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Abstract

In this paper, we consider first-order methods for solving stochastic non-convex
optimization problems. The key building block of the proposed algorithms is first-
order procedures to extract negative curvature from the Hessian matrix through a
principled sequence starting from noise, which are referred to NEgative-curvature-
Originated-from-Noise or NEON and are of independent interest. Based on this
building block, we design purely first-order stochastic algorithms for escaping
from non-degenerate saddle points with a much better time complexity (almost
linear time in the problem’s dimensionality) under a bounded variance condition of
stochastic gradients than previous first-order stochastic algorithms. In particular,
we develop a general framework of first-order stochastic algorithms with a second-
order convergence guarantee based on our new technique and existing algorithms
that may only converge to a first-order stationary point. For finding a nearly
second-order stationary point x such that ‖∇F (x)‖ ≤ ε and ∇2F (x) ≥ −

√
εI

(in high probability), the best time complexity of the presented algorithms is
Õ(d/ε3.5), where F (·) denotes the objective function and d is the dimensionality
of the problem. To the best of our knowledge, this is the first theoretical result of
first-order stochastic algorithms with an almost linear time in terms of problem’s
dimensionality for finding second-order stationary points, which is even competitive
with existing stochastic algorithms hinging on the second-order information.

1 Introduction

The problem of interest in this paper is Stochastic Non-Convex Optimization given by

min
x∈Rd

F (x) , Eξ[f(x; ξ)], (1)

where ξ is a random variable and f(x; ξ) is a random smooth non-convex function of x. The only
information available of F (x) to us is sampled stochastic functions f(x; ξ) and their gradients.

A popular choice of algorithms for solving (1) is (mini-batch) stochastic gradient descent (SGD)
method and its variants [6]. However, these algorithms do not necessarily guarantee to escape from a
saddle point (more precisely a non-degenerate saddle point) x satisfying that: ∇F (x) = 0 and the
minimum eigen-value of ∇2F (x)) is less than 0. Recently, new variants of SGD by adding isotropic
noise into the stochastic gradient were proposed (noisy SGD [5], stochastic gradient Langevin
dynamics (SGLD) [23]). These two works provide rigorous analyses of the noise-injected update for
escaping from a saddle point. Unfortunately, both variants suffer from a polynomial time complexity
with a super-linear dependence on the dimensionality d (at least a power of 4), which renders them
not practical for optimizing problems of high dimension.

On the other hand, second-order information carried by the Hessian has been utilized to escape from
a saddle point, which usually yields an almost linear time complexity in terms of the dimensionality
d under the assumption that the Hessian-vector product (HVP) can be performed in a linear time. In
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Table 1: Comparison with existing Stochastic Algorithms for achieving an (ε, γ)-SSP to (1), where
p is a number at least 4, IFO (incremental first-order oracle) and ISO (incremental second-order
oracle) are terminologies borrowed from [20], representing ∇f(x; ξ) and ∇2f(x; ξ)v respectively,
Th denotes the runtime of ISO and Tg denotes the runtime of IFO. Õ(·) hides a poly-logarithmic
factor. SM refers to stochastic momentum methods. For γ, we only consider as lower as ε1/2.

Algorithm Oracle Target Time Complexity

Noisy SGD [5] IFO (ε, ε1/2)-SSP, high probability Õ (Tgd
pε−p)

SGLD [23] IFO (ε, ε1/2)-SSP, high probability Õ
(
Tgd

pε−4
)

Natasha2 [1] IFO + ISO (ε, ε1/2)-SSP, expectation Õ
(
Tgε
−3.5 + Thε

−2.5
)

Natasha2 [1] IFO + ISO (ε, ε1/4)-SSP, expectation Õ
(
Tgε
−3.25 + Thε

−1.75
)

SNCG [17] IFO + ISO (ε, ε1/2)-SSP, high probability Õ
(
Tgε
−4 + Thε

−2.5
)

SVRG-Hessian [20] (finite-sum objectives) IFO + ISO (ε, ε1/2)-SSP, high probability Õ
(
Tg(n

2/3ε−2 + nε−1.5)
(n is number of components) +Th(nε−1.5 + n3/4ε−7/4)

)
NEON-SGD, NEON-SM (this work) IFO (ε, ε1/2)-SSP, high probability Õ

(
Tgε
−4
)

NEON-SCSG (this work) IFO (ε, ε1/2)-SSP, high probability Õ
(
Tgε
−3.5

)
NEON-SCSG (this work) IFO (ε, ε4/9)-SSP, high probability Õ

(
Tgε
−3.33

)
NEON-Natasha (this work) IFO (ε, ε1/2)-SSP, expectation Õ

(
Tgε
−3.5

)
NEON-Natasha (this work) IFO (ε, ε1/4)-SSP, expectation Õ

(
Tgε
−3.25

)
NEON-SVRG (this work) (finite sum) IFO (ε, ε1/2)-SSP, high probability Õ

(
Tg
(
n2/3ε−2 + nε−1.5 + ε−2.75

))
practice, HVP can be estimated by a finite difference approximation using two gradient evaluations.
However, the rigorous analysis of algorithms using such noisy approximation for solving non-convex
optimization remains unsolved, and heuristic approaches may suffer from numerical issues. Although
for some problems with special structures (e.g., neural networks), HVP can be efficiently computed
using gradients, a HVP-free method that can escape saddle points for a broader family of non-convex
problems is still desirable.

This paper aims to design HVP-free stochastic algorithms for solving (1), which can converge
to second order stationary points with a time complexity that is almost linear in the problem’s
dimensionality. Our main contributions are:

• As a key building block of proposed algorithms, first-order procedures (NEON) are proposed
to extract negative curvature from the Hessian using a principled sequence starting from noise.
Interestingly, our perspective of NEON connects the existing two classes of methods (noise-
based and HVP-based) for escaping from saddle points. We provide a formal analysis of simple
procedures based on gradient descent and accelerated gradient method for exacting a negative
curvature direction from the Hessian.

• We develop a general framework of first-order algorithms for stochastic non-convex optimization
by combining the proposed first-order NEON procedures to extract negative curvature with existing
first-order stochastic algorithms that aim at a first-order critical point. We also establish the time
complexities of several interesting instances of our general framework for finding a nearly (ε, γ)-
second-order stationary point (SSP), i.e., ‖∇F (x)‖ ≤ ε, and λmin(∇2F (x)) ≥ −γ, where ‖ · ‖
represents Euclidean norm of a vector and λmin(·) denotes the minimum eigen-value. A summary
of our results and existing results for Stochastic Non-Convex Optimization is presented in Table 1.

2 Other Related Work

SGD and its many variants (e.g., mini-batch SGD and stochastic momentum (SM) methods) have
been analyzed for stochastic non-convex optimization [6, 7, 8, 22]. The iteration complexities
of all these algorithms is O(1/ε4) for finding a first-order stationary point (FSP) (in expectation
E[‖∇F (x)‖22] ≤ ε2 or in high probability). Recently, there are some improvements for stochastic
non-convex optimization. [14] proposed a first-order stochastic algorithm (named SCSG) using the
variance-reduction technique, which enjoys an iteration complexity of O(1/ε−10/3) for finding an
FSP (in expectation), i.e., E[‖∇F (x)‖22] ≤ ε2. [1] proposed a variant of SCSG (named Natasha1.5)
with the same convergence and complexity. An important application of NEON is that previous
stochastic algorithms that have a first-order convergence guarantee can be strengthened to enjoy a
second-order convergence guarantee by leveraging the proposed first-order NEON procedures to
escape from saddle points. We will analyze several algorithms by combining the updates of SGD,
SM, and SCSG with the proposed NEON.
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Several recent works [17, 1, 20] propose to strengthen existing first-order stochastic algorithms to
have second-order convergence guarantee by leveraging the second-order information. [17] used
mini-batch SGD, [20] used SVRG for a finite-sum problem, and [1] used a similar algorithm to
SCSG for their first-order algorithms. The second-order methods used in these studies for computing
negative curvature can be replaced by the proposed NEON procedures. It is notable although a
generic approach for stochastic non-convex optimization was proposed in [20], its requirement on the
first-order stochastic algorithms precludes many interesting algorithms such as SGD, SM, and SCSG.
Stronger convergence guarantee (e.g., converging to a global minimum) of stochastic algorithms has
been studied in [9] for a certain family of problems, which is beyond the setting of the present work.

It is also worth mentioning that the field of non-convex optimization is moving so fast that similar
results have appeared online after the preliminary version of this work [2]. Allen-Zhu and Li [2]
proposed NEON2 for finding a negative curvature, which includes a stochastic version and a de-
terministic version. We notice several differences between the two works: (i) they used Gaussian
random noise with a variance proportional to d−C , where C is a large unknown constant, in contrast
our NEON and NEON+ procedures use random noise sampled from the sphere of an Euclidean ball
with radius proportional to log−2(d); (ii) the update of their deterministic NEON2det is constructed
based on the Chebyshev polynomial, in contrast our NEON+ with a similar iteration complexity is
based on the well-known Nesterov’s accelerated gradient method; (iii) we provide a general frame-
work/analysis for promoting first-order algorithms to enjoy second-order convergence, which could
be useful for promoting new first-order stochastic algorithms; (iv) the reported iteration complexity
of their NEON2online is better than our stochastic variants of NEON. However, in most cases the total
complexity for finding an (ε,

√
ε)-SSP is dominated by the complexity for finding a stationary point

not by the complexity of stochastic NEON for finding a negative curvature.

3 Preliminaries

Let ‖ · ‖ denote the Euclidean norm of a vector and ‖ · ‖2 denote the spectral norm of a matrix.
Let Sdr denote the sphere of an Euclidean ball centered at zero with radius r, and [t] denote a
set {0, . . . , t}. A function f(x) has a L1-Lipschitz continuous gradient if it is differentiable and
there exists L1 > 0 such that ‖∇f(x) − ∇f(y)‖ ≤ L1‖x − y‖ holds for any x,y ∈ Rd. A
function f(x) has a L2-Lipschitz continuous Hessian if it is twice differentiable and there exists
L2 > 0 such that ‖∇2f(x) − ∇2f(y)‖2 ≤ L2‖x − y‖ holds for any x,y ∈ Rd. It implies that
|f(x)− f(y)−∇f(y)>(x− y)− 1

2 (x− y)>∇2f(y)(x− y)| ≤ L2

6 ‖x− y‖3, and

‖∇f(x + u)−∇f(x)−∇2f(x)u‖ ≤ L2‖u‖2/2. (2)
We first make the following assumptions regarding the problem (1).

Assumption 1. For the problem (1), we assume that
(i). every random function f(x; ξ) is twice differentiable, and it has L1-Lipschitz continuous

gradient and L2-Lipschitz continuous Hessian.
(ii). given an initial point x0, there exists ∆ <∞ such that F (x0)−F (x∗) ≤ ∆, where x∗ denotes

the global minimum of (1).
(iii). there exists G > 0 such that E[exp(‖∇f(x; ξ)−∇F (x)‖2/G2)] ≤ exp(1) holds.

Remark. (1) the analysis of NEON or NEON+ or their stochastic versions for extracting the negative
curvature only requires Assumption 1 (i). Indeed, the Lipschitz continuous Hessian can be relaxed
to locally Lipchitz continuous Hessian condition according to our analysis. (2) Assumptions 1 (ii)
(iii) are used in the analysis of Section 5, which are standard assumptions made in the literature
of stochastic non-convex optimization [6, 7, 8]. Assumption 1 (iii) implies that E[‖∇f(x; ξ) −
∇F (x)‖2] ≤ V , G2 holds. For stating our time complexities, we assume G is independent of d for
finding an approximate local minimum in Section 5. Nevertheless, our comparison of the proposed
algorithms with previous algorithms (e.g., SGLD [23], SNCG [17], Natasha2 [1]) in the stochastic
setting are fair because similar assumptions are also made. We also note that [5] makes a stronger
assumption about the stochastic gradients, i.e., ‖∇f(x; ξ) − ∇F (x)‖ ≤ O(d), which leads to a
worse dependence of time complexity on d, i.e., O(dp) with p ≥ 4.

Next, we discuss a second-order method based on HVPs to escape from a non-degenerate saddle
point x of a function f(x) that satisfies λmin(∇2f(x)) ≤ −γ, which can be found in many previous
studies [21, 16, 4]. The method is based on a negative curvature (NC for short is used in the sequel)

3



direction v ∈ Rd that satisfies ‖v‖ = 1 and

v>∇2f(x)v ≤ −cγ, (3)
where c > 0 is a constant. Given such a vector v, we can update the solution according to

x+ = x− cγ

L2
sign(v>∇f(x))v, or x′+ = x− cγ

L2
ξ̄v, (4)

where ξ̄ ∈ {1,−1} is a Rademacher random variable used when ∇f(x) is not available. The
following lemma establishes that the objective value of x+ or x′+ is less than that of x by a sufficient
amount, which makes it possible to escape from the saddle point x.

Lemma 1. For x satisfying λmin(∇2f(x)) ≤ −γ and v satisfying (3), let x+, x′+ be given in (4),

then we have f(x)− f(x+) ≥ c3γ3

3L2
2

and E[f(x)− f(x′+)] ≥ c3γ3

3L2
2
.

To compute a NC direction v that satisfies (3), we can employ the Lanczos method or the Power
method for computing the maximum eigen-vector of the matrix (I−η∇2f(x)), where ηL1 ≤ 1 such
that I − η∇2f(x) � 0. The Power method starts with a random vector v1 ∈ Rd (e.g., drawn from a
uniform distribution over the unit sphere) and iteratively compute vτ+1 = (I − η∇2f(x))vτ , τ =
1, . . . , t. Following the results in [13], it can be shown that if λmin(∇2f(x)) ≤ −γ, then with at most
log(d/δ2)L1

γ HVPs, the Power method finds a vector v̂t = vt/‖vt‖ such that v̂>t ∇2f(x)v̂t ≤ −γ2
holds with high probability 1− δ. Similarly, the Lanczos method (e.g., Lemma 11 in [21]) can find
such a vector v̂t with a lower number of HVPs, i.e., min(d, log(d/δ2)

√
L1

2
√

2ε
).

4 Key Building Block: Extracting NC From Noise

Our HVP-free stochastic algorithms with provable guarantees for solving (1) presented in next section
are based on a key building block, i.e., extracting NC from noise using only first-order information.
To tackle the stochastic objective in (1), our method is to compute a NC based on a mini-batch of
functions

∑m
i=1 f(x; ξi)/m for a sufficiently large number of samples. Thus, a key building block of

the proposed method is a first-order procedure to extract NC for a non-convex function f(x) 1.

Below, we first propose a gradient descent based method for extracting NC, which achieves a similar
iteration complexity to the Power method. Second, we present an accelerated gradient method to
extract the NC to match the iteration complexity of the Lanczos method. Finally, we discuss the
application of these procedures for stochastic non-convex optimization using mini-batch.

4.1 Extracting NC by NEON

The NEON is inspired by the perturbed gradient descent (PGD) method (a method for solving
deterministic non-convex problems) proposed in the seminal work [11] and its connection with the
Power method as discussed shortly. Around a saddle point x, the PGD method first generates a
random noise vector ê from the sphere of an Euclidean ball with a proper radius, then starts with a
noise perturbed solution x0 = x + ê, the PGD generates the following sequence of solutions:

xτ = xτ−1 − η∇f(xτ−1). (5)
To establish a connection with the Power method and motivate the proposed NEON, let us define
another sequence of x̂τ = xτ − x. Then we have the recurrence for x̂τ = x̂τ−1 − η∇f(x̂τ−1 +
x), τ = 1, . . . , t. It is clear that for τ = 1, . . . , t,

x̂τ = x̂τ−1 − η∇f(x)− η(∇f(x̂τ−1 + x)−∇f(x)).

To understand the above update, we adopt the following approximation: ∇f(x) ≈ 0 for an ap-
proximate saddle point, and from the Lipschitz continuous Hessian condition (2), we can see that
∇f(x̂τ−1 + x)−∇f(x) ≈ ∇2f(x)x̂τ−1 as long as ‖x̂τ−1‖ is small. Then for τ = 1, . . . , t,

x̂τ ≈ x̂τ−1 − η∇2f(x)x̂τ−1 = (I − η∇2f(x))x̂τ−1.

It is obvious that the above approximated recurrence is close to the the sequence generated by the
Power method with the same starting random vector ê = v1. This intuitively explains that why the
updated solution xt = x + x̂t can decrease the objective value due to that x̂t is close to a NC of the

1We abuse the same notation f here.

4



Algorithm 1 NEON(f,x, t,F , r)
1: Input: f,x, t,F , r
2: Generate u0 randomly from Sdr
3: for τ = 0, . . . , t do
4: uτ+1 = uτ − η(∇f(x + uτ )−∇f(x))
5: end for
6: if mini∈[t+1],‖ui‖≤U f̂x(ui) ≤ −2.5F
7: return uτ ′ , τ ′ = arg mini∈[t+1],‖ui‖≤U f̂x(ui)
8: else return 0

Algorithm 3 NCFind (y0:τ ,u0:τ )

1: if minj=0,...,τ ‖yj − uj‖ ≥ ζ
√

6ηF
2: return yj , j = min{j′ : ‖yj′−uj′‖ ≥ ζ

√
6ηF}

3: else return yτ − uτ

Algorithm 2 NEON+(f,x, t,F , U, ζ, r)
1: Input: f,x, t,F , U, ζ, r
2: Generate y0 = u0 randomly from Sr
3: for τ = 0, . . . , t do
4: if ∆x(yτ ,uτ ) < −γ2 ‖yτ − uτ‖2

then
5: return v =NCFind(y0:τ ,u0:τ )
6: end if
7: compute (yτ+1,uτ+1) by (8)
8: end for
9: if mini,‖yi‖≤U f̂x(yi) ≤ −2F then

10: let τ ′ = arg mini,‖yi‖≤U f̂x(yi)
11: return yτ ′
12: else
13: return 0
14: end if

Hessian∇2f(x). To provide a formal analysis, we will first analyze the following recurrence:
uτ = uτ−1 − η(∇f(x + uτ−1)−∇f(x)), τ = 1, . . . (6)

starting with a random noise vector u0, which is drawn from the sphere of an Euclidean ball with a
proper radius r denoted by Sdr . It is notable that the recurrence in (6) is slightly different from that
in (5). We emphasize that this simple change is useful for extracting the NC at any points whose
Hessian has a negative eigen-value not just at non-degenerate saddle points, which can be used in
some stochastic or deterministic algorithms [1, 4, 21, 16]. The proposed procedure NEON based on
the above sequence for finding a NC direction of ∇2f(x) is presented in Algorithm 1, where f̂x(u)
is defined in (7). The following theorem states our result of NEON for extracting the NC.

Theorem 1. Under Assumption 1 (i), let γ ∈ (0, 1) and δ ∈ (0, 1) be a sufficiently small. For any
constant ĉ ≥ 18, there exists a constant cmax that depends on ĉ, such that if NEON is called with
t = ĉ log(dL1/(γδ))

ηγ , F = ηγ3L1L
−2
2 log−3(dL1/(γδ)), r =

√
ηγ2L

−1/2
1 L−1

2 log−2(dL1/(γδ)),
U = 4ĉ(

√
ηL1F/L2)1/3 and a constant η ≤ cmax/L1, then at a point x satisfying λmin(∇2f(x)) ≤

−γ with high probability 1− δ it returns u such that u>∇2f(x)u
‖u‖2 ≤ − γ

8ĉ2 log(dL1/(γδ))
≤ −Ω̃(γ). If

NEON returns u 6= 0, then the above inequality must hold; if NEON returns 0, we can conclude that
λmin(∇2f(x)) ≥ −γ with high probability 1−O(δ).

Remark: The above theorem shows that at any point x whose Hessian has a negative eigen-value
(including non-degenerate saddle points), NEON can find a NC of∇2f(x) with high probability.

4.2 Finding NC by Accelerated Gradient Method

Although NEON provides a similar guarantee for extracting a NC as that provided by the Power
method, but its iteration complexity O(1/γ) is worse than that of the Lanczos method, i.e., O(1/

√
γ).

In this subsection, we present a first-order method that matches O(1/
√
γ) of the Lanczos method.

Let us recall the sequence (6), which is essentially an application of gradient descent (GD) method to
the following objective function:

f̂x(u) = f(x + u)− f(x)−∇f(x)>u. (7)

In the sequel, we write f̂x(u) = f̂(u), where the dependent x should be clear from the context. By
the Lipschitz continuous Hessian condition, we have that

1

2
u>∇2f(x)u− L2

6
‖u‖3 ≤ f̂(u).

It implies that if f̂(u) is sufficiently less than zero and ‖u‖ is not too large, then u>∇2f(x)u
‖u‖2 will be

sufficiently less than zero. Hence, NEON can be explained as using GD updates to decrease f̂(u).
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A natural question to ask is whether the convergence of GD updates of NEON can be accelerated by
accelerated gradient (AG) methods. It is well-known from convex optimization literature that AG
methods can accelerate the convergence of GD method for smooth problems. Recently, several studies
have explored AG methods for non-convex optimization [15, 19, 3, 12]. Notably, [19] analyzed the
behavior of AG methods near strict saddle points and investigated the rate of divergence from a strict
saddle point for toy quadratic problems. [12] analyzed a single-loop algorithm based on Nesterov’s
AG method for deterministic non-convex optimization. However, none of these studies provide an
explicit complexity guarantee on extracting NC from the Hessian matrix for a general non-convex
problem. Inspired by these studies, we will show that Nesterov’s AG (NAG) method [18] when
applied the function f̂(u) can find a NC with a complexity of Õ(1/

√
γ).

The updates of NAG method applied to the function f̂(u) at a given point x is given by

yτ+1 = uτ − η∇f̂(uτ ),

uτ+1 = yτ+1 + ζ(yτ+1 − yτ ),
(8)

where ζ(yτ+1 − yτ ) is the momentum term, and ζ ∈ (0, 1) is the momentum parameter. The
proposed algorithm based on the NAG method (referred to as NEON+) for extracting NC of a
Hessian matrix∇2f(x) is presented in Algorithm 2, where

∆x(yτ ,uτ ) = f̂x(yτ )− f̂x(uτ )−∇f̂x(uτ )>(yτ − uτ ),

and NCFind is a procedure that returns a NC by searching over the history y0:τ ,u0:τ shown in
Algorithm 3. The condition check in Step 4 is to detect easy cases such that NCFind can easily find
a NC in historical solutions without continuing the update, which is designed following a similar
procedure called Negative Curvature Exploitation (NCE) proposed in [12]. However, the difference
is that NCFind is tailored to finding a negative curvature satisfying (3), while NCE in [12] is for
ensuring a decrease on a modified objective. The theoretical result of NEON+ is presented below.

Theorem 2. Under Assumption 1 (i), let γ ∈ (0, 1) and δ ∈ (0, 1) be a sufficiently small. For any
constant ĉ ≥ 43, there exists a constant cmax that depends on ĉ, such that if NEON+is called with

t =
√

ĉ log(dL1/(γδ))
ηγ , F = ηγ3L1L

−2
2 log−3(dL1/(γδ)), r =

√
ηγ2L

−1/2
1 L−1

2 log−2(dL1/(γδ)),

U = 12ĉ(
√
ηL1F/L2)1/3, a small constant η ≤ cmax/L1, and a momentum parameter ζ = 1−√ηγ,

then at any point x satisfying λmin(∇2f(x)) ≤ −γ with high probability 1− δ it returns u such that
u>∇2f(x)u
‖u‖2 ≤ − γ

72ĉ2 log(dL1/(γδ))
≤ −Ω̃(γ). If NEON+returns u 6= 0, then the above inequality

must hold; if NEON+returns 0, we can conclude that λmin(∇2f(x)) ≥ −γ with high probability
1−O(δ).

4.3 Stochastic Approach for Extracting NC

In this subsection, we present a stochastic approach for extracting NC for F (x) in (1). For simplicity,
we refer to both NEON and NEON+ as NEON. The challenge in employing NEON for finding a
NC for the original function F (x) in (1) is that we cannot evaluate the gradient of F (x) exactly. To
address this issue, we resort to the mini-batching technique.

Let S = {ξ1, . . . , ξm} denote a set of random samples and define a sub-sampled function FS(x) =
1
|S|
∑
ξ∈S f(x; ξ). Then we apply NEON to FS(x) for finding an approximate NC uS of ∇2FS(x).

Below, we show that as long as m is sufficiently large, uS is also an approximate NC of∇2F (x).

Theorem 3. Under Assumption 1 (i), for a sufficiently small δ ∈ (0, 1) and ĉ ≥ 43, let m ≥
16L2

1 log(6d/δ)
s2γ2 , where s = log−1(3dL1/(2γδ))

(12ĉ)2 is a proper small constant. If λmin(∇2F (x)) ≤ −γ,
there exists c > 0 such that with probability 1− δ, NEON(FS ,x, t,F , r) returns a vector uS such

that u>S∇
2F (x)uS
‖uS‖2 ≤ −cγ, where c = (12ĉ)−2 log−1(3dL1/(2γδ)). If NEON(FS ,x, t,F , r) returns

0, then with high probability 1 − O(δ) we have λmin(∇2F (x)) ≥ −2γ. In either case, NEON
terminates with an IFO complexity of Õ(1/γ3) or Õ(1/γ2.5) corresponding to Algorithm 1 and
Algorithm 2, respectively.
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Algorithm 4 NEON-A
1: Input: x1, other parameters of algorithmA
2: for j = 1, 2, . . . , do
3: Compute (yj , zj) = A(xj)
4: if first-order condition of yj not met then
5: let xj+1 = zj
6: else
7: uj = NEON(FS2 ,yj , t,F , r)
8: if uj = 0 return yj

9: else let xj+1 = yj − cγξ̄
L2

uj

‖uj‖
10: end if
11: end for

Algorithm 6 SCSG-epoch: (x,S1, b)

1: Input: x, an independent set of samples S1 and
b ≤ |S1|

2: Set m1 = |S1|, η = c′(m1/b)
−2/3, c′ ≤ 1/6

3: Compute∇FS(xj−1) and let x0 = x
4: Generate N ∼ Geom(m1/(m1 + b))
5: for k = 1, 2, . . . , N do
6: Sample samples Sk of size b
7: vk = ∇FSk(xk−1)−∇FSk(x0) +∇FS(x0)
8: xk = xk−1 − ηvk
9: end for

10: return xN

5 First-order Algorithms for Stochastic Non-Convex Optimization

In this section, we will first describe a general framework for promoting existing first-order stochastic
algorithms denoted by A to enjoy a second-order convergence, which is shown in Algorithm 4.
Here, we require A(xj) to return two points (yj , zj) that satisfy (9) and the mini-batch sample size
m = |S2| satisfies the condition in Lemma 3. The proposed NEON is used for escaping from a saddle
point. It should be noted that Algorithm 4 is abstract depending on how to implement Step 3, how to
check the first-order condition, and how to set the step size parameter ξ̄ in Step 9.

For theoretical interest, we will analyze Algorithm 4 with a Rademacher random variable ξ̄ ∈ {1,−1}
and its three main components satisfying the following properties.

Property 1. (1) Step 7 - Step 9 guarantees that if λmin(∇2F (yj)) ≤ −γ, there exists C > 0 such
that E[F (xj+1)− F (yj)] ≤ −Cγ3. Let the total IFO complexity of Step 7 - Step 9 be Tn. (2) There
exists a first-order stochastic algorithm (yj , zj) = A(xj) that satisfies:

if ‖∇F (yj)‖ ≥ ε, then E[F (zj)− F (xj)] ≤ −ε(ε, α)

if ‖∇F (yj)‖ ≤ ε, then E[F (yj)− F (xj)] ≤ Cγ3/2
(9)

where ε(ε, α) is a function of ε and a parameter α > 0. Let the total IFO complexity of A(x) be
Ta. (3) the check of first-order condition can be implemented by using a mini-batch of samples S,
i.e., ‖∇FS(yj)‖ ≤ ε, where S is independent of yj such that ‖∇F (yj)−∇FS(yj)‖ ≤ ε/2. Let the
IFO complexity of checking the first-order condition be Tc.

Property (1) can be guaranteed by Theorem 3 and Lemma 1. When using NEON, Tn = Õ(1/γ3)

and when using NEON+, Tn = Õ(1/γ2.5). For Property (2), we will analyze several interesting
algorithms. Property (3) can be guaranteed by Lemma 2 in the supplement under Assumption (1) (iii)
with Tc = Õ( 1

ε2 ). Based on the above properties, we have the following convergence of Algorithm 4.

Theorem 4. Assume Properties 1 hold. Then with high probability 1− δ, NEON-A terminates with a
total IFO complexity of Õ(max( 1

ε(ε,α) ,
1
γ3 )(Tn+Ta+Tc)). Upon termination, with high probability

‖∇F (yj)‖ ≤ O(ε) and λmin(∇2F (yj)) ≥ −2γ, where Õ(·) hides logarithmic factors of d and 1/δ,
and problem’s other constant parameters.

Next, we present corollaries of Theorem 4 for several instances of A, including stochastic gradient
descent (SGD) method, stochastic momentum (SM) methods, mini-batch SGD (MSGD), and SCSG.
SGD and its momentum variants (including stochastic heavy-ball (SHB) method and stochastic
Nesterov’s accelerated gradient (SNAG) method) are popular stochastic algorithms for solving a
stochastic non-convex optimization problem. We will consider them in a unified framework as
established in [22]. The updates of SM starting from x0 are

x̂τ+1 = xτ − η∇f(xτ ; ξτ ),

x̂sτ+1 = xτ − sη∇f(xτ ; ξτ ),

xτ+1 = x̂τ+1 + β(x̂sτ+1 − x̂sτ ),

(10)
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Algorithm 5 SM: (x0, η, β, s, t)

1: for τ = 0, 1, 2, . . . , t do
2: Compute xτ+1 according to (10)
3: Compute x+

τ+1 according to (11)
4: end for
5: return (x+

τ ′ ,x
+
t+1), where τ ′ ∈ {0, . . . , t}

is a randomly generated.
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for τ = 0, . . . , t and x̂s0 = x0, where β ∈ (0, 1) is a momentum constant, η is a step size, s =
0, 1, 1/(1− β) corresponds to SHB, SNAG and SGD. Let sequence x+

τ with x+
0 = x0 be defined as

x+
τ = xτ + pτ , τ ≥ 1, pτ =

β

1− β
(xτ − xτ−1 − sη∇f(xτ−1; ξτ−1)). (11)

We can implement A by Algorithm 5 and have the following result.
Corollary 5. LetA(xj) be implemented by Algorithm 5 with t = Θ(1/ε2) iterations, η = Θ(ε2), β ∈
(0, 1), s ∈ (0, 1/(1 − β)). Then Ta = O(1/ε2) and ε(ε, α) = Θ(ε2). Suppose that γ ≥ ε2/3 and
E[‖∇f(x; ξ)‖2] is bounded for s 6= 1/(1 − β). Then with high probability, NEON-SM finds an
(ε, γ)-SPP with a total IFO complexity of Õ(max( 1

ε2 ,
1
γ3 )(Tn + 1

ε2 )), where Tn = Õ(1/γ3) (NEON)

or Tn = Õ(1/γ2.5) (NEON+).

Remark: When γ = ε1/2, NEON-SM has an IFO complexity of Õ( 1
ε4 ).

MSGD computes (yj , zj) by

zj = xj − L−1
1 ∇FS1(xj), yj = xj (12)

where S1 is a set of samples independent of xj .

Corollary 6. Let A(xj) be implemented by (12) with |S1| = Õ(1/ε2). Then Ta = Õ(1/ε2) and
ε(ε, α) = ε2

4L1
. With high probability, NEON-MSGD finds an (ε, γ)-SPP with a total IFO complexity

of Õ(max( 1
ε2 ,

1
γ3 )(Tn + 1/ε2)).

Remark: Compared to Corollary 5, there is no requirement on γ ≥ ε2/3, which is due to that MSGD
can guarantee that E[F (yj)− F (xj)] ≤ 0.

SCSG was proposed in [14], which only provides a first-order convergence guarantee. SCSG runs
with multiple epochs, and each epoch uses similar updates as SVRG with three distinct features:
(i) it was applied to a sub-sampled function FS1 ; (ii) it allows for using a mini-batch samples of
size b independent of S1 to compute stochastic gradients; (ii) the number of updates of each epoch
is a random number following a geometric distribution dependent on b and |S1|. These features
make each SGCG epoch denoted by SCSG-epoch(x,S1, b) have an expected IFO complexity of
Ta = O(|S1|). We present SCSG-epoch(x,S1, b) in Algorithm 6. For using SCSG, yj and zj are

yj = SCSG-epoch(xj ,S1, b), zj = yj (13)

Corollary 7. Let A(xj) be implemented by (13) with |S1| = Õ
(
max(1/ε2, 1/(γ9/2b1/2))

)
. Then

ε(ε, α) = Ω(ε4/3/b1/3) and E[Ta] = Õ
(
max(1/ε2, 1/(γ9/2b1/2))

)
. With high probability, NEON-

SCSG finds an (ε, γ)-SSP with an expected total IFO complexity of Õ(max( b
1/3

ε4/3
, 1
γ3 )(Tn + 1/ε2 +

1/(γ9/2b1/2))), where Tn = Õ(1/γ3) (NEON) or Tn = Õ(1/γ2.5) (NEON+).

Remark: When γ = ε1/2, b = 1/
√
ε, NEON-SCSG has an expected IFO complexity of Õ( 1

ε3.5 ).
When γ ≥ ε4/9, b = 1, NEON-SCSG has an expected IFO complexity of Õ(1/ε3.33).

Finally, we mention that the proposed NEON or NEON+ can be used in existing second-order
stochastic algorithms that require a NC direction as a substitute of second-order methods [1, 20].
[1] developed Natasha2, which uses second-order online Oja’s algorithm for finding the NC. [20]
developed a stochastic algorithm for solving a finite-sum problem by using SVRG and a second-order
stochastic algorithm for computing the NC. We can replace the second-order methods for computing
a NC in these algorithms by the proposed NEON or NEON+, with the resulting algorithms referred
to as NEON-Natasha and NEON-SVRG. It is a simple exercise to derive the convergence results in
Table 1, which is left to interested readers.

8



#IFO ×10
4

0 1 2 3 4 5

o
b
je

c
ti
v
e

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0
d = 10

3

NEON
+
-SGD

NEON-SGD
Noisy SGD

#IFO ×10
4

0 1 2 3 4 5

o
b
je

c
ti
v
e

×10
4

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
d = 10

4

NEON
+
-SGD

NEON-SGD
Noisy SGD

#IFO ×10
4

0 1 2 3 4 5

o
b
je

c
ti
v
e

×10
5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
d = 10

5

NEON
+
-SGD

NEON-SGD
Noisy SGD

Figure 2: NEON-SGD vs Noisy SGD. (All algorithms converge to local minimum)

6 Experiments

Extracting NC. First, we present some simulations to verify the proposed NEON procedures for
extracting NC. To this end, we consider minimizing non-linear least square loss with a non-convex
regularizer for classification, i.e., F (x) =

∑d
i=1

x2
i

1+x2
i

+ λ
n

∑n
i=1(bi−σ(x>ai))

2, where bi ∈ {0, 1}
denotes the label and ai ∈ Rd denotes the feature vector of the i-th data, λ > 0 is a trade-off
parameter, and σ(·) is a sigmoid function. We generate a random vector x ∼ N (0, I) as the target
point to construct F̂x(u) and compute a NC of ∇2F (x). We use a binary classification data named
gisette from the libsvm data website that has n = 6000 examples and d = 5000 features, and set
λ = 3 in our simulation to ensure there is significant NC from the non-linear least-square loss. The
step size η and initial radius in NEON procedures are set to be 0.01 and the momentum parameter in
NEON+ is set to be 0.9. These values are tuned in a certain range.

We compare the two NEON procedures and their stochastic variants (denoted by NEON-st and
NEON+-st in the figure) with second-order methods that use HVPs, namely the Power method
and the Lanczos method, where the HVPs are calculated exactly. The result is shown in Figure 1
whose y-axis denotes the value of û>Hû, where û represents the found normalized NC vector and
H = ∇2F (x) is the Hessian matrix. For NEON-st and NEON+-st, we use a sample size of 100.
Please note that the solid red curve corresponding to NEON+-st terminates earlier due to that NCFind
is executed. Several observations follow: (i) NEON performs similarly to the Power method (the two
curves overlap in the figure); (ii) NEON+ has a faster convergence than NEON; (iv) the stochastic
versions of NEON and NEON+ can quickly find a good NC directions than their full versions in
terms of IFO complexity and are even competitive with the Lanczos method. We include several
more results in the supplement.

Escaping Saddles. Second, we present some simulations to verify the proposed NEON and NEON+

based algorithms for minimizing a stochastic objective. We consider a non-convex optimization
problem with f(x; ξ) =

∑d
i=1 ξi(x

4
i − 4x2

i ) where ξi are a normal random variables with mean of
1 so that the saddle points of the expected function are known [10]. Assuming the noise ξ is only
accessed through a sampler, then we compare NEON-SGD with a state-of-the-art algorithm Noisy
SGD [5] for different values of d ∈ {103, 104, 105}. The step size of Noisy SGD is tuned in a wide
range and the best one is used. The step size in NEON procedures are set to be the same value as
Noisy SGD. The radius in NEON procedures is set to be 0.01 and the momentum paramenter in
NEON+ is set to be 0.9. The mini-batch size is tuned from {50, 100, 200, 500}. All algorithms are
started with a same saddle point as the initial solution. The results are presented in Figure 2, showing
that two variants of NEON-SGD methods can escape saddles faster than Noisy SGD. NEON+-SGD
escapes saddle points the fastest among all algorithms for different values of d. In addition, the
increasing of dimensionality d has much larger effect on the IFO complexity of Noisy-SGD than that
of NEON-SGD methods, which is consistent with theoretical results.

7 Conclusions

We have proposed novel first-order procedures to extract negative curvature from a Hessian matrix
by using a noise-initiated sequence, which are of independent interest. A general framework for
promoting a first-order stochastic algorithm to enjoy a second-order convergence is also proposed.
Based on the proposed general framework, we designed several first-order stochastic algorithms with
state-of-the-art second-order convergence guarantee.
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