CMs (V) and number of selected CMs (K'). We evaluate them using gated mixture of
first-order GAP with ResNet-18 on downsampled ImageNet-1K, and the decided optimal parameters
are directly adopted to GM-SOP. Such strategy is not only faster but also avoids over-fitting on
parameters of GM-SOP. We train the networks on downsampled ImageNet-1K dataset [6] within



% BT 1 oror (%) 100 Methods Dim. of Reps.  Top-1 error (%)
FPS (Hz) ResNet-18 128 52.00
475 ResNet-18-512d 512 49.08
S 1000 Ave-GAP-16 512 47.44
g . £ GM-GAP-16-8 (Ours) 512 42.37
3 & ResNet-18-8256d 8256 47.29
- 500 SR-SOP 8256 40.32
425 Ave-SOP-16 8256 40.28
Parametric SR-SOP 8256 40.01
GM-SOP-16-8 (Ours) 8256 38.21
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Figure 3: GM-GAP with various N and K. ResNet-18 on downsampled ImageNet-1K.

Table 3: Comparison with state-of-the-arts on downsampled ImageNet-1K. The methods marked by
* double number of training images using original images and their horizontal flipping ones, and
perform 4 pixels padding and random crop in both training and prediction stages.

Methods Number of Parameters ~ Dimension of Representations ~ Top-1 error/Top-5 error (%)
WRN-36-1% [6] 1.6M 128 49.79/24.17
WRN-36-2* [6] 6.2M 256 39.55/16.57
WRN-36-5* [6] 37.6M 640 32.34/12.64
ResNet-18-512d [13] 1.3M 512 49.08/24.25
ResNet-18+One-layer-SG-MOE [33]] 2.3M 512 46.80/22.63
ResNet-18+NetVLAD [1] 8.9M 8192 45.16/21.73
ResNet-50 [13] 2.4M 128 43.28/19.39
ResNet-50-512d [13] 2.8M 512 41.79/18.30
ResNet-50-8256d [13] 11.6M 8256 41.42/18.14
GM-GAP-16-8 + ResNet-18 (Ours) 2.3M 512 42.37/18.82
GM-GAP-16-8 + ResNet-18* (Ours) 2.3M 512 40.03/17.91
GM-GAP-16-8 + WRN-36-2 (Ours) 8. M 512 35.97/14.41
GM-SOP-16-8 + ResNet-18 (Ours) 10.3M 8256 38.21/17.01
GM-SOP-16-8 + ResNet-50 (Ours) 11.9M 8256 35.73/14.96
GM-SOP-16-8 + WRN-36-2 (Ours) 15.7M 8256 32.33/12.35

{50, 15,10} epochs, while the initial learning rate is set to 0.075 with decay rate of 0.1. Only random
flipping is used for data augmentation, and prediction is performed on whole images. Following
the common settings in [13} 6], we run experiments three trials and report Top-1 error of different
methods on validation set for comparison.

Effect of Parameter o The goal of balance loss is to make as many CMs as possible be adequately
trained. Here we evaluate its effect using GM-GAP-16-4 with various «. Figure[2](Left) compares
numbers of receiving samples in each CM by setting o = 0 and « = 100 within the last training
epoch, where o = 0 indicates balance loss is discarded. Clearly, only four CMs receive almost all
training samples when balance loss is not employed (i.e., & = 0). Differently, the balance loss with
o = 100 makes most of CMs receive similar amount of training samples. Figure 2] (Right) shows the
results of GM-GAP-16-4 with various «, from it we can see that adequately training as many CMs
as possible achieves lower classification error. The balance loss with oz = 100, 1000 obtain similar
results. Without loss of generality, we set parameter o to 100 in following experiments.

Numbers of N and K Then we assess the effect of numbers of NV and K by setting o = 100. Top-1
error and training speed (Frames Per Second, FPS) of GM-GAP with various N and K are illustrated
in Figure 3] Fixing number of K, increase of N leads lower error while bringing more computational
costs. When number of N is fixed, better results are obtained by appropriately enlarging K. Taking
N = 16 as an example, K = 8 gets the best result, and results of K = 12 and K = 16 are slightly
inferior to the one of K = 8. It maybe owe to the fact that sparsity constraint eliminates noisy CMs
having small weights. In addition, we can see that GM-GAP with N = 16, K = 8 (42.37%, 800Hz)
employing 16 CMs is only about 1.8 times slower than baseline (49.08%, 1470Hz) with one CM,
but achieves about 6.71% gains. We also experiment with more CMs. GM-GAP with N=128 and
K=32 obtains 42.52%, achieving no gain over the result of N=16 and K=8 (42.37%). We observe
larger number (128) of CMs leads to a bit over-fitting in our case and more computation cost. To
balance efficiency and effectiveness, we set N = 16 and K = 8 for both GM-GAP and GM-SOP
throughout all remaining experiments.



Table 4: Comparison with counterparts on Places365 dataset with image size of 100 x 100.
ResNet-18-512d  GM-GAP-16-8  ResNet-18-8256d  SR-SOP  Parametric SR-SOP  GM-SOP-16-8

Dim. 512 512 8256 8256 8256 8256
Top-1 error (%) 49.96 48.07 49.99 48.11 47.48 47.18
Top-5 error (%) 19.19 17.84 19.32 18.01 17.52 17.02

Comparison with Counterparts We compare our method with several counterparts, and results of
different methods are listed in Table[2] We train SR-SOP (or parametric SR-SOP) and Ave-SOP-16
(or GM-SOP-16-8) within {20, 5,5,5} and {40, 10,5, 5} epochs. The initial learning rates are set
to 0.15 and 0.1 with decay rate of 0.1. When employing GAP as CM, our GM-GAP is superior to
ResNet-18-512d (single CM) and Ave-GAP-16 (direct ensemble) by a large margin. Meanwhile,
SR-SOP performs better than GM-GAP, and improves ResNet-18-8256d by 6.97% with the same
dimensional representation, demonstrating superiority of SOP. Note that our parametric SR-SOP
outperforms original SR-SOP with negligible additional costs (680Hz vs. 670Hz), and they are
moderately slower than GM-GAP-16-8 (800Hz). The GM-SOP-16-8 outperforms Ave-SOP-16 by
2.07% with more than 2 times faster, and improves SR-SOP by about 2.11% with about 2 times
slower. The above results verify the effectiveness of our GM-SOP and idea of gated mixture model.

3.3 Results on Downsampled ImageNet-1K

Here we compare our method with state-of-the-art (SOTA) methods on downsampled ImageNet-1K
[6]]. Since this dataset is recently proposed and has few reported results, we implement several SOTA
methods based on the modified ResNet-18 and ResNet-50 by ourselves and report their results with
trying our best to tune their hyper-parameters. NetVLAD [1]] is implemented using public available
source code with setting dictionary size to 64. By using the same settings with GM-GAP, we replace
GAP with One-layer-SG-MoE [33]], where each expert is a 128 x 512 fully-connected layer. All
ResNet-50 based methods are trained within {50, 15, 10} epochs, and initial learning rates with decay
rate of 0.1 are set to 0.1 and 0.075 for our GM-SOP and remaining ones, respectively. We also
compare with wide residual network (WRN) [42], whose results are duplicated from [6]. As shown
in Table 3] our GM-SOP and GM-GAP significantly outperform NetVLAD, One-layer-SG-MoE and
original network, when ResNet-18 is employed. Meanwhile, our GM-SOP with ResNet-50 improves
original network and its variants by a large margin. These results verify our methods effectively
improve existing deep CNNs. Our GM-SOP with ResNet-18 clearly outperforms WRN-36-1 and
WRN-36-2, although the latter ones adopt more sophisticated data augmentation. By using the same
augmentation strategy in [6], GM-GAP-16-8 achieves over 2% gains in Top-1 error, which uses much
less parameters to get simliar results with WRN-36-2. To further evaluate our methods, we integrate
the proposed methods with the stronger WRN-36-2, our GM-GAP and GM-GOP improve WRN-36-2
over 3.58% and 7.22% in Top-1 error, respectively. Note that GM-SOP with WRN-36-2 obtains the
similar result with WRN-36-5 [6] using one half parameters.

3.4 Results on Places365

Finally, we evaluate our method on Places365 [44], which contains about 1.8 million training images
and 36,500 validation images collected from 365 scene categories. In our experiments, we resize
all images to 100 x 100, developing a downsampled Places365 dataset. It is much larger and more
challenging than existing low-resolution image datasets [24} 6]. We implement several counterparts
and compare with our method based on ResNet-18. For training these networks, we randomly crop
a 96 x 96 image patch or its flip as input. ResNet-18-8256d and remaining ones are trained within
{35,10,10,5} and {25,5,5,5} epochs, and the initial learning rates are set to 0.05 and 0.1 with
decay rate of 0.1, respectively. The inference is performed on single center crop, and we report results
on validation set for comparison. The results of different methods are given in Table[d] from it we can
see that our GM-SOP-16-8 achieves the best result and significantly outperforms ResNet-18-512d and
ResNet-18-8256d, further demonstrating the effectiveness of GM-SOP. Meanwhile, GM-GAP-16-8
and GM-SOP-16-8 are superior to ResNet-18-512d and SR-SOP by a large margin, respectively. It
indicates the idea of gated mixture model is helpful for improving representation ability of deep
CNNs. Note that parametric SR-SOP for non-trivial gains over original SR-SOP, showing a more
general approach for image modeling is meaningful and useful for improving performance.



4 Related Work

Our GM-SOP method shares similarity with sparsely-gated mixture-of-experts (SG-MoE) layer
[33]. The SG-MoE motivates the gating module of our GM-SOP, but quite differently, our GM-SOP
proposes a parametric SR-SOP as CM while SG-MoE employs a linear transformation (fully-
connected layer) as expert. Meanwhile, our methods significantly outperform one SG-MoE layer.
Additionally, the SG-MOoE is proposed as a general purpose component in a recurrent model [[15]],
while our GM-SOP is proposed as a global modeling step to improve representation ability of
deep CNNs. This work also is related to those methods integrating single HOP into deep CNNs
(19, 29} 139, 27, [8]. Beyond them, our GM-SOP is a mixture model, which can capture richer
information and achieve better performance. NetVLAD [1] and MFAFVNet [28]] extend deep CNNs
with popular feature encoding methods, which also can be seen as mixture models. However, different
from their concatenation scheme for all CMs, our GM-SOP performs sum of selected CMs, leading
more compact representations. Meanwhile, our GM-SOP is clearly superior to feature encoding based
NetVLAD [1]]. Recently, some researchers propose to learn deep mixture probability models for
semi-supervised learning [31] and unsupervised clustering [38]. These methods formulate mixture
probability models as multi-layer networks, and infer the corresponding networks with deriving
variants of EM algorithm. In contrary to deep mixture probability models [31}38]], we aim at plugging
a trainable gated mixture model into deep CNNs as representation for supervised classification.

5 Conclusion

This paper proposes a novel GM-SOP method for improving deep CNNs, whose core is a trainable
gated mixture of parametric second-order pooling model for summarizing the outputs of the last
convolution layer as image representation. The GM-SOP can be flexibly integrated into deep CNNs
in an end-to-end manner. Compared with popular GAP and existing HOP methods only considering
unimodal distributions, our GM-SOP can make better use of statistical information inherent in
convolutional activations, leading better representation ability and higher accuracy. The experimental
results on two large-scale image benchmarks demonstrate the gated mixture model is helpful to
improve classification performance of deep CNNs, and our GM-SOP method clearly outperforms its
counterparts with affordable costs. Note that the proposed GM-SOP is an architecture-independent
model, so we can flexibly adopt it to other advanced CNN architectures [17}15,[16]. In future, we will
experiment with standard-size ImageNet dataset, and extend GM-SOP to other tasks, such as video
classification and semantic segmentation.
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