
Diverse Ensemble Evolution:

Curriculum Data-Model Marriage

Tianyi Zhou, Shengjie Wang, Jeff A. Bilmes

Depts. of Computer Science and Engineering, and Electrical and Computer Engineering
University of Washington, Seattle

{tianyizh, wangsj, bilmes}@uw.edu

Abstract

We study a new method “Diverse Ensemble Evolution (DivE2)” to train an en-
semble of machine learning models that assigns data to models at each training
epoch based on each model’s current expertise and an intra- and inter-model di-
versity reward. DivE2 schedules, over the course of training epochs, the relative
importance of these characteristics; it starts by selecting easy samples for each
model, and then gradually adjusts towards the models having specialized and
complementary expertise on subsets of the training data, thereby encouraging
high accuracy of the ensemble. We utilize an intra-model diversity term on data
assigned to each model, and an inter-model diversity term on data assigned to
pairs of models, to penalize both within-model and cross-model redundancy. We
formulate the data-model marriage problem as a generalized bipartite matching,
represented as submodular maximization subject to two matroid constraints. DivE2

solves a sequence of continuous-combinatorial optimizations with slowly varying
objectives and constraints. The combinatorial part handles the data-model marriage
while the continuous part updates model parameters based on the assignments. In
experiments, DivE2 outperforms other ensemble training methods under a variety
of model aggregation techniques, while also maintaining competitive efficiency.

1 Introduction

Ensemble methods [7, 57, 31, 8] are simple and powerful machine learning approaches to obtain
improved performance by aggregating predictions (e.g., majority voting or weighted averaging) over
multiple models. Over the past few decades, they have been widely applied, consistently yielding
good results. For neural networks (NN) in particular, ensemble methods have shown their utility
from the early 1980s [72, 28, 39, 10] to recent times [50, 27, 66, 20]. State-of-the-art results on many
contemporary competitions/benchmarks are achieved via ensembles of deep neural networks (DNNs),
e.g., ImageNet [17], SQuAD [55], and the Kaggle competitions (https://www.kaggle.com/).
In addition to boosting state-of-the-art performance of collections of large models, ensembles of
small and weak models can achieve performance comparable to much larger individual models,
and this can be useful when machine resources are limited. Inference over an ensemble of models,
moreover, can be easily parallelized even on a distributed machine.

A key reason for the success of ensemble methods is that the diversity among different models can
reduce the variance of the combined predictions and improve generalization. Intuitively, diverse
models tend to make mistakes on different samples in different ways (e.g., assigning largest probability
to different wrong classes), so during majority voting or averaging, those different mistakes cancel
each other out and the correct predictions can prevail. As neural networks grow larger in size and
intricacy, their variance correspondingly increases, offering opportunity for reduction by a diverse
ensemble of such networks.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

https://www.kaggle.com/

Randomization is a widely-used technique to produce diverse ensembles. Classical ensemble methods
such as random initialization [17, 63], random forests [31, 8] and Bagging [7, 19], encourage diversity
by randomly initializing starting points/subspaces or resampling the training set for different models.
Ensemble-like methods for DNNs, e.g., dropout [61] and swapout [59], implicitly train multiple
diverse models by randomly dropping hidden units out during the training of a single model. Diversity
can also be promoted by sequentially training multiple models to encourage a difference between the
current and previously trained models, such as Boosting [57, 23, 50] and snapshot ensembles [32].
Such sequential methods, however, are hard to parallelize and can lead to long training times when
applied to neural networks.

Despite the consensus that diversity is essential to ensemble training, there is little work explicitly
encouraging and controlling diversity during ensemble model training. Most previous methods encour-
age diversity only implicitly, and are incapable of adjusting the amount of diversity precisely based
on criterion determined during different learning stages, nor do they have an explicit diversity repre-
sentation. Some methods implicitly encourage diversity during training, but they rely on learning rate
scheduling (e.g., snapshot ensembles [32]) or end-to-end training of an additive combination of mod-
els (e.g., mixture of experts [33, 34, 58]) to promote diversity, which is hard to control and interpret.

Moreover, many existing ensemble training methods train all models in the ensemble on all samples
in the training set by repeatedly iterating through it, so the training cost increases linearly with
the number of models and number of samples. In such case, each model might waste much of its
time on a large number of redundant or irrelevant samples that have already been learnt, and that
might contribute nearly zero-valued gradients. The performance of an ensemble on each sample only
depends on whether a subset of models (e.g., half for majority voting) makes a correct prediction,
so it should be unnecessary to train each model on every sample.

In this paper, we aim to achieve an ensemble of models using explicitly encouraged diversity and
focused expertise, i.e., each model is an expert in a sufficiently large local-region of the data space,
and all the models together cover the entire space. We propose an efficient meta-algorithm “diverse
ensemble evolution (DivE2)”, that “evolves” the ensemble adaptively by changing over stages both
the diversity encouragement and each model’s expertise, and this is based on information available
during ensemble training. It does this encouraging both intra- and inter-model diversity. Each training
stage is formulated as a hybrid continuous-combinatorial optimization. The combinatorial part solves
a data-model-marriage assignment via submodular generalized bipartite matchings; the algorithm
explicitly controls the diversity of the ensemble and the expertise of each model by assigning different
subsets of the training data to different models. The continuous part trains each model’s parameters
using the assigned subset of data. At each stage, all the models may be updated in parallel after
receiving their assigned data.

A similar approach to encourage inter-model diversity was used in[15] but there diversity of different
models is achieved by encouraging diverse subsets of features and the goal was to cluster the features
into potentially overlapping groups; here we are encouraging diverse subsets of samples to be assigned
to models during the training process and we are matching data samples to models.

We apply DivE2 to four benchmark datasets, and show that it improves over randomization-based
ensemble training methods on a variety of approaches to aggregate ensemble models into a single
prediction. Moreover, with model selection based ensemble aggregation (defined below), DivE2 can
quickly reach reasonably good ensemble performance after only a few learning stages even though
each individual model has poor performance on the entire training set. Furthermore, DivE2 exhibits
competitive efficiency and good of model expertise interpretability, both of which can be important
in DNN training.

2 Diverse Ensemble Evolution (DivE
2
): Formulation

2.1 Data-Model Marriage

An ensemble of models can make an accurate prediction on a sample without requiring each model
making accurate predictions on that sample [41, 26, 42]. Rather, it requires a subset of models to
produce accurate predictions, and the remainder may err in different ways. Hence, rather than training
each model on the entire training set, we may in theory assign a data subset to each model. Then,
each sample is learned by a subset of models, and different models are trained on different subsets
thereby avoiding common mistakes across models.

Consider a weighted bipartite graph (see Fig. 1), with the set of n = |V | training samples V on the
left side, the set of m = |U | models U on the right side, and edges E , {(vj , ui)|vj 2 V, ui 2 U}

2

connecting all sample-model pairs with edge weights defined by the loss `(vj ;wi) of sample vj =
(xj , yj) (where xj is the features and yj is the label(s)) on model ui (where model ui is parameterized
by wi). We wish to marry samples with models by selecting a subset of edges having overall small
loss. We can express this as follows:

max
{wi}m

i=1

max
A✓E

X

(vj ,ui)2A

(� � `(vj ;wi)), (1)

where � � `(vj ;wi) translates loss to reward (or accuracy), and � is a constant larger than any
per-sample loss on any model, i.e., � � `(vj ;wi), 8i, j 1.

Samples Models

V UE

≤ " (k =2)

≤ ' ('=3)

Figure 1: Data-Model Mar-
riage as Bipartite Matching.

With no constraints, all edges are selected thus requiring all models to
learn all samples. As mentioned above, for ensembles, every sample
need only be learned by a few models, and thus, for any sample v, we
may wish to limit the number of incident edges selected to be no greater
than k. This can be achieved using partition matroid MV = (E, IV),
where IV = (I1, I2, . . . , In) and Ii ✓ E. IV contains all subsets of
E where no sample is incident to more than k edges in any subset, i.e.
IV = {A ✓ E : |A \ �(v)|  k, 8v 2 V }, where �(v) ✓ E is the set
of edges incident to v (likewise for �(u), u 2 U). Therefore, as long
as a selected subset A ✓ E satisfies the constraint (A 2 IV), every
sample is selected by at most k models.

With only the constraint A 2 Iv, different models can be assigned
dramatically differently sized data subsets. In the extremely unbal-
anced case, k models might get all the training data, while the other
models get no data at all. This is obviously undesirable because k

models will learn from the same data (no diversity and no specialized
and complementary expertise), while the others models learn nothing.
Running time also is not improved since training time is linear in the size of the largest assigned data
set, which is all of the data in this case. We therefore introduce a second partition matroid constraint
MU = (E, IU), which limits to p the number of samples selected by each model. Specifically,
Iu = {A ✓ E : |A \ �(u)|  p, 8u 2 U}. Eq. (1) then becomes:

max
{wi}m

i=1

max
A✓E,A2Iv\Iu

X

(vj ,ui)2A

(� � `(vj ;wi)). (2)

The interplay between the two constraints (i.e., Iv: k models per sample, and Iu: p samples per
model) is important to our later design of a curriculum that leads to a diverse and complementary
ensemble. When mp < nk, Iu tends to saturate (i.e., |A \ �(u)| = p, 8u 2 U) earlier than Iv.
Hence, each model generally has the opportunity to select the top-p easiest samples (i.e., those having
the smallest loss) for itself. We call this the “model selecting sample” (or early learning) phase, where
each model quickly learns to perform well on a subset of data. On the other hand, when mp > nk, Iv
tends to saturate earlier (i.e., |A\ �(v)| = k, 8v 2 V), and each sample generally has the opportunity
to select the best-k models for itself. We call this the “sample selecting model” (or later learning)
phase, where models may develop complementary expertise so that together they can perform
accurately over the entire data space. We give conditions on which phase dominates in Lemma 1.

2.2 Inter-model & Intra-model Diversity

To encourage different multiple models to gain different proficiencies, the subsets of training data
assigned to different models should be diverse. The two constraints introduced above are helpful
to encourage diversity to a certain extent when p and k are small. For example, when k = 1 and
p  n/m, no pairs of models share any training sample. Different training samples, however, can
still be similar and thus redundant, and in this case the above approach might not encourage diversity
when p or k is large. Therefore, we incorporate during training an explicit inter-model diversity term
Finter(A) , P

i,j2[m],i<j F
�
(�(ui) [�(uj)) \ A

�
and add it to the objective function in Eq. (2).

This discourages model pairs from becoming too similar by discouraging their being assigned similar
data. The set function F : 2E ! R+ is chosen from the large expressive family of submodular
functions, which naturally measure the diversity of a set of items [24]. A submodular function
satisfies the diminishing return property: given a finite ground set V , any A ✓ B ✓ V and an element

1Although in theory the loss can be arbitrarily large, in practice, it is usually forced to be upper bounded by a
constant for a stable gradient, e.g., a small � used in � log(pi + �)  � log(�) when computing cross entropy
loss. Gradient clipping widely used in training neural nets also avoids arbitrarily large loss.

3

v /2 B, v 2 V , we have F ({v} [A)� F (A) � F ({v} [B)� F (B). Submodular functions have
been applied to a variety of diversity-driven tasks to achieve good results [45, 44, 3, 54, 25, 22].

Another issue of Eq. (2) is that each model might select easy but redundant samples when constraint
Iu dominates (the model-selecting-sample phase). This is problematic as each model might quickly
focus on a small group of easy samples, and may overfit to such small region in the data space. We
therefore introduce another set function Fintra(A) =

P
i2[m] F

0(�(ui)\A) to promote the diversity
of samples assigned to each model. Similar to F , we also choose F

0 to be a submodular function.
The optimization procedure now becomes:

max
W

max
A✓E,A2Iv\Iu

G(A,W) ,
X

(vj ,ui)2A

(� � `(vj ;wi)) + �Finter(A) + �Fintra(A), (3)

where � and � are two non-negative weights to control the trade-offs between the reward term and the
diversity terms, and we denote W , {wi}mi=1 for simplicity. By optimizing the objective G(A,W),
we explicitly encourage model diversity in the ensemble, while ensuring every sample gets learned
by k models so that the ensemble can generate correct predictions. A form of this objective has been
called “submodular generalized matchings” [1] where it was used to associate peptides and spectra.

3 Diverse Ensemble Evolution (DivE
2
): Algorithm

3.1 Solving a Continuous-Combinatorial Optimization

Algorithm 1 SELECTLEARN(k, p,�, �, {w0
i }mi=1)

1: Input: {vj}nj=1, {l(·;wi)}mi=1,⇡(·; ⌘)
2: Output: {wi}mi=1
3: Initialize: wi w

0
i 8i 2 [m], t = 0

4: while not “converged” do

5: W {wt
i}mi=1, define G(·,W) by W ;

6: Â SUBMODULARMAX(G(·,W), k, p);
7: if G(Â,W) > G(A,W) then

8: A Â;
9: end if

10: for i 2 {1, · · · ,m} do

11: �rĤ(wt
i) @

@wt
i

P
vj2V (A\�(ui))

`(vj ;wt
i);

12: w
t+1
i w

t
i + ⇡

⇣
{w⌧

i ,�rĤ(w⌧
i)}⌧2[1,t]; ⌘

t
⌘

;
13: end for

14: t t+ 1;
15: end while

Eq. (3) is a hybrid optimization in-
volving both a continuous variable W

and a discrete variable A. It de-
grades to maximization of a piece-
wise continuous function H(W) ,
maxA✓E,A2Iv\Iu G(A,W), with each
piece defined by a fixed A achieving
the maximum of G(A,W) in a lo-
cal region of W . Suppose that A is
fixed, then maximizing G(A,W) (or
H(W)) consists of to m independent
continuous minimization problems, i.e.,
minwi

P
vj2V (A\�(ui))

`(vj ;wi), 8i 2
[m]. Here V (A) ✓ V denotes the sam-
ples incident to the set of edges A ✓ E,
so V (A \ �(ui)) is the subset of sam-
ples assigned to model ui. When loss
`(·;wi) is convex w.r.t. wi for every i,
a global optimal solution to the above
continuous minimization can be obtained by various off-the-shelf algorithms. When `(·;wi) is
non-convex, e.g., each model is a deep neural networks, there also exist many practical and provable
algorithms that can achieve a local optimal solution, say, by backpropagation.

Suppose we fix W , then maximizing G(A,W) reduces to the data assignment problem (a generalized
bipartite matching problem [43], see Appendix [71] Sec. 5.3 for more details), and the optimal A
defines one piece of H(W) in the vicinity of W . Finding the optimal assignment is NP-hard since
G(·,W) is a submodular function (a weighted sum of a modular and two submodular functions)
and we wish to maximize over a feasibility constraint consisting of the intersection of two partition
matroids (Iv \ Iu). Thanks to submodularity, fast approximate algorithms [51, 48, 49] exist that find
a good quality approximate optimal solution. Let Ĥ(W) denote the piecewise continuous function
achieved when the discrete problem is solved approximately using submodular optimization, then we
have Ĥ(W) � ↵ ·H(W) for every W , where ↵ 2 [0, 1] is the approximation factor.

Therefore, solving the max-max problem in Eq. (3) requires interaction between a combinatorial
(submodular in specific) optimizer and a continuous (convex or non-convex) optimizer ⇡(·; ⌘) 2.
We alternate between the two optimizations while keeping the objective G(A,W) non-decreasing.

2The optimizer ⇡(·; ⌘) can be any gradient descent methods, e.g., SGD, momentum methods, Nesterov’s
accelerated gradient [52], Adagrad [18], Adam [36], etc. Here the first parameter · can include any historical
solutions and gradients, and ⌘ is a learning rate schedule (i.e., learning rate is ⌘t for iteration t).

4

Intuitively, we utilize the discrete optimization to select a better piece of Ĥ(W), and then apply the
continuous optimization to find a better solution on that piece.

Details are given in Algorithm 1. For each iteration, we compute an approximate solution Â ✓ E

using submodular maximization SUBMODULARMAX (line 6); in lines 7-9 we compare Â with the old
A on G(·,W) and choose the better one; lines 10-13 run an optimizer ⇡(·; ⌘) to update each model
wi according to its assigned data. Algorithm 1 always generates a non-decreasing (assuming ⇡(·; ⌘)
does the same using, say, a line search) sequence of objective values. With a damped learning rate,
only small adjustments get applied to W and G(·,W). Thus, after a certain point the combinatorial
part repeatedly selects the same A (and line 7 eventually is always false), so the algorithm then
converges as the continuous optimizer converges. 3

3.2 Theoretical Perspectives

An interesting viewpoint of the max-max problem in Eq. (3) is its analogy to K-means problems [46].
Eq. (3) strictly generalizes the kmeans objective, by setting � = � = 0, k = 1, p to be the number
of desired clusters, and the loss to be the distance metric used in K-means (e.g., L2 distance), and
the model to be a real valued vector of having the same dimension as x. Since K-means problem is
NP-hard, our objective is also NP-hard.

We next analyze conditions for either of the constraints (Iv, Iu) introduced in Section 2.1 to saturate.
In the two extreme cases, we know that the “sample selecting model” constraint Iv saturates when
nk ⌧ mp (e.g., k = 1 and p = n), and the “model selecting sample” constraint Iu saturates when
nk � mp (e.g., k = m and p = 1). However, it is not clear what exactly happens between them.
The following Lemma shows the precise saturation conditions of the two constraints, with proof
details in Section 5.1 of Appendix [71].
Lemma 1. If SUBMODULARMAX is greedy algorithm or its variant, the data assignment Â produced
by lines 6-9 in Algorithm 1 fulfills: 1) Iv saturates, i.e., |Â\�(v)| = k, 8v 2 V , and |Â| = nk, if k <

mp+p/n+(p�1); 2) Iu saturates, i.e., |Â \ �(u)| = p, 8u 2 U , and |Â| = mp, if k > mp�p/n�(p�1);
3) when mp+p/n+(p�1)  k  mp�p/n�(p�1), we have |Â| � min{(k � 1) + (m � k + 1)p, (p �
1) + (n� p+ 1)k}.
As stated above, we can think the objective H(W) as a piecewise function, where each piece is
associated with a solution to the discrete optimization problem. Since it is NP-hard to optimize the
discrete problem, Algorithm 1 optimizes W on Ĥ(W), which is defined by the SUBMODULARMAX
solutions, rather than on H(W). Algorithm 1 has the following properties.
Proposition 1. Algorithm 1: (1) generates a monotonically non-decreasing sequence of objective
values G(A;W) (assuming ⇡(·; ⌘) does the same) (2) converges to a stationary point on Ĥ(W); and
(3) for any loss `(u,w) that is �-strongly convex w.r.t. w, if SUBMODULARMAX has approximation
factor ↵, it converges to a local optimum Ŵ 2 argmaxW2K Ĥ(W) (i.e., Ŵ is optimal in an local
area K) such that for any local optimum W

⇤
loc 2 K on the true objective H(W), we have

Ĥ(Ŵ) � ↵H(W ⇤
loc)+

�

2
·min{(k�1)+(m�k+1)p, (p�1)+(n�p+1)k}·kŴ �W

⇤
lock22. (4)

The proof is in Section 5.2 of Appendix [71]. The result in Eq. (4) implies that in any local area K,
if Ŵ is not close to W

⇤
loc (i.e., kŴ �W

⇤
lock2 is large), the algorithm can still achieve an objective

Ĥ(Ŵ) close to H(W ⇤
loc), which is a good approximate solution from the perspective of maximizing

G(A,W). Section 5.3 of Appendix [71] shows that the approximation factor is ↵ = 1/2+G for the
greedy algorithm, where G is the curvature of G(·,W). When the weights � and � are small, G
decreases and G(·,W) becomes more modular. Therefore, the approximation ratio ↵ increases and
the lower bound in Eq. (4) improves. For general non-convex losses and models (e.g., DNNs), Eq. (4)
degenerates to a weaker bound: Ĥ(Ŵ) � ↵H(W ⇤

loc).

3.3 Ensemble Evolution: Curricula for Diverse Ensembles with Complementary Expertise

For a model ensemble to produce correct predictions, we require only that every sample be learnt
by a few (small k) models. Optimizing Eq. (3) with small k from the beginning, however, might
be harmful as the models are randomly initialized, and using the loss of such early stage models
for the edge weights and small k could lead to arbitrary samples being associated and subsequently

3Convergence is defined as the gradient rĤ(W) w.r.t. W being zero. In practice, we use krĤ(W)k  ✏

for a small ✏.

5

locked to models. We would, instead, rather have a larger k and more use of the diversity terms at the
beginning. To address this, we design an ensemble curriculum to guide the training process and to
gradually approach our ultimate goal.

Algorithm 2 Diverse Ensemble Evolution (DIVE2)
1: Input: {(xj , yj)}nj=1, {w0

i }mi=1,⇡(·; ⌘), µ,�k,�p, T

2: Output: {wt
i}mi=1

3: Initialize: k  m, p � 1 s.t. mp  nk,
� 2 [0, 1], � 2 [0, 1]

4: for t 2 {1, · · · , T} do

5: {wt
i}mi=1 SELECTLEARN(k, p,�, �, {wt�1

i }mi=1);
6: � (1� µ) · �, � (1� µ) · �;
7: k max{dk ��ke, 1}, p min{bp+�pc, n};
8: end for

In Section 2.1, we discussed two
(mp < nk and mp > nk) extreme
training regimes. In the first regime,
there are plenty of samples to go
around but models may only choose a
limited set of samples, so this encour-
ages different models to improve on
samples they are already good at. In
the first regime, however, inter-model
diversity is important to encourage
models to become sufficiently differ-
ent from each other. Intra-diversity is

also important in the first regime, since it discourages models from being trained on entirely redundant
data. In the second regime, there are plenty of models to go around but samples may choose only
a limited number of models. Each model is then given a set of samples that it is particularly good
at, and further training further specialization. Since all samples are assigned models, this leads to
complementary proficiencies covering the data space.

These observations suggest we start at the first regime mp  nk with small p and large k, and
gradually switch to the second regime with mp � nk by slowly increasing p and decreasing k. In
earlier stages, we also should set the diversity weights � and � to be large, and then slowly reduce
them as we move towards the second regime. It is worth noting that besides intra-model diversity
regularization, increasing p is also helpful to expand the expertise of each model since it encourages
each model to select more diverse samples. Decreasing k also helps to encourage inter-model diversity
since it allows each sample to be shared by fewer models.

In later stages, the solution of Algorithm 1 becomes more exact. With � and � decreasing, according
to Lemma 2, the curvature G of G(·,W) approaches 0, the approximation factor ↵ = 1/2+G of
greedy algorithm increases, and the approximate objective Ĥ(W) � ↵H(W) becomes closer to the
true objective H(W). Moreover, during later stages when the “sample selecting model” constraint
(Iv) dominates and � and � are almost 0, the inner modular maximization is be exactly solved (↵ = 1)
and greedy algorithm degenerates to simple sorting.

The detailed diverse ensemble evolution (DivE2) procedure is shown in Algorithm 2. The curriculum
is composed of T stages. Each stage uses SELECTLEARN (Algorithm 1) to (approximately) solve a
continuous-combinatorial optimization in the form of Eq. (3) with pre-specified values of (k, p,�, �)
and initialization {wt�1

i }mi=1 from the previous episode as a warm start (line 5). The procedure
reduces � and � by a multiplicative factor (1�µ) in line 6, linearly decreases k by �k and additively
increases p by �p, in Line 7. Both k and p are restricted to be integers and within the legal ranges, i.e.,
k 2 [1,m] and p 2 [1, n]. The warm start initialization is similar in spirit to continuation schemes
used in previous curriculum learning (CL) [6, 5, 4, 35, 2, 60, 70] and SPL [40, 64, 62, 65], to avoid
getting trapped in local minima and to stabilize optimization. As consecutive problems have the same
form with similar parameters (k, p,�, �), the solution to the previous problem might still evaluate
well on the next one. Hence, instead of running lines 5-14 in Algorithm 1 until full convergence (as
instructed by line 4), we run them for  10 iterations for reduced running time.

4 Experiments

We apply three different ensemble training methods to train ensembles of neural networks with differ-
ent structures on four datasets, namely: (1) MobileNetV2 [56] on CIFAR10 [38]; (2) ResNet18 [29]
on CIFAR100 [38]; (3) CNNs with two convolutional layers4 on Fashion-MNIST (“Fashion” in all
tables) [69]; (4) and lastly CNNs with six convolutional layers on STL10 [12]5. The three training
methods include DivE2 and two widely used approaches as baselines, which are

• Bagging(BAG)[7]: sample a new training set of the same size as the original one (with replacement)
for each model, and train it for several epochs on the sampled training set.

4A variant of LeNet5 with 64 kernels for each convolutional layer.
5The network structure is from https://github.com/aaron-xichen/pytorch-playground.

6

https://github.com/aaron-xichen/pytorch-playground

• RandINIT(RND): randomly initialize model weights of each model, and train it for several epochs
on the whole training set.

Details can be found in Table 3 of Appendix [71]. We everywhere fix the number of models at
m = 10, and use `2 parameter regularization on w with weight 1 ⇥ 10�4. In DivE2’s training
phase, we start from k = 6, p = n/2m and linearly change to k = 1, p = 3n/m in T = 200 episodes.
We employ the “facility location” submodular function [14, 45] for both the intra and inter-model
diversity, i.e., F (A) =

P
v02V maxv2V (A) !v,v0 where !v,v0 represents the similarity between

sample v and v
0. We utilize a Gaussian kernel for similarity using neural net features z(v) for each

v, i.e., !v,v0 = exp
�
�kz(v)�z(v0)k2

/2�2
�
, where � is the mean value of all the n(n�1)/2 pairwise

distances. For every dataset, we train a neural networks on a small random subset of training data
(e.g., hundreds of samples) for one epoch, and use the inputs to the last fully connected layer as
features z. These features are also used in the Top-k DCS-KNN approach (below) to compute the
pairwise `2 distances to find the K nearest neighbors.

4.1 Aggregation Methods using an Ensemble of Models

CIFAR10 CIFAR100 Fashion-MNIST STL10

Figure 2: Compare DivE2 with Bagging(upper row) and RandINIT(lower row) in terms of test accuracy (%) vs.
number of training batches on CIFAR10, CIFAR100, Fashion-MNIST and STL10, with m = 10 and k = 3.

For ensemble model aggregation, when applying a trained ensemble of models to new samples, we
must determine (1) which models to use, and (2) how to aggregate their outputs. Here we mainly
discuss the first point about different model selection methods, because the aggregation we employ
is either an evenly or a weighted average of the selected model outputs. Static model selection
methods [72, 10, 53] choose a subset of models from the ensemble and apply it to all samples. By
contrast, dynamic classifier selection (DCS) [11, 47, 73, 16] selects different subsets of models to be
aggregated for each sample. KNN based DCS [68, 37] is a widely used method that usually achieves
better performance than other DCS and static methods. When training, DivE2 assigns different subsets
of samples to different models, so for aggregation, we may benefit more from using sample-specific
model selection methods. Therefore, we focus on DCS-type methods, in particular, the following:

• Top-k Oracle: average the outputs (e.g., logits before applying softmax) of the top-k models with
the smallest loss on the given sample. It requires knowing the true label, and thus is a cheating
method that cannot be applied in practice. However, it shows a useful upper bound on the other
methods that select k models for aggregation.

• All Average: evenly average the outputs of all m models.
• Random-k Average: randomly select k models and average their outputs.
• Top-k Confidence: select the top-k models with the highest confidence (i.e., highest probability of

the predicted class) on the given sample, and average their outputs.
• Top-k DCS-KNN: apply an KNN based DCS method, i.e., find the K nearest neighbors of the

given sample from the training data, select the top-k models assigned to the K nearest neighbors
by Top-k Oracle, and average their outputs.

• Top-k NN-LossPredict: train an L2-regression neural nets with m outputs to predict the per-sample
losses on the m models by using a training set composed of all training samples and their losses on

7

the trained models. For aggregation, select the top-k models with the smallest predicted losses on
the given sample, and average their outputs.

We compare the three training methods used with the aforementioned aggregation methods with
different k6. We summarize the highest test-set accuracy when k = 3 in Table 2, and show how the

Table 1: Total time (secs.) of DivE2 and time only on SUBMODULARMAX.
Dataset CIFAR10 CIFAR100 Fashion STL10
Total time 26790.75s 34658.27s 2922.89s 4065.81s
SUBMODULARMAX 1857.36s 2697.36s 81.64s 378.84s

test accuracy improves as
training proceeds (i.e., as the
total training batches on all
models increases) in Fig. 2.
In Fig. 2, solid curves denote
DivE2, while dashed curves
denote the three baseline training methods. Different colors refer to different aggregation methods,
and gray curves represent single model performance (gray solid curves denote models trained by
DivE2, while gray dashed curves denote models trained by other baselines). Similar results for k = 5
and k = 7 can be found in Appendix [71]. In addition, we also tested DivE2 without the “model
selecting sample” constraint and any diversity, which equals to [41, 26, 42] in multi-class case. It
achieves a test accuracy of 90.11% (vs. 94.36% of DivE2) on CIFAR10 and 71.01% (vs. 78.89%
of DivE2) on CIFAR100 when using Top-3 NN-LP for aggregation.

Table 2: The highest test accuracy (%) achieved by different combinations of
ensemble training and aggregation methods on four datasets, with k = 3. DivE2

usually requires less training time than others to achieve the highest accuracy. The
best non-cheating test accuracy (i.e., not Top-k Oracle) is highlighted below.

Train:Aggregation CIFAR10 CIFAR100 Fashion STL10
BAG:Top-k Oracle (Cheat) 97.85 88.02 95.60 89.13
BAG:All Average 93.69 73.12 91.24 74.96
BAG:Random-k Avg. 93.05 72.86 91.00 74.03
BAG:Top-k Confidence 93.51 74.59 90.81 75.76
BAG:Top-k DCS-KNN 92.86 73.06 91.39 74.07
BAG:Top-k NN-L.P. 93.45 73.62 92.38 75.16
RND:Top-k Oracle (Cheat) 97.80 87.01 95.71 89.54
RND:All Average 93.28 75.71 91.13 77.13
RND:Random-k Avg. 93.11 75.56 90.77 76.75
RND:Top-k Confidence 93.51 76.54 91.07 77.93
RND:Top-k DCS-KNN 93.18 75.72 92.01 77.23
RND:Top-k NN-L.P. 93.69 76.69 92.48 77.28
DivE2:Top-k Oracle (Cheat) 98.01 90.12 96.40 90.18
DivE2:All Average 94.20 79.12 86.16 78.95
DivE2:Random-k Avg. 93.26 77.69 82.75 78.59
DivE2:Top-k Confidence 94.05 78.76 92.10 79.38
DivE2:Top-k DCS-KNN 93.81 77.61 92.10 79.23
DivE2:Top-k NN-L.P. 94.36 78.89 92.76 80.49

Top-k Oracle (cheating)
is always the best, and
provides an upper bound.
In addition, DivE2

usually has higher upper
bound than others, and
thus has more potential
for future improvement.
Solid curves (DivE2)
are usually higher than
dashed curves (other
baselines) in later
stages, no matter which
aggregation method is
used. Although diversity
introduces more difficult
samples and lead to
slower convergence in
early stages, it helps
accelerate convergence
in later stages. Although
the test accuracy on
single models achieved
by DivE2 is usually lower than those obtained by other baselines, the test accuracy on the ensemble
is better. This indicates that different models indeed develop different local expertise. Hence, each
model performs well good only in a local region but poorly elsewhere. However, their expertise
is complementary, so the overall performance of the ensemble outperforms other baselines. We
visualize the expertise of each model across different classes in Fig. 3 of Appendix [71] for
Fashion-MNIST as an example. Among all aggregation methods, Top-k NN-LossPredict and Top-k
DCS-KNN show comparable or better performance than other aggregation methods, but require
much less aggregation costs when k is small. As shown in Appendix [71], when changing k from
minority (k = 3) to majority (k = 7), the test accuracy of these two aggregation methods usually
improves by a large margin. According to Table 1, DivE2 only requires a few extra computational
time for data assignment. The model training dominates the computations but is highly parallelizable
since the updates on different models are independent.

Acknowledgments This material is based upon work supported by the National Science Foundation
under Grant No. IIS-1162606, the National Institutes of Health under award R01GM103544, and by
a Google, a Microsoft, and an Intel research award. This research is also supported by the CONIX
Research Center, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA.

6The k used in aggregation fixed, and is different from the k in training (which decreases from 6 to 1).

8

References

[1] Wenruo Bai, Jeffrey Bilmes, and William S. Noble. Bipartite matching generalizations for
peptide identification in tandem mass spectrometry. In 7th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics (ACM BCB), ACM SIGBio, Seattle, WA,
October 2016. ACM, ACM SIGBio.

[2] Sumit Basu and Janara Christensen. Teaching classification boundaries to humans. In AAAI,
pages 109–115, 2013.

[3] Dhruv Batra, Payman Yadollahpour, Abner Guzman-Rivera, and Gregory Shakhnarovich.
Diverse m-best solutions in markov random fields. In ECCV, pages 1–16, 2012.

[4] Yoshua Bengio. Evolving Culture Versus Local Minima, pages 109–138. Springer Berlin
Heidelberg, 2014.

[5] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–
1828, 2013.

[6] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In ICML, pages 41–48, 2009.

[7] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[8] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[9] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’06, pages 535–541, 2006.

[10] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble selection
from libraries of models. In Proceedings of the Twenty-first International Conference on
Machine Learning, ICML ’04, 2004.

[11] Paulo R. Cavalin, Robert Sabourin, and Ching Y. Suen. Dynamic selection approaches for
multiple classifier systems. Neural Computing and Applications, 22(3):673–688, 2013.

[12] Adam Coates, Honglak Lee, and Andrew Y. Ng. An analysis of single-layer networks in
unsupervised feature learning. In AISTATS, pages 215–223, 2011.

[13] M. Conforti and G. Cornuejols. Submodular set functions, matroids and the greedy algorithm:
tight worst-case bounds and some generalizations of the Rado-Edmonds theorem. Discrete
Applied Mathematics, 7(3):251–274, 1984.

[14] G. Cornuéjols, M. Fisher, and G.L. Nemhauser. On the uncapacitated location problem. Annals
of Discrete Mathematics, 1:163–177, 1977.

[15] Andrew Cotter, Mahdi Milani Fard, Seungil You, Maya Gupta, and Jeff Bilmes. Constrained
interacting submodular groupings. In International Conference on Machine Learning (ICML),
Stockholm, Sweden, July 2018.

[16] Rafael M.O. Cruz, Robert Sabourin, and George D.C. Cavalcanti. Dynamic classifier selection:
Recent advances and perspectives. Information Fusion, 41:195–216, 2018.

[17] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[18] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

[19] B. Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1):1–26,
1979.

9

[20] Gamaleldin F. Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alex Kurakin, Ian J.
Goodfellow, and Jascha Sohl-Dickstein. Adversarial examples that fool both human and
computer vision. arXiv, 2018.

[21] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for maximizing
submodular set functions-II. Mathematical Programming Studies, 8, 1978.

[22] Madalina Fiterau and Artur Dubrawski. Projection retrieval for classification. In Advances in
Neural Information Processing Systems 25, pages 3023–3031. 2012.

[23] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

[24] Satoru Fujishige. Submodular functions and optimization. Annals of discrete mathematics.
Elsevier, 2005.

[25] Jennifer Gillenwater, Alex Kulesza, and Ben Taskar. Near-optimal map inference for determi-
nantal point processes. In NIPS, pages 2735–2743, 2012.

[26] Abner Guzmán-rivera, Dhruv Batra, and Pushmeet Kohli. Multiple choice learning: Learning
to produce multiple structured outputs. In Advances in Neural Information Processing Systems
25, pages 1799–1807. 2012.

[27] Shizhong Han, Zibo Meng, AHMED-SHEHAB KHAN, and Yan Tong. Incremental boost-
ing convolutional neural network for facial action unit recognition. In Advances in Neural
Information Processing Systems (NIPS), pages 109–117. 2016.

[28] L. K. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(10):993–1001, 1990.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[30] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learning Workshop, 2015.

[31] Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Conference on
Document Analysis and Recognition, volume 1, pages 278–282, 1995.

[32] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Wein-
berger. Snapshot ensembles: Train 1, get M for free. In International Conference on Learning
Representations (ICLR), 2017.

[33] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive
mixtures of local experts. Neural Computing, 3(1):79–87, 1991.

[34] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural Computing, 6(2):181–214, 1994.

[35] Faisal Khan, Xiaojin (Jerry) Zhu, and Bilge Mutlu. How do humans teach: On curriculum
learning and teaching dimension. In NIPS, pages 1449–1457, 2011.

[36] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations (ICLR), 2015.

[37] Albert H. R. Ko, Robert Sabourin, and Alceu Souza Britto, Jr. From dynamic classifier selection
to dynamic ensemble selection. Pattern Recognition, 41(5):1718–1731, 2008.

[38] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

[39] Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and active
learning. In Advances in Neural Information Processing Systems (NIPS), pages 231–238. 1995.

10

[40] M. Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. In NIPS, pages 1189–1197, 2010.

[41] Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David J. Crandall, and Dhruv Batra.
Why m heads are better than one: Training a diverse ensemble of deep networks. arXiv,
abs/1511.06314, 2015.

[42] Stefan Lee, Senthil Purushwalkam Shiva Prakash, Michael Cogswell, Viresh Ranjan, David
Crandall, and Dhruv Batra. Stochastic multiple choice learning for training diverse deep
ensembles. In Advances in Neural Information Processing Systems 29, pages 2119–2127. 2016.

[43] Hui Lin and Jeff Bilmes. Word alignment via submodular maximization over matroids. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies: short papers-Volume 2, pages 170–175. Association for
Computational Linguistics, 2011.

[44] Hui Lin and Jeff A. Bilmes. A class of submodular functions for document summarization. In
ACL, pages 510–520, 2011.

[45] Hui Lin, Jeff A. Bilmes, and Shasha Xie. Graph-based submodular selection for extractive
summarization. In Proc. IEEE Automatic Speech Recognition and Understanding (ASRU),
Merano, Italy, December 2009.

[46] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory (TIT),
28(2):129–137, 1982.

[47] Christopher J. Merz. Dynamical Selection of Learning Algorithms, pages 281–290. Springer
New York, 1996.

[48] Michel Minoux. Accelerated greedy algorithms for maximizing submodular set functions.
In Optimization Techniques, volume 7 of Lecture Notes in Control and Information Sciences,
chapter 27, pages 234–243. Springer Berlin Heidelberg, 1978.

[49] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas
Krause. Lazier than lazy greedy. In AAAI, pages 1812–1818, 2015.

[50] Mohammad Moghimi, Mohammad Saberian, Jian Yang, Li-Jia Li, Nuno Vasconcelos, and
Serge Belongie. Boosted convolutional neural networks. In British Machine Vision Conference
(BMVC), 2016.

[51] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions-I. Mathematical Programming, 14(1):265–294, 1978.

[52] Yurii Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127–152, 2005.

[53] Ioannis Partalas, Grigorios Tsoumakas, and Ioannis Vlahavas. Focused ensemble selection: A
diversity-based method for greedy ensemble selection. In European Conference on Artificial
Intelligence (ECML), pages 117–121, 2008.

[54] Adarsh Prasad, Stefanie Jegelka, and Dhruv Batra. Submodular meets structured: Finding
diverse subsets in exponentially-large structured item sets. In NIPS, pages 2645–2653, 2014.

[55] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+
questions for machine comprehension of text. In EMNLP, 2016.

[56] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and
segmentation. arXiv, 2018.

[57] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227, 1990.

[58] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. In International Conference on Learning Representations (ICLR), 2017.

11

[59] Saurabh Singh, Derek Hoiem, and David Forsyth. Swapout: Learning an ensemble of deep
architectures. In Advances in Neural Information Processing Systems (NIPS), pages 28–36.
2016.

[60] Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. Baby Steps: How “Less is
More” in unsupervised dependency parsing. In NIPS 2009 Workshop on Grammar Induction,
Representation of Language and Language Learning, 2009.

[61] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research (JMLR), 15:1929–1958, 2014.

[62] James Steven Supancic III and Deva Ramanan. Self-paced learning for long-term tracking. In
CVPR, pages 2379–2386, 2013.

[63] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. In Conference on Computer Vision and
Pattern Recognition (CVPR), volume 00, pages 1–9, 2015.

[64] Kevin Tang, Vignesh Ramanathan, Li Fei-fei, and Daphne Koller. Shifting weights: Adapting
object detectors from image to video. In NIPS, pages 638–646, 2012.

[65] Ye Tang, Yu-Bin Yang, and Yang Gao. Self-paced dictionary learning for image classification.
In MM, pages 833–836, 2012.

[66] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel. Ensemble adver-
sarial training: Attacks and defenses. In International Conference on Learning Representations
(ICLR), 2018.

[67] Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles
of relatively shallow networks. In Advances in Neural Information Processing Systems (NIPS),
pages 550–558. 2016.

[68] K. Woods, W. P. Kegelmeyer, and K. Bowyer. Combination of multiple classifiers using
local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(4):405–410, 1997.

[69] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

[70] Tianyi Zhou and Jeff Bilmes. Minimax curriculum learning: Machine teaching with desirable
difficulties and scheduled diversity. In International Conference on Learning Representations
(ICLR), 2018.

[71] Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Supplementary material for diverse ensemble
evolution. In NIPS, 2018.

[72] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: Many could be better
than all. Artificial Intelligence, 137(1):239–263, 2002.

[73] Xingquan Zhu, Xindong Wu, and Ying Yang. Dynamic classifier selection for effective
mining from noisy data streams. In Data Mining, 2004. ICDM ’04. Fourth IEEE International
Conference on, pages 305–312, 2004.

12

