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Abstract

We present an improved algorithm for properly learning convex polytopes in the
realizable PAC setting from data with a margin. Our learning algorithm constructs
a consistent polytope as an intersection of about t log t halfspaces with margins
in time polynomial in t (where t is the number of halfspaces forming an optimal
polytope).
We also identify distinct generalizations of the notion of margin from hyperplanes
to polytopes and investigate how they relate geometrically; this result may be of
interest beyond the learning setting.

1 Introduction

In the theoretical PAC learning setting [Valiant, 1984], one considers an abstract instance space X —
which, most commonly, is either the Boolean cube {0, 1}d or the Euclidean space Rd. For the former
setting, an extensive literature has explored the statistical and computational aspects of learning
Boolean functions [Angluin, 1992, Hellerstein and Servedio, 2007]. Yet for the Euclidean setting, a
corresponding theory of learning geometric concepts is still being actively developed [Kwek and Pitt,
1998, Jain and Kinber, 2003, Anderson et al., 2013, Kane et al., 2013]. The focus of this paper is the
latter setting.

The simplest nontrivial geometric concept is perhaps the halfspace. These concepts are well-known
to be hard to agnostically learn [Höffgen et al., 1995] or even approximate [Amaldi and Kann, 1995,
1998, Ben-David et al., 2003]. Even the realizable case, while commonly described as “solved”
via the Perceptron algorithm or linear programming (LP), is not straightforward: The Perceptron’s
runtime is quadratic in the inverse-margin, while solving the consistent hyperplane problem in
strongly polynomial time is equivalent to solving the general LP problem in strongly polynomial
time [Nikolov, 2018, Chvátal], a question that has been open for decades [Bárász and Vempala,
2010]. Thus, an unconditional (i.e., infinite-precision and independent of data configuration in space)
polynomial-time solution for the consistent hyperplane problem hinges on the strongly polynomial
LP conjecture.

If we consider not a single halfspace, but polytopes defined by the intersection of multiple halfspaces,
the computational and generalization bounds rapidly become more pessimistic. Megiddo [1988]
showed that the problem of deciding whether two sets of points in general space can be separated
by the intersection of two hyperplanes is NP-complete, and Khot and Saket [2011] showed that
“unless NP = RP, it is hard to (even) weakly PAC-learn intersection of two halfspaces”, even when
allowed the richer class of O(1) intersecting halfspaces. Under cryptographic assumptions, Klivans
and Sherstov [2009] showed that learning an intersection of nε halfspaces is intractable regardless of
hypothesis representation.
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Since the margin assumption is what allows one to find a consistent hyperplane in provably strongly
polynomial time, it is natural to seek to generalize this scheme to intersections of t halfspaces each
with margin γ; we call this the γ-margin of a t-polytope. This problem was considered by Arriaga
and Vempala [2006], who showed that such a polytope can be learned (in dimension d) in time

O(dmt) + (t log t)O((t/γ2) log(t/γ))

with sample complexity m = O
(
(t/γ2) log(t) log(t/γ)

)
(where we have taken the PAC-learning

parameters ε, δ to be constants). In fact, they actually construct a candidate t-polytope as their learner;
as such, their approach is an example of proper learning, where the hypothesis is chosen from the
same concept class as the true concept. In contrast, Klivans and Servedio [2008] showed that a
γ-margin t-polytope can be learned by constructing a function that approximates the polytope’s
behavior, without actually constructing a t-polytope. This is an example of improper learning, where
the hypothesis is selected from a broader class than that of the true concept. They achieved a runtime
of

min

d(t/γ)O(t log t log(1/γ)), d

(
log t

γ

)O(
√

1/γ log t)


and sample complexity m = O
(
(1/γ)t log t log(1/γ)

)
. Very recently, Goel and Klivans [2018] im-

proved on this latter result, constructing a function hypothesis in time poly(d, tO(1/γ)), with sample
complexity exponential in γ−1/2.

Our results. The central contribution of the paper is improved algorithmic runtimes and sample
complexity for computing separating polytopes (Theorem 7). In contrast to the algorithm of Arriaga
and Vempala [2006], whose runtime is exponential in t/γ2, and to that of [Goel and Klivans, 2018],
whose sample complexity is exponential in γ−1/2, we give an algorithm with polynomial sample
complexity m = Õ(t/γ2) and runtime only mÕ(1/γ2). We accomplish this by constructing an
O(t logm)-polytope that correctly separates the data. This means that our hypothesis is drawn from
a broader class than the t-polytopes of Arriaga and Vempala [2006] (allowing faster runtime), but
from a much narrower class than the functions of Klivans and Servedio [2008], Goel and Klivans
[2018] (allowing for improved sample complexity).

Complementing our algorithm, we provide the first nearly matching hardness-of-approximation
bounds, which demonstrate that an exponential dependence on tγ−2 is unavoidable for the computa-
tion of separating t-polytopes, under standard complexity-theoretic assumptions (Theorem 6). This
motivates our consideration of O(t logm)-polytopes instead.

Our final contribution is in introducing a new and intuitive notion of polytope margin: This is the
γ-envelope of a convex polytope, defined as all points within distance γ of the polytope boundary,
as opposed to the above γ-margin of the polytope, defined as the intersection of the γ-margins of
the hyperplanes forming the polytope. (See Figure 2 for an illustration, and Section 2 for precise
definitions.) Note that these two objects may exhibit vastly different behaviors, particularly at a sharp
intersection of two or more hyperplanes. It seems to us that the envelope of a polytope is a more
natural structure than its margin, yet we find the margin more amenable to the derivation of both
VC-bounds (Lemma 1) and algorithms (Theorem 7). We demonstrate that results derived for margins
can be adapted to apply to envelopes as well. We prove that when confined to the unit ball, the
γ-envelope fully contains within it the (γ2/2)-margin (Theorem 10), and this implies that statistical
and algorithmic results for the latter hold for the former as well.

Related work. When general convex bodies are considered under the uniform distribution1 (over
the unit ball or cube), exponential (in dimension and accuracy) sample-complexity bounds were
obtained by Rademacher and Goyal [2009]. This may motivate the consideration of convex polytopes,
and indeed a number of works have studied the problem of learning convex polytopes, including
Hegedüs [1994], Kwek and Pitt [1998], Anderson et al. [2013], Kane et al. [2013], Kantchelian
et al. [2014]. Hegedüs [1994] examines query-based exact identification of convex polytopes with
integer vertices, with runtime polynomial in the number of vertices (note that the number of vertices

1Since the concept class of convex sets has infinite VC-dimension, without distribution assumptions, an
adversarial distribution can require an arbitrarily large sample size, even in 2 dimensions [Kearns and Vazirani,
1997].
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can be exponential in the number of facets [Matoušek, 2002]). Kwek and Pitt [1998] also rely on
membership queries (see also references therein regarding prior results, as well as strong positive
results in 2 dimensions). Anderson et al. [2013] efficiently approximately recover an unknown
simplex from uniform samples inside it. Kane et al. [2013] learn halfspaces under the log-concave
distributional assumption.

The recent work of Kantchelian et al. [2014] bears a superficial resemblance to ours, but the two are
actually not directly comparable. What they term worst case margin will indeed correspond to our
margin. However, their optimization problem is non-convex, and the solution relies on heuristics
without rigorous run-time guarantees. Their generalization bounds exhibit a better dependence on
the number t of halfspaces than our Lemma 3 (O(

√
t) vs. our O(t log t)). However, the hinge loss

appearing in their Rademacher-based bound could be significantly worse than the 0-1 error appearing
in our VC-based bound. We stress, however, that the main contribution of our paper is algorithmic
rather than statistical.

2 Preliminaries

Notation. For x ∈ Rd, we denote its Euclidean norm ‖x‖2 :=
√∑d

i=1 x(i)2 by ‖x‖ and
for n ∈ N, we write [n] := {1, . . . , n}. Our instance space X is the unit ball in Rd: X ={
x ∈ Rd : ‖x‖ ≤ 1

}
. We assume familiarity with the notion of VC-dimension as well as with basic

PAC definitions such as generalization error (see, e.g., Kearns and Vazirani [1997]).

Polytopes. A (convex) polytope P ⊂ Rd is the convex hull of finitely many points: P =
conv({x1, . . . ,xn}). Alternatively, it can be defined by t hyperplanes (wi, bi) ∈ Rd × R where
‖wi‖ = 1 for each i:

P =

{
x ∈ Rd : min

i∈[t]
wi · x + bi ≥ 0

}
. (1)

A hyperplane (w, b) is said to classify a point x as positive (resp., negative) with margin γ if
w · x + b ≥ γ (resp., ≤ −γ). Since ‖w‖ = 1, this means that x is γ-far from the hyperplane{
x′ ∈ Rd : w · x′ + b = 0

}
, in `2 distance.

Margins and envelopes. We consider two natural ways of extending this notion to polytopes: the
γ-margin and the γ-envelope. For a polytope defined by t hyperplanes as in (1), we say that x is in
the inner γ-margin of P if

0 ≤ min
i∈[t]

wi · x + bi ≤ γ

and that x is in the outer γ-margin of P if

0 ≥ min
i∈[t]

wi · x + bi ≥ −γ.

Similarly, we say that x is in the outer γ-envelope of P if x /∈ P and infp∈P ‖x− p‖ ≤ γ and that
x is in the inner γ-envelope of P if x ∈ P and infp/∈P ‖x− p‖ ≤ γ.

We call the union of the inner and the outer γ-margins the γ-margin, and we denote it by ∂P [γ].
Similarly, we call the union of the inner and the outer γ-envelopes the γ-envelope, and we denote it
by ∂P (γ).

The two notions are illustrated in Figure 2. As we show in Section 4 below, the inner envelope
coincides with the inner margin, but this is not the case for the outer objects: The outer margin always
contains the outer envelope, and could be of arbitrarily larger volume.

Fat hyperplanes and polytopes. Binary classification requires a collection of concepts mapping
the instance space (in our case, the unit ball in Rd) to {−1, 1}. However, given a hyperplane (w, b)
and a margin γ, the function fw,b : Rd → R given by fw,b(x) = w · x + b partitions Rd into three
regions: positive

{
x ∈ Rd : fw,b(x) ≥ γ

}
, negative

{
x ∈ Rd : fw,b(x) ≤ −γ

}
, and ambiguous{

x ∈ Rd : |fw,b(x)| < γ
}

. We use a standard device (see, e.g., Hanneke and Kontorovich [2017,
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Section 4]) of defining an auxiliary instance space X ′ = X ×{−1, 1} together with the concept class
Hγ =

{
hw,b : w ∈ Rd, b ∈ R, ‖w‖ = 1/γ

}
, where, for all (x, y) ∈ X ′,

hw,b(x, y) =

{
sign(y(w · x+ b)), |w · x + b| ≥ γ
−1, else.

It is shown in [Hanneke and Kontorovich, 2017, Lemma 6] that2

Lemma 1. The VC-dimension ofHγ is at most (2/γ + 1)2.

Analogously, we define the concept class Pt,γ of γ-fat t-polytopes as follows. Each hP ∈ Pt,γ is
induced by some t-halfspace intersection P as in (1). The label of a pair (x, y) ∈ X ′ is determined
as follows: If x is in the γ-margin of P , then the pair is labeled −1 irrespective of y. Otherwise, if
x ∈ P and y = 1, or else x /∈ P and y = −1, then the pair is labeled 1. Otherwise, the pair is labeled
−1.

Lemma 2. The VC-dimension of Pt,γ in d dimensions is at most

min {2(d+ 1)t log(3t), 2vt log(3t)} ,

where v = (2/γ + 1)2.

Proof. The family of intersections of t concept classes of VC-dimension at most v is bounded by
2vt log(3t) [Blumer et al., 1989, Lemma 3.2.3]. Since the class of d-dimensional hyperplanes has
VC-dimension d+ 1 [Long and Warmuth, 1994], the family of polytopes has VC-dimension at most
2(d+ 1)t log(3t). The second part of the bound is obtained by applying Blumer et al. [1989, Lemma
3.2.3] to the VC bound in Lemma 1.

Generalization bounds. The following VC-based generalization bounds are well-known; the first
one may be found in, e.g., Cristianini and Shawe-Taylor [2000], while the second one in Anthony
and Bartlett [1999].

Lemma 3. Let H be a class of learners with VC-dimension dVC. If a learner h ∈ H is consistent on
a random sample S of size m, then with probability at least 1− δ its generalization error is

err(h) ≤ 2

m

(
dVC log(2em/dVC) + log(2/δ)

)
.

Dimension reduction. The Johnson-Lindenstrauss (JL) transform [Johnson and Lindenstrauss,
1982] takes a set S of m vectors in Rd and projects them into k = O(ε−2 logm) dimensions, while
preserving all inter-point distances and vector norms up to 1 + ε distortion. That is, if f : Rd → Rk is
a linear embedding realizing the guarantees of the JL transform on S, then for every x ∈ S we have

(1− ε)‖x‖ ≤ ‖f(x)‖ ≤ (1 + ε)‖x‖,

and for every x,y ∈ S we have

(1− ε)‖x− y‖ ≤ ‖f(x− y)‖ ≤ (1 + ε)‖x− y‖.

The JL transform can be realized with probability 1− n−c for any constant c ≥ 1 by a randomized
linear embedding, for example a projection matrix with entries drawn from a normal distribution
[Achlioptas, 2003]. This embedding is oblivious, in the sense that the matrix can be chosen without
knowledge of the set S.

It is an easy matter to show that the JL transform can also be used to approximately preserve distances
to hyperplanes, as in the following lemma.

2Such estimates may be found in the literature for homogeneous (i.e., b = 0) hyperplanes (see, e.g., Bartlett
and Shawe-Taylor [1999, Theorem 4.6]), but dealing with polytopes, it is important for us to allow offsets. As
discussed in Hanneke and Kontorovich [2017], the standard non-homogeneous to homogeneous conversion can
degrade the margin by an arbitrarily large amount, and hence the non-homogeneous case warrants an independent
analysis.
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Lemma 4. Let S be set of d-dimensional vectors in the unit ball, T be a set of normalized vectors,
and f : Rd → Rk a linear embedding realizing the guarantees of the JL transform. Then for any
0 < ε < 1 and some k = O((log |S ∪ T |)/ε2), with probability 1 − |S ∪ T |−c (for any constant
c > 1) we have for all x ∈ S and t ∈ T that

f(t) · f(x) ∈ t · x± ε.

Proof. Let the constant in k be chosen so that the JL transform preserves distances and norms among
S ∪ T within a factor 1 + ε′ for ε′ = ε/5. By the guarantees of the JL transform for the chosen value
of k, we have that

f(t) · f(x) =
1

2

[
‖f(t)‖2 + ‖f(x)‖2 − ‖f(t)− f(x)‖2

]
≤ 1

2

[
(1 + ε′)2(‖t‖2 + ‖x‖2)− (1− ε′)2‖t− x‖2

]
<

1

2

[
(1 + 3ε′)(‖t‖2 + ‖x‖2)− (1− 2ε′)‖t− x‖2

]
<

1

2

[
5ε′(‖t‖2 + ‖x‖2) + t · x

]
≤ 5ε′ + t · x.
= ε+ t · x.

A similar argument gives that f(t) · f(x) > −ε+ t · x.

3 Computing and learning separating polytopes

In this section, we present algorithms to compute and learn γ-fat t-polytopes. We begin with
hardness results for this problem, and show that these hardness results justify algorithms with run
time exponential in the dimension or the square of the reciprocal of the margin. We then present our
algorithms.

3.1 Hardness

We show that computing separating polytopes is NP-hard, and even hard to approximate. We begin
with the case of a single hyperplane. The following preliminary lemma builds upon Amaldi and Kann
[1995, Theorem 10].
Lemma 5. Given a labelled point set S (n = |S|) with p negative points, let h∗ be a hyperplane
that places all positive points of S on its positive side, and maximizes the number of negative points
on its negative size — let opt be the number of these negative points. Then it is NP-hard to find
a hyperplane h̃ consistent with all positive points, and which places at least opt/p1−o(1) negative
points on on the negative side of h̃. This holds even when the optimal hyperplane correctly classifying
opt points has margin γ ≥ 1

4
√
opt

.

Proof. We reduce from maximum independent set, which for p vertices is hard to approximate to
within p1−o(1) [Zuckerman, 2007]. Given a graph G = (V,E), for each vetex vi ∈ V place a
negative point on the basis vector ei. Now place a positive point at the origin, and for each edge
(vi, vj) ∈ E, place a positive point at (ei + ej)/2.

Consider a hyperplane consistent with the positive points and placing opt negative points on the
negative side: These negative points must represent an independent set in G, for if (vi, vj) ∈ E, then
by construction the midpoint of ei, ej is positive, and so both ei, ej cannot lie on the negative side of
the hyperplane.

Likewise, if G contained an independent set V ′ ⊂ V of size opt, then we consider the hyperplane
defined by the equation w · x + 3

4
√
opt

= 0, where coordinate w(j) = − 1√
opt

if vj ∈ V ′ and
w(j) = 0 otherwise. It is easily verified that the distance from the hyperplane to a negative point (i.e.
a basis vector) is − 1√

opt
+ 3

4
√
opt

= − 1
4
√
opt

, to the origin is 3
4
√
opt

, and to all other positive points
is at least − 1

2
√
opt

+ 3
4
√
opt

= 1
4
√
opt

.
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We can now extend the above result for a hyperplane to similar ones for polytopes:

Theorem 6. Given a labelled point set S (n = |S|) with p negative points, let H∗ be a collection of
t halfspaces whose intersection partitions S into positive and negative sets. Then it is NP-hard to
find a collection H̃ of size less than tp1−o(1) whose intersection also partitions S into positive and
negative sets. This holds even when all hyperplanes have margin γ ≥ 1

4
√
p/t

,

Proof. The reduction is from minimum coloring, which is hard to approximate within a factor of
n1−o(1) [Zuckerman, 2007]. The construction is identical to that of the proof of Lemma 5. In
particular, a set of vertices in G assigned the same color necessarily form an independent set, and so
their corresponding negative points in S can be separated from all positive points by some halfspace,
and vice-versa.

The only difficulty in the reduction is our insistence that the margin must be of size at least 1

4
√
p/t

; as

in Lemma 5, this holds only when the halfspaces are restricted to separate at most opt = p/t points.
But there is no guarantee that the optimal coloring satisfies this requirement, that is if the optimal
coloring possesses t colors, that each color represents only p/t vertices. To this end, if a color in
the optimal t-coloring of G covers more than p/t vertices, we partition it into a set of colors, each
coloring no more than p/t vertices. This increases the total number of colors to at most 2t, which
does not affect the hardness-of-approximation result.

The Exponential Time Hypothesis (ETH) posits that maximum independent set and minimum coloring
cannot be solved in less than cn operations (for some constant c)3. As Lemma 5 asserts that the
separating hyperplane problem remains hard for margin γ ≥ 1

4
√
opt
≥ 1

4
√
p , we cannot hope to find an

optimal solution in time less than cp ≥ c1/(16γ2). Likewise, as Theorem 6 asserts that the separating t-
polytope problem remains hard for margin γ ≥ 1

4
√
p/t

we cannot hope to find a consistent t-polytope

in time less than cp ≥ ct/(16γ2). This justifies the exponential dependence on tγ−2 in the algorithm
of Arriaga and Vempala [2006], and implies that to avoid an exponential dependence on t in the
runtime, we should consider broader hypothesis class, for example O(t logm)-polytopes.

3.2 Algorithms

Here we present algorithms for computing polytopes, and use them to give an efficient algorithm for
learning polytopes.

In what follows, we give two algorithms inspired by the work of Arriaga and Vempala [2006].
Both have runtime faster than the algorithm of Arriaga and Vempala [2006], and the second is only
polynomial in t.

Theorem 7. Given a labelled point set S (n = |S|) for which some γ-fat t-polytope correctly
separates the positive and negative points (i.e., the polytope is consistent), we can compute the
following with high probability:

1. A consistent (γ/4)-fat t-polytope in time nO(tγ−2 log(1/γ)).

2. A consistent (γ/4)-fat O(t log n)-polytope in time nO(γ−2 log(1/γ)).

Before proving Theorem 7, we will need a preliminary lemma:

Lemma 8. Given any 0 < δ < 1, there exists a set V of unit vectors of size |V | = δ−O(d) with the
following property: For any unit vector w, there exists a v ∈ V that satisfies v · x ∈ w · x± δ for
all vectors x with ‖x‖ ≤ 1. The set V can be constructed in time δ−O(d) with high probability.

This implies that if a set S admits a hyperplane (w, b) with margin γ, then S admits a hyperplane
(v, b) (for v ∈ V ) with margin at least γ − δ.

3This does not necessary imply that approximating these problems requires cn operations: As hardness-of-
approximation results utilize polynomial-time reductions, ETH implies only that the runtime is exponential in
some polynomial in n.
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Proof. We take V to be a δ-net of the unit ball, a set satisfying that every point on the ball is within
distance δ of some point in V . Then |V | ≤ (1 + 2/δ)d [Vershynin, 2010, Lemma 5.2]. For any unit
vector w we have for some v ∈ V that ‖w− v‖ ≤ δ, and so for any vector x satisfying ‖x‖ ≤ 1 we
have

|w · x− v · x| = |(w − v) · x| ≤ ‖w − v‖ ≤ δ.

The net can be constructed by a randomized greedy algorithm. By coupon-collector analysis, it
suffices to sample O(|V | log |V |) random unit vectors. For example, each can be chosen by sampling
its coordinate from N(0, 1) (the standard normal distribution), and then normalizing the vector. The
resulting set contains within it a δ-net.

Proof of Theorem 7. We first apply the Johnson-Lindenstrauss transform to reduce dimension of the
points in S to k = O(γ−2 log(n + t)) = O(γ−2 log n) while achieving the guarantees of Lemma
4 for the points of S and the t halfspaces forming the optimal γ-fat t-polytope, with parameter
ε = γ

12 . In the embedded space, we extract a δ-net V of Lemma 8 with parameter δ = γ
12 , and

we have |V | = δ−O(k). Now define the set B consisting of all values of the form γi
12 for integer

i = {0, 1, . . . , b12/γc}. It follows that for each d-dimensional halfspace (w, b) forming the original
γ-fat t-polytope, there is a k-dimensional halfspace (v, b′) with v ∈ V and b′ ∈ B satisfying
v · f(x) + b′ ∈ w · x + b± γ/4 for every x ∈ S. Given (v, b′), we can recover an approximation
to (w, b) in the d-dimensional origin space thus: Let S′ ⊂ S include only those points x ∈ S for
which |v · f(x) + b′| ≥ 3γ

4 , and it follows that |w · x + b| ≥ 3γ
4 −

γ
4 = γ

2 . As S′ is a separable
point set with margin Θ(γ), we can run the Perceptron algorithm on S′ in time O(dnγ−2), and find
a d-dimensional halfspace w′ consistent with w on all points at distance γ

4 or more from w. We will
refer to w′ as the d-dimensional mirror of v.

We compute the d-dimensional mirror of every vector in V for every candidate value in B. We then
enumerate all possible t-polytopes by taking intersections of all combinations of t mirror halfspaces,
in total time

(1/γ)O(kt) = nO(tγ−2 log(1/γ)),

and choose the best one consistent with S. The first part of the theorem follows.

Better, we may give a greedy algorithm with a much improved runtime: First note that as the
intersection of t halfspaces correctly classifies all points, the best halfspace among them correctly
classifies at least a (1/t)-fraction of the negative points with margin γ. Hence it suffices to find
the d-dimensional mirror which is consistent with all positive points and maximizes the number of
correct negative points, all with margin γ

4 . We choose this halfspace, remove from S the correctly
classified negative points, and iteratively search for the next best halfspace. After ct log n iterations
(for an appropriate constant c), the number of remaining points is

n(1− Ω(1/t))ct logn < ne− lnn = 1,

and the algorithm terminates.

Having given an algorithm to compute γ-fat t-polytopes, we can now give an efficient algorithm
to learn γ-fat t-polytopes. We sample m points, and use the second item of Theorem 7 to find a
(γ/4)-fat O(t logm)-polytope consistent with the sample. By Lemma 2, the class of polytopes has
VC-dimension O(γ−2t logm). The size of m is chosen according to Lemma 3, and we conclude:
Theorem 9. There exists an algorithm that learns γ-fat t-polytopes with sample complexity

m = O
( t

εγ2
log2 t

εγ
+ log

1

δ

)
in time mO((1/γ2) log(1/γ)), where ε, δ are the desired accurcy and confidence levels.

4 Polytope margin and envelope

In this section, we show that the notions of margin and envelope defined in Section 2 are, in general,
quite distinct. Fortunately, when confined to the unit ball X , one can be used to approximate the
other.
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P

P(–γ) = P[–γ]
P[+γ]

P(+γ)

Figure 1: Expansion and contraction of a polytope by γ.

Figure 2: The γ-envelope ∂P (γ) (left) and γ-margin ∂P [γ] (right) of a polytope P .

Given two sets S1, S2 ⊆ Rd, their Minkowski sum is given by S1 + S2 = {p + q : p ∈ S1,q ∈ S2},
and their Minkowski difference is given by S1 − S2 = {p ∈ Rd : {p}+ S2 ⊆ S1}. Let Bγ = {p ∈
Rd : ‖p‖ ≤ γ} be a ball of radius γ centered at the origin.

Given a polytope P ∈ Rd an a real number γ > 0, let

P (+γ) = P +Bγ ,

P (−γ) = P −Bγ .

Hence, P (+γ) and P (−γ) are the results of expanding or contracting, in a certain sense, the polytope
P .

Also, let P [+γ] be the result of moving each halfspace defining a facet of P outwards by distance
γ, and similarly, let P [−γ] be the result of moving each such halfspace inwards by distance γ. Put
differently, we can think of the halfspaces defining the facets of P as moving outwards at unit speed,
so P expands with time. Then P [±γ] is P at time ±γ. See Figure 1.
Observation 1. We have P (−γ) = P [−γ].

Proof. Each point in P [−γ] is at distance at least γ from each hyperplane containing a facet of P ,
hence, it is at distance at least γ from the boundary of P , so it is in P (−γ). Now, suppose for a
contradiction that there exists a point p ∈ P (−γ) \ P [−γ]. Then p is at distance less than γ from a
point q ∈ ∂h \ f , where f is some facet of P and ∂h is the hyperplane containing f . But then the
segment pq must intersect another facet of P .

However, in the other direction we have P (+γ) ( P [+γ]. Furthermore, the Hausdorff distance
between them could be arbitrarily large (see again Figure 1).

Then the γ-envelope of P is given by ∂P (γ) = P (+γ) \ P (−γ), and the γ-margin of P is given by
∂P [γ] = P [+γ] \ P [−γ]. See Figure 2.

Since the γ-margin of P is not contained in the γ-envelope of P , we would like to find some sufficient
condition under which, for some γ′ < γ, the γ′-margin of P is contained in the γ-envelope of P .
Our solution to this problem is given in the following theorem. Recall that X is the unit ball in Rd.
Theorem 10. Let P ⊂ Rd be a polytope, and let 0 < γ < 1. Suppose that P [−γ] ∩ X 6= ∅. Then,
within X , the (γ2/2)-margin of P is contained in the γ-envelope of P ; meaning, ∂P [γ2/2] ∩ X ⊆
∂P (γ).
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The proof uses the following general observation:

Observation 2. Let Q = Q(t) be an expanding polytope whose defining halfspaces move outwards
with time, each one at its own constant speed. Let p = p(t) be a point that moves in a straight line
at constant speed. Suppose t1 < t2 < t3 are such that p(t1) ∈ Q(t1) and p(t3) ∈ Q(t3). Then
p(t2) ∈ Q(t2) as well.

Proof. Otherwise, p exits one of the halfspaces and enters it again, which is impossible.

Proof of Theorem 10. By Observation 1, it suffices to show that P [+γ2/2] ∩ X ⊆ P (+γ). Hence, let
p ∈ P [+γ2/2] ∩ X and q ∈ P [−γ] ∩ X . Let s be the segment pq. Let r be the point in s that is at
distance γ from p. Suppose for a contradiction that p /∈ P (+γ). Then r /∈ P . Consider P = P (t) as
a polytope that expands with time, as above. Let z = z(t) be a point that moves along s at constant
speed, such that z(−γ) = q and z(γ2/2) = p. Since ‖r − q‖ ≤ 2, the speed of s is at most 2/γ.
Hence, between t = 0 and t = γ2/2, z moves distance at most γ, so z(0) is already between r and p.
In other words, z exits P and reenters it, contradicting Observation 2.

It follows immediately from Theorem 10 and Lemma 2 that the VC-dimension of the class of
t-polytopes with envelope γ is at most

min {2(d+ 1)t log(3t), 2vt log(3t)} ,

where v = (4/γ2 + 1)2. Likewise, we can approximate the optimal t-polytope with envelope γ by
the algorithms of Theorem 7 (with parameter γ′ = γ2/2).
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