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Abstract

Generalization performance is a central goal in machine learning, with explicit
generalization strategies needed when training over-parametrized models, like
large neural networks. There is growing interest in using multiple, potentially
auxiliary tasks, as one strategy towards this goal. In this work, we theoretically
and empirically analyze one such model, called a supervised auto-encoder: a
neural network that jointly predicts targets and inputs (reconstruction). We provide
a novel generalization result for linear auto-encoders, proving uniform stability
based on the inclusion of the reconstruction error—particularly as an improvement
on simplistic regularization such as norms. We then demonstrate empirically
that, across an array of architectures with a different number of hidden units and
activation functions, the supervised auto-encoder compared to the corresponding
standard neural network never harms performance and can improve generalization.

1 Introduction

Generalization is a central concept in machine learning: learning functions from a finite set of
data, that can perform well on new data. Generalization bounds have been characterized for many
functions, including linear functions [1], and those with low-dimensionality [2, 3] and functions from
reproducing kernel Hilbert spaces [4]. Many of these bounds are obtained through some form of
regularization, typically `2 regularization [5, 6] or from restricting the complexity of the function
class such as by constraining the number of parameters [1].

Understanding generalization performance is particularly critical for powerful function classes, such
as neural networks. Neural networks have well-known overfitting issues, with common strategies
to reduce overfitting including drop-out [7–9], early stopping [10] and data augmentation [11, 12],
including adversarial training [13] and label smoothing [14]. Many layer-wise regularization strategies
have also been suggested for neural networks, such as with layer-wise training [15, 16], pre-training
with layer-wise additions of either unsupervised learning or supervised learning [15] and the use of
auxiliary variables for hidden layers [17].

An alternative direction that has begun to be explored is to instead consider regularization with the
addition of tasks. Multi-task learning [18] has been shown to improve generalization performance,
from early work showing learning tasks jointly reduces the required number of samples [19, 20]
and later work particularly focused on trace-norm regularization on the weights of a linear, single
hidden-layer neural network for a set of tasks [21–23]. Some theoretical work has also been done
for auxiliary tasks [24], with the focus of showing that the addition of auxiliary tasks can improve
the representation and so generalization. In parallel, a variety of experiments have demonstrated the
utility of adding layer-wise unsupervised errors as auxiliary tasks [15, 16, 25–27]. Auxiliary tasks
have also been explored through the use of hints for neural networks [28, 18].
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In this work, we investigate an auxiliary-task model for which we can make generalization guarantees,
called a supervised auto-encoder (SAE). A SAE is a neural network that predicts both inputs and
outputs, and has been previously shown empirically to provide significant improvements when used
in a semi-supervised setting [16] and deep neural networks [29]. We provide a novel uniform stability
result, showing that linear SAE—which consists of the addition of reconstruction error to a linear
neural network— provides uniform stability and so a bound on generalization error. We show that the
stability coefficient decays similarly to the stability coefficient under `2 regularization [5], providing
effective generalization performance but avoiding the negative bias from shrinking coefficients. The
reconstruction error may incur some bias, but is related to the prediction task and so is more likely to
prefer a more robust model amongst a set of similarly effective models for prediction. This bound, to
the best of our knowledge, is (a) one of the first bounds demonstrating that supervised dimensionality
reduction architectures can provide improved generalization performance and (b) provides a much
tighter bound than is possible from applying generalization results from multi-task learning [21–23]
and learning with auxiliary tasks [24]. Finally, we demonstrate empirically that adding reconstruction
error never harms performance compared to the corresponding neural network model, and in some
cases can significantly improve classification accuracy.

2 Supervised autoencoders and representation learning

We consider a supervised learning setting, where the goal is to learn a function for a vector of inputs
x ∈ Rd to predict a vector of targets y ∈ Rm. The function is trained on a finite batch of i.i.d.
data, (x1,y1), . . . , (xt,yt), with the aim to predict well on new samples generated from the same
distribution. To do well in prediction, a common goal is representation learning, where the input
xi are first transformed into a new representation, for which it is straightforward to learn a simple
predictor—such as a linear predictor.

Auto-encoders (AE) are one strategy to extract a representation. An AE is a neural network, where
the outputs are set to x, the inputs. By learning to reconstruct the input, the AE extracts underlying or
abstract attributes that facilitate accurate prediction of the inputs. Linear auto-encoders with a single
hidden layer are equivalent to principle components analysis [30][31, Theorem 12.1], which finds
(orthogonal) explanatory factors for the data. More generally, nonlinear auto-encoders have indeed
been found to extract key attributes, including high-level features [32] and Gabor-filter features [33].

A supervised auto-encoder (SAE) is an auto-encoder with the addition of a supervised loss on the
representation layer. For a single hidden layer, this simply means that a supervised loss is added to
the output layer, as in Figure 1. For a deeper auto-encoder, the innermost (smallest)1 layer would
have a supervised loss added to it—the layer that would usually be handed off to the supervised
learner after training the AE. More formally, consider a linear SAE, with a single hidden layer of size
k. The weights for the first layer are F ∈ Rd×k. The weight for the output layer consist of weights
Wp ∈ Rk×m to predict y and Wr ∈ Rk×d to reconstruct x. Let Lp be the supervised (primary) loss
and Lr the loss for the reconstruction error. For example, in regression, both losses might be the
squared error, resulting in the objective

1
t

t∑
i=1

[Lp(WpFxi,yi) + Lr(WrFxi,xi)] =
1
2t

t∑
i=1

[
‖WpFxi − yi‖22 + ‖WrFxi − xi‖22

]
. (1)

The addition of a supervised loss to the auto-encoder should better direct representation learning
towards representations that are effective for the desired tasks. Conversely, solely training a represen-
tation according to the supervised tasks, like learning hidden layers in an neural network, is likely an
under-constrained problem, and will find solutions that can well fit the data but that do not find under-
lying patterns in the data and do not generalize well. In this way, the combination of the two losses has
the promise to both balance extracting underlying structure, as well as providing accurate prediction
performance. There have been several empirical papers that have demonstrated the capabilities of
semi-supervised autoencoders [16, 27, 34]. Those results focus on the semi-supervised component,
where the use of auto-encoders enables the representation to be trained with more unlabeled data. In
this paper, however, we would like to determine if even in the purely supervised setting, the addition
of reconstruction error can have a benefit for generalization.

1The size of the learned representations for deep, nonlinear AEs does not have to be small, but it is common
to learn such a lower-dimensional representations. For linear SAEs, the hidden layer size k < d, as otherwise
trivial solutions like the replication of the input are able to minimize the reconstruction error.
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Figure 1: Two examples of Supervised Autoencoders, and where the supervised component—the
targets y—are included. We provide generalization performance results for linear SAEs, represented
by (a) assuming a linear activation to produce the hidden layer, with arbitrary convex losses on the
output layer, such as the cross-entropy for classification. We investigate more general architectures in
the experiments, including single-hidden layer SAEs, represented by (a) with nonlinear activations to
produce the hidden layer, and deep SAEs, depicted in (b).

3 Uniform stability and generalization bounds for SAE

In this section, we show that including the reconstruction error theoretically improves generalization
performance. We show that linear supervised auto-encoders are uniformly stable, which means that
there is a small difference between models learned for any subsample of data, which differ in only
one instance. Uniformly stable algorithms are known to have good generalization performance [5].
Before showing this result, we discuss a few alternatives to justify why we pursue uniform stability.

There are at least two alternative strategies that could be considered to theoretically analyze these
models: using a multi-task analysis and characterizing the Rademacher complexity of the supervised
auto-encoder function class. The reconstruction error can in-fact be considered as multiple tasks,
where the multiple tasks help regularize or constrain the solution [35]. Previous results for multi-task
learning [21–23] demonstrate improved generalization error bounds when learning multiple tasks
jointly. Unfortunately, these bounds show performance is improved on average across tasks. For
our setting, we only care about the primary tasks, with the reconstruction error simply included
as an auxiliary task to regularize the solution. An average improvement might actually mean that
performance on the primary task degrades with inclusion of these other tasks. Earlier multi-task work
did consider improvement for each task [36], but assumed different randomly generated features for
each task and all tasks binary classification problem, which does not match this setting.

Another strategy is to characterize Rademacher complexity of supervised auto-encoders. There has
been some work characterizing the Rademacher complexity of unsupervised dimensionality reduction
techniques [3, Theorem 3.1]. To the best of our knowledge, however, there as yet does not appear to
be an analysis on complexity of supervised dimensionality reduction techniques. There is some work
on supervised dimension reduction [2, 3]; however, this analysis assumes a dimensionality reduction
step followed by a supervised learning step, rather than a joint training procedure.

For these reasons, we pursue a third direction, where we treat the reconstruction error as a regularizer
to promote stability. Uniform stability has mainly been obtained using norm-based regulariza-
tion strategies, such as `2. More recently, Liu et al. [24] showed that auxiliary tasks—acting as
regularizers—could also provide uniform stability. Because reconstruction error can be considered
to be an auxiliary task, our analysis resembles this auxiliary-task analysis. However, there are key
differences, as the result by Liu et al. [24] would be uninteresting if simply applied directly to our
setting. In particular, the uniform stability bound would not decay with the number of samples. The
bound decays proportionally to the number of samples for the primary task, but in the numerator
contains the maximum number of samples for an auxiliary task. For us, this maximum number is
exactly the same number of samples as for the primary task, and so they would cancel, making the
bound independent of the number of samples.
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Primary Result

We now show that the parameter shared by the primary task and reconstruction error—the forward
model F—does not change significantly with the change of one sample. This shows that linear SAEs
have uniform stability, which then immediately provides a generalization bound from [5, Theorem
12]. The proofs are provided in the appendix, for space.

Let Lp corresponds to the primary part (supervised part) of the loss, with weights Wp, and Lr
correspond to the auxiliary tasks that act as regularizers (the reconstruction error), with weights Wr.
The full loss can be written

L(F) =
1

t

t∑
i=1

Lp (WpFxi,yp,i) + Lr (WrFxi,yr,i) . (2)

For our specific setting, yr = x. We use more general notation, however, both to clarify the difference
between the inputs and outputs, and for future extensions to this theory for other (auxiliary) targets
yr. The loss where the m-th sample (xm,ym) is replaced by a random new instance (x′m,y

′
m) is

Lm(F)=1
t

[
Lp
(
WpFx

′
m,y

′
p,m

)
+Lr

(
WrFx

′
m,y

′
r,m

)
+

t∑
i=1,i6=m

Lp(WpFxi,yp,i)+Lr(WrFxi,yr,i)
]
.

If we let F,Fm correspond to the optimal forward models for these two losses respectively, then the
algorithm is said to be β-uniformly stable if the difference in loss value for these two models for any
point (x,y) is bounded by β with high-probability

|Lp (WpFmx,yp)− Lp (WpFx,yp)| ≤ β

To obtain uniform stability, we will need to make several assumptions. The first common assumption
is to assume bounded spaces, for the data and learned variables.
Assumption 1. The features satisfy ‖x‖2 ≤ Bx and the primary targets satisfy ‖yp‖2 ≤ By. The
parameters spaces are bounded,

W = {(Wp,Wr) ∈ Rk×m : ‖Wp‖F ≤ BWp
, ‖Wr‖F ≤ BWr

}
F = {F ∈ Rd×k : ‖F‖F ≤ BF}

for some positive constants Bx, By, BF, BWp , BWr , where ‖ · ‖F denotes Frobenius norm, namely
the square root of the sum of the squares of all elements.

For SAE, yr = x, and so ‖x‖2 ≤ Bx implies that ‖yr‖2 ≤ Bx.

Second, we need to ensure that the reconstruction error is both strongly convex and Lipschitz. The
next two assumptions are satisfied, for example, by the `2 loss, Lr(ŷ,y) = ‖ŷ − y‖22.
Assumption 2. The reconstruction loss Lr(·,y) is σr-admissible, i.e., for possible predictions ŷ, ŷ′

|Lr (ŷ,y)− Lr (ŷ′,y)| ≤ σr‖ŷ − ŷ′‖2.
Assumption 3. Lr(·,y) is c-strongly-convex 〈ŷ − ŷ′,∇Lr (ŷ,y)−∇Lr (ŷ′,y)〉 ≥ c‖ŷ − ŷ′‖22
The growth of the primary loss also needs to be bounded; however, we can use a less stringent
requirement than admissibility.
Assumption 4. For some σp > 0, for any F,Fm ∈ F ,

|Lp (WpFmx,yp)−Lp (WpFx,yp)| ≤ σp‖Wr(Fm − F)x‖2

This requirement should be less stringent because we expect generally that for two forward models
F,Fm, ‖Wp(F − Fm)x‖2 ≤ ‖Wr(F − Fm)x‖2. The matrix Wp ∈ Rm×k projects the vector
d = (F − Fm)x into a lower-dimensional space, whereas Wr ∈ Rd×k projects d into a higher-
dimensional space. Because the nullspace of Wp is likely larger, it is more likely that Wp will send
a non-zero d. In fact, if Wr is full rank—which occurs if k is less than or equal to the intrinsic rank
of the data—then we can guarantee this assumption for some σp as long as Lp is σ-admissible, where
likely σp can be smaller than σ. In Corollary 1, we specify the value of σp under a full rank Wr and
σ-admissible Lp.

Finally, we assume that there is a representative set of feature vectors in the sampled data, both in
terms of feature vectors (Assumption 5) as well as loss values (Assumption 6).
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Assumption 5. There exists a subset

B = {b1,b2, ...,bn} ⊂ {x1,x2, ...,xt}

such that with high probability any sampled feature vector x can be reconstructed by B with a small
error: x =

∑n
i=1 αibi + η where αi ∈ R,

∑n
i=1 α

2
i ≤ r, ‖η‖2 ≤ ε

t .

Assumption 5 is similar to [24, Assumption 1], except for our setting the features are the same for all
the tasks and the upper bound of ‖η‖ decreases as 1

t . This is a reasonable assumption since more
samples in the training set make it more likely to be able to reconstruct any x that will be observed
with non-negligible probability. In many cases, η = 0 is a mild assumption, as once d independent
vectors bi are observed, η = 0.

This representative set of points also needs to be representative in terms of the reconstruction error. In
particular, we need the average reconstruction error of the representative points to be upper bounded
by some constant factor of the average reconstruction error under the training set.
Assumption 6. For any two datasets S, Sm, where Sm has the m-th sample replaced with a random
new instance, let F,Fm be the corresponding optimal forward models. Let N contain only the
reconstruction errors, without the sample that is replaced

N(F) =
1

t

t∑
i=1,i 6=m

Lr (WrFxi,yr,i) (3)

and Nb be the reconstruction error for the representative points

Nb(F) =
1

n

n∑
i=1

Lr (WrFbi,yr,bi) (4)

where yr,bi is the reconstruction target for representative point bi. Then, there exists a > 0 such that
for any small α > 0,

[Nb(F)−Nb((1− α)F+ αFm)] + [Nb(Fm)−Nb((1− α)Fm + αF)]

≤ a [N(F)−N((1− α)F+ αFm)] + a [N(Fm)−N((1− α)Fm + αF)] .

The above assumption does not require that the difference under N and Nb be small for the two F
and Fm; rather, it only requires that the increase or decrease in error at the two points Fm and F are
similar for N and Nb. Both the right-hand-side and left-hand-side in the assumption are nonnegative,
because of the convexity of N and Nb. Even if N is higher at F than Fm, and Nb is the opposite,
the above bound can hold, because it simply requires that the difference of Nb between Fm and F
be bounded above by the difference of N between F and Fm, up to some constant factor a. This
assumption is key, because we will need to use Nb to ensure that the bound decays with t, where Nb
is only dependent on the number of representative points, unlike N .

We can now provide the key result: SAE has uniform stability wrt the shared parameters F.

Theorem 1. Under Assumptions 1-6, for a randomly sampled x,y, with high probability

|Lp(WpFmx,y)− Lp (WpFx,y)| ≤ a(σr+σp)nσp

ct

(
r+
√
r2+

4εcBWrBFr
a(σr+σp)n

)
+

2εσpBWrBF

t (5)

Remark: We similarly get O( 1t ) upper bound on instability from Bousquet and Elisseeff [5], but
without requiring the `2 regularizer. The `2 indiscriminately reduces the magnitude of the weights;
the reconstruction error, on the other hand, regularizes, but potentially without strongly biasing the
solution. It can select amongst a set of possible forward models that predict the targets almost equally
well, but that also satisfy reconstruction error. A hidden representation that is useful for reconstructing
the inputs is likely to also be effective for predicting the targets—which are a function of the inputs.

Corollary 1. In Assumption 4, if Wp ∈ Rm×k,Wr ∈ Rd×k, d ≥ k ≥ m,Wr is full rank, Lp is
σ-admissible, then for W−1

r the inverse matrix of the first k rows of Wr, σp = σ‖Wp‖F ‖W−1
r ‖F .

Finally, we provide a few specific bounds, for particular Lr and Lp, to show how this more general
bound can be used (shown explicitly in Appendix B). For example, for a least-squares reconstruction
loss Lr, c = 2 and σr = 2BWr

BFBx + 2Bx.
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4 Experiments with SAE: Utility of reconstruction error

We now empirically test the utility of incorporating the reconstruction error into NNs, as a method
for regularization to improve generalization performance. Our goal is to investigate the impact of the
reconstruction error, and so we use the same architecture for SAE and NN, where the only difference
is the use of reconstruction error. We test several different architectures, namely single-hidden layer
SAEs with different activations, adding non-linearity with kernels before using a linear SAE and a
deep SAE with a bottleneck, namely a hidden layer with smaller size than that of the previous layer.

Experimental setup and Datasets. We used 10-fold cross-validation to choose the best meta-
parameters for each algorithm on each dataset. The meta-parameters providing the highest classifica-
tion accuracy averaged across folds are chosen. Using the meta-parameters chosen by cross-validation,
we report the average accuracy and standard error across 20 runs, each with a different randomly
sampled training-testing splits. A new training-testing split is generated by shuffling all data points
together and selecting the first samples to be the training set, and the remaining to be the testing set.
SUSY is a high-energy particle physics dataset [37]. The goal is to classify between a process where
supersymmetric particles are produced, and a background process where no detectable particles
are produced. SUSY was generated to discover hidden representations of raw sensor features for
classification [37], and has 8 features and 5 million data points.
Deterding is a vowel dataset [38] containing 11 steady-state vowels of British English spoken by 15
speakers. Every speaker pronounced each of the eleven vowel sounds six times giving 990 labeled
data points. The goal is to classify the vowel sound for each spoken vowel, where each speech signal
is converted into a 10-dimensional feature vector using log area ratios based on linear prediction
coefficients. We normalized each feature between 0 and 1 through Min-Max scaling.
CIFAR-10 is an image dataset [39] with 10 classes and 60000 32x32 color images. The classes
include objects like horses, deer, trucks and airplanes. For each of the training-test splits, we used a
random subset of 50,000 images for training and 10,000 images for testing. We preprocessed the data
by averaging together the three colour channels creating gray-scale images to speed up computation.
MNIST is a dataset [40] of 70000 examples of 28x28 images of handwritten digits from 0 to 9.

We would like to note that for these two benchmark datasets—CIFAR and MNIST—impressive
performance has been achieved, such as with a highly complex, deep neural network model for
CIFAR [41]. Here, however, we use these datasets to investigate a variety of models, rather than to
match performance of the current state-of-the-art. We do not use the provided single training-testing
split, but rather treat these large datasets as an opportunity to generate many (different) training-test
splits for a thorough empirical investigation.

Overall results. Figure 2 shows the performance of SAE versus NN. On the Deterding, SUSY and
MNIST datasets, we compare them in three different architectures. First, we compare linear SAE
with linear NN, where there is no activation function from the input to the hidden layer. Second, we
nonlinearly transform the data with radial basis functions—a Gaussian kernel—and then use linear
SAE and linear NNs. The kernel expansion enables nonlinear functions to be learned, despite the fact
that the learning step can still benefit from the optimality results provided for linear SAE. Third, we
use nonlinear activation functions, sigmoid and ReLu, from the input to the hidden layer. Though this
is outside the scope of the theoretical characterization, it is a relatively small departure and important
to understand the benefits of the reconstruction error for at least simple nonlinear networks. We
investigate only networks with single hidden layers as a first step, and to better match the networks
characterized in the theoretical guarantees.

Overall, we find that SAE improves performance across settings, in some cases by several percent.
Getting even an additional 1% in classification accuracy with just the addition of reconstruction error
to relatively simple models is a notable result. We summarize these results in Figure 2 and Table 1.
SAE and NN with the same architecture have similar sample variances, so we use a t-test for statistical
significance. For all pairs but one, the average accuracy of SAE is statistically significantly higher
than that of NN, with significance level 0.0005, though in some cases the differences are quite small,
particularly on SUSY and MNIST. In other cases, particularly in kernel representations in Deterding,
SAE significantly outperformed NN, with a jump by 18% in classification accuracy. Because we
attempted to standardize the models, differing only in SAE using reconstruction error, these results
indicate that the reconstruction error has a clear positive impact on generalization performance.
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Figure 2: Test accuracy of a three layer neural network (NN) and our supervised auto-encoder model
(SAE), on three datasets. We focus on the impact of using reconstruction error, and compare SAE
and NN with a variety of nonlinear structures, including sigmoid (SAE-Sigmoid and NN-Sigmoid),
ReLu (SAE-ReLu and NN-ReLu) and Gaussian kernel (SAE-Kernel and NN-Kernel). Though not
showing the results in the figure, we also tried initializing NN with pre-trained autoencoders and
the performance is similar to NN, thus outperformed by SAE as well. Overall, SAE consistently
outpeforms NNs, though in some cases the advantage is small. Details are shown in Table 1.

Deterding SUSY MNIST
Average Accuracy ± Standard Error Average Accuracy ± Standard Error Average Accuracy ± Standard Error

Test Training Test Training Test Training
SAE 54.98 ± 0.18 63.34 ± 0.17 76.48 ± 0.01 76.50 ± 0.03 92.20 ± 0.40 93.70 ± 0.30
NN 52.50± 0.17 61.05± 0.14 76.41± 0.02 76.42± 0.02 91.20± 0.20 92.50± 0.22

SAE-Sigmoid 90.67 ± 0.12 99.38 ± 0.03 77.79 ± 0.02 77.80 ± 0.01 94.50 ± 0.10 96.35 ± 0.05
NN-Sigmoid 87.00± 0.14 97.62± 0.05 76.90± 0.03 76.90± 0.01 92.50± 0.10 96.20± 0.04

SAE-ReLu 85.47 ± 0.52 90.22 ± 0.41 71.99 ± 0.58 72.04± 0.33 98.00 ± 0.10 98.25 ± 0.08
NN-ReLu 72.29± 0.67 78.76± 0.08 65.27± 0.17 75.03 ± 0.11 97.30± 0.10 98.10± 0.09

SAE-Kernel 92.52 ± 0.10 93.15 ± 0.11 77.27± 0.06 77.31± 0.12 96.70 ± 0.20 97.40 ± 0.18
NN-Kernel 74.85± 0.20 82.37± 0.41 77.38 ± 0.06 77.42 ± 0.06 95.50± 0.20 96.20± 0.20

Table 1: The percentage accuracy for the results presented in Figure 2. SAE outperforms NNs in
terms of average test accuracy across settings. The only exception is the Gaussian kernel on SUSY,
where the advantage of NN-Kernel is extremely small. We report train accuracies for further insights
and completeness. Note that though there is some amount of overfitting occurring, the models were
given the opportunity to select a variety of regularization parameters for `2 regularization as well as
dropout using cross-validation.

In the next few sections, we highlight certain properties of interest, in addition to these more general
performance results. We highlight robustness to overfitting as model complexity is increased, for both
nonlinear activations and kernel transformations. For these experiments, we choose CIFAR, since
it is a more complex prediction problem with a large amount of data. We then report preliminary
conclusions on the strategy of over-parametrizing and regularizing, rather than using bottleneck layers.
Finally, we demonstrate the structure extracted by SAE, to gain some insight into the representation.

Robustness to overfitting. We investigate the impact of increasing the hidden dimension on CIFAR,
with sigmoid and ReLu activation functions from the input to the hidden layer. The results are
summarized in Figures 3a and 3b, where the hidden dimension is increased from 20 to as large as 10
thousand. Both results indicate that SAE can better take advantage of increasing model complexity,
where (a) the NN clearly overfit and obtained poor accuracy with a sigmoid transfer and (b) SAE
gained a 2% accuracy improvement over NNs when both used a ReLu transfer.

Results with kernels. The overall conclusion is that SAE can benefit much more from model
complexity given by kernel representations, than NNs. In Table 1, the most striking difference
between SAE and NNs with kernels occurs for the Deterding dataset. SAE outperforms NN by
an entire 18%, going from 75% test accuracy to 92% test accuracy. For SUSY, SAE and NNs
were essentially tied; but for that dataset, all the nonlinear architectures performed very similarly,
suggesting little improvement could be gained.
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Figure 3: Test accuracy of SAE and NN with a variety of nonlinear architectures on CIFAR, with
increasing model complexity. For the sigmoid and relu, the hidden dimension is increased; for
kernels, the number of centers is increased. (a) For the sigmoid activation, the NN suffers noticeably
from overfitting as the hidden dimension increases, whereas SAE is robust to the increase in model
complexity. (b) For the ReLu activation, under low model complexity, SAE performed more poorly
than the NN. However, given a larger hidden dimension—about a half as large as the input dimension—
it reaches the same level of performance and then is better able to take advantage of the increase
model complexity. The difference of about 2% accuracy improvement for such a simple addition—the
reconstruction error—is a striking result. (c) The result here is similar to ReLu. Note that the size of
the hidden dimension corresponds to 10% of the number of centers.

On CIFAR, we also investigated the impact of increasing the number of kernel centers, which
correspondingly increases model parameters and model complexity. We fixed the hidden dimension
to 10% of the number of centers, to see if the SAE could still learn an appropriate model even with
an aggressive bottleneck, namely a hidden layer with a relatively very small size, making it hard to
reduce the reconstruction error. This helps to verify the hypothesis that the reconstruction error does
not incur much bias as a regularizer, and test a more practical setting where an aggressive bottleneck
can significantly speed up computation and convergence rate. For the NN, because the number of
targets is 10, once the hidden dimension k ≥ 10, the bottleneck should have little to no impact on
performance, which is what we observe. The result is summarized in Figure 3c, which shows that
SAE initially suffers when model complexity is low, but then surpasses the NN with increasing model
complexity. In general, we anticipate the effects with kernels and SAE to be more pronounced with
more powerful selection of kernels and centers.

Demonstration of SAE with a Deep Architecture. We investigate the effects of adding the
reconstruction loss to deep convolutional models on CIFAR. We use a network with two convolutional
layers of sizes {32, 64} and 4 dense layers of sizes {2048, 512, 128, 32} with ReLu activation. Unlike
our previous experiments we do not use grey-scale CIFAR, but instead use all three color channels
for the deep networks to make maximal use of the convolutional layers.

As shown in Figure 4, SAE outperforms NN consistently in both train and test accuracies, suggesting
that SAE is able to find a different and better solution than NN in the optimization on the training data
and generalize well on the testing data. We show the performance of SAE with decreasing weight
on the predictive loss, which increases the effect of the reconstruction error. Interestingly, a value
of 0.01 performs the best, but began to degrade with lower values. At the extreme, for a weight of
0 which corresponds to an Autoencoder, performance is significantly worse, so the combination of
both is necessary. We discuss other variants we tried in the caption for Figure 4, but the conclusions
remain consistent: SAE improves generalization performance over NNs.

5 Conclusion

In this paper, we systematically investigated supervised auto-encoders (SAEs), as an approach to
using unsupervised auxiliary tasks to improve generalization performance. We showed theoretically
that the addition of reconstruction error improves generalization performance, for linear SAEs. We
showed empirically, across four different datasets, with a variety of architectures, that SAE never
harms performance but in some cases can significantly improve performance, particularly when using
kernels and under ReLu activations, for both shallow and deep architectures.
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Figure 4: Train and Test accuracy of SAE and NN with a deep architecture. The numbers 0.01, 0.1
and 1.0 denote the weights on the prediction error, with a constant weights of 1.0 on the reconstruction
error. We also compared to Auto-encoders, with a two-stage training strategy where the auto-encoder
is trained first, with the representation then used for the supervised learner, but this performed
poorly (about 0.4 testing accuracy). We additionally investigated both dropout and `2 regularization.
We find that dropout increases the variance of independent runs, and improves each algorithm by
approximately three percentage points over its reported test set accuracy. Using `2 regularization did
not improve performance. Under both dropout and `2, the advantage of SAE over NN in both train
and test accuracies remained consistent, and so these graphs are representative for those additional
settings. Finally, we additionally compared to the ResNet-18 architecture [42]. For a fair comparison,
we do not use the image augmentation originally used in training ResNet-18. We find that ResNet-18,
with nearly double the total learnable parameters, achieved only two percentage points higher on the
test set accuracy than our SAE with reconstructive loss.
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