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Abstract

The success of machine learning methods heavily relies on having an appropriate
representation for data at hand. Traditionally, machine learning approaches relied
on user-defined heuristics to extract features encoding structural information about
data. However, recently there has been a surge in approaches that learn how to
encode the data automatically in a low dimensional space. Exponential family
embedding provides a probabilistic framework for learning low-dimensional rep-
resentation for various types of high-dimensional data [20]. Though successful
in practice, theoretical underpinnings for exponential family embeddings have
not been established. In this paper, we study the Gaussian embedding model and
develop the first theoretical results for exponential family embedding models. First,
we show that, under mild condition, the embedding structure can be learned from
one observation by leveraging the parameter sharing between different contexts
even though the data are dependent with each other. Second, we study properties of
two algorithms used for learning the embedding structure and establish convergence
results for each of them. The first algorithm is based on a convex relaxation, while
the other solved the non-convex formulation of the problem directly. Experiments
demonstrate the effectiveness of our approach.

1 Introduction

Exponential family embedding is a powerful technique for learning a low dimensional representation
of high-dimensional data [20]. Exponential family embedding framework comprises of a known
graph G = (V,E) and the conditional exponential family. The graph G has m vertices and with
each vertex we observe a p-dimensional vector xj , j = 1, . . . ,m, representing an observation for
which we would like to learn a low-dimensional embedding. The exponential family distribution
is used to model the conditional distribution of xj given the context {xk, (k, j) 2 E} specified by
the neighborhood of the node j in the graph G. In order for the learning of the embedding to be
possible, one furthermore assumes how the parameters of the conditional distributions are shared
across different nodes in the graph. The graph structure, conditional exponential family, and the way
parameters are shared across the nodes are modeling choices and are application specific.

For example, in the context of word embeddings [1, 11], a word in a document corresponds to a
node in a graph with the corresponding vector xj being a one-hot vector (the indicator of this word);
the context of the word j is given by the surrounding words and hence the neighbors of the node j
in the graph are the nodes corresponding to those words; and the conditional distribution of xj is
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a multivariate categorical distribution. As another example arising in computational neuroscience
consider embedding activities of neurons. Here the graph representing the context encodes spatial
proximity of neurons and the Gaussian distribution is used to model the distributions of a neuron’s
activations given the activations of nearby neurons.

While exponential family embeddings have been successful in practice, theoretical underpinnings
have been lacking. This paper is a step towards providing a rigorous understanding of exponential
family embedding in the case of Gaussian embedding. We view the framework of exponential family
embeddings through the lens of probabilistic graphical models [6], with the context graph specifying
the conditional independencies between nodes and the conditional exponential family specifying the
distribution locally. We make several contributions:

1) First, since the exponential family embedding specifies the distribution for each object conditionally
on its context, there is no guarantee that there is a joint distribution that is consistent with all the
conditional models. The probabilistic graphical models view allows us to provide conditions under
which the conditional distributions defined a valid joint distribution over all the nodes.

2) Second, the probabilistic graphical model view allows us to learn the embedding vector from one
observation — we get to see only one vector xj for each node j 2 V — by exploiting the shared
parameter representation between different nodes of the graph. One might mistakenly then think that
we in fact have m observations to learn the embedding. However, the difficulty lies in the fact that
these observations are not independent and the dependence intricately depends on the graph structure.
Apparently not every graph structure can be learned from one observation, however, here we provide
sufficient conditions on the graph that allow us to learn Gaussian embedding from one observation.

3) Finally, we develop two methods for learning the embedding. Our first algorithm is based on a
convex optimization algorithm, while the second algorithm directly solves a non-convex optimization
problem. They both provably recover the underlying embedding, but in practice, non-convex approach
might lead to a faster algorithm.

1.1 Related Work

Exponential family embedding Exponential family embedding originates from word embedding,
where words or phrases from the vocabulary are mapped to embedding vectors [1]. Many variants and
extensions of word embedding have been developed since [12, 9, 31, 10]. [20] develop a probabilistic
framework based on general exponential families that is suitable for a variety of high-dimensional
distributions, including Gaussian, Poisson, and Bernoulli embedding. This generalizes the embedding
idea to a wider range of applications and types of data, such as real-valued data, count data, and
binary data [13, 18, 19]. In this paper, we contribute to the literature by developing theoretical results
on Gaussian embedding, which complements existing empirical results in the literature.

Graphical model. The exponential family embedding is naturally related to the literature on
probabilistic graphical models as the context structure forms a conditional dependence graph among
the nodes. These two models are naturally related, but the goals and estimation procedures are very
different. Much of the research effort on graphical model focus on learning the graph structure and
hence the conditional dependency among nodes [8, 25, 29, 22]. As a contrast, in this paper, we instead
focus on the problem where the graph structure is known and learn the embedding.

Low rank matrix estimation. As will see in Section 2, the conditional distribution in exponential
family embedding takes the form f(V V >

) for the embedding parameter V 2 Rp⇥r which embeds the
p dimensional vector xj to r dimensional space. Hence this is a low rank matrix estimation problem.
Traditional methods focused on convex relaxation with nuclear norm regularization [14, 3, 17].
However, when the dimensionality is large, solving convex relaxation problem is usually time
consuming. Recently there has been a lot of research on non-convex optimization formulations,
from both theoretical and empirical perspectives [24, 26, 21, 27, 30]. People found that non-convex
optimization is computationally more tractable, while giving comparable or better result. In our paper
we consider both convex relaxation and non-convex optimization approaches.
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(a) Chain structure (b) !-nearest neighbor structure (c) Lattice structure

Figure 1: Some commonly used context structures

2 Background

In this section, we briefly review the exponential family embedding framework. Let X =

(x
1

, . . . , xm) 2 Rp⇥m be the data matrix where a column xj 2 Rp corresponds to a vector ob-
served at node j. For example, in word embedding, x represents a document consisting of m words,
xj is a one-hot vector representation of the j-th word, and p is the size of the dictionary. For each
j, let cj ✓ {1, ...,m} be the context of j, which is assumed to be known and is given by the graph
G — in particular, cj = {k 2 V : (j, k) 2 E}. Some commonly used context structures are shown
in Figure 1. Figure 1(a) is for chain structure. Note that this is different from vector autoregressive
model where the chain structure is directed. Figure 1(b) is for !-nearest neighbor structure, where
each node is connected with its preceding and subsequent ! nodes. This structure is common in word
embedding where the preceding and subsequent ! words are the contexts. When ! = 1 it boils down
to the chain structure. Finally Figure 1(c) is for lattice structure that is widely used in the Ising model.

The exponential family embedding model assumes that xj conditioning on xcj follows an exponential
family distribution

xj |xcj ⇠ ExponentialFamily

h

⌘j(xcj ), t(xj)

i

, (2.1)

where t(xj) is the sufficient statistics and ⌘j(xcj ) 2 Rp is the natural parameter. For the linear
embedding, we assume that ⌘ in (2.1) takes the form

⌘j(xcj ) = fj
⇣

Vj

X

k2cj

V >
k xk

⌘

, (2.2)

where the link function fj is applied elementwise and Vj 2 Rp⇥r. The low dimensional matrix Vk

embeds the vector xk 2 Rp to a lower r-dimensional space with V >
k xk 2 Rr being the embedding

of xk. For example, in word embedding each row of Vk is the embedding rule for a word. Since xk is
a one-hot vector, we see that V >

k xk is selecting a row of Vk that corresponds to the word on the node
k. A common simplifying assumption is that the embedding structure is shared across the nodes by
assuming that Vj = V for all j 2 V . In word-embedding, this makes the embedding rule not depend
on the position of the word in the document. We summarize some commonly seen exponential family
distributions and show how they define an exponential family embedding model.

Gaussian embedding. In Gaussian embedding it is assumed that the conditional distribution is

xj |xcj ⇠ N
⇣

V
X

k2cj

V >xk,⌃j

⌘

= N
⇣

M
X

k2cj

xk,⌃j

⌘

, (2.3)

where M = V V > and ⌃j is the conditional covariance matrix for each node j. We will prove in
Section 3 that under mild conditions, these conditional distributions define a valid joint Gaussian
distribution. The link function for Gaussian embedding is the identity function, but one may choose
the link function to be f(·) = log(·) in order to constrain the parameters to be non-negative. Gaussian
embedding is commonly applied to real valued observations.
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Word embedding (cbow [11]). In the word embedding setting, xj is an indicator of the j-th word
in a document and the dimension of xj is equal to the size of the vocabulary. The context of the j-th
word, cj , is the window of size ! around xj , that is, cj = {k 2 {1, ...,m} : k 6= j, |k � j|  !}.
Cbow is a special case of exponential family embedding with

p(xj |xcj ) =

exp

h

x>
j V

⇣

P

k2cj
V >xk

⌘i

P

j exp

h

x>
j V

⇣

P

k2cj
V >xk

⌘i . (2.4)

Poisson embedding. In Poisson embedding, the sufficient statistic is the identity and the natural
parameter is the logarithm of the rate. The conditional distribution is given as

xj |xcj ⇠ Poisson
⇣

exp

�

V
X

k2cj

V >xk

�

⌘

. (2.5)

Poisson embedding can be applied to count data.

3 Gaussian Embedding Model

In this paper, we consider the case of Gaussian embedding, where the conditional distribution of
xj given its context xcj is given in (2.3) with the conditional covariance matrix ⌃j unknown. The
parameter matrix M = V V > with V 2 Rp⇥r will be learned from the data matrix X 2 Rp⇥m and
V >xk is the embedding of xk.

Let X
col

= [x>
1

, x>
2

, ..., x>
m]

> 2 Rpm⇥1 be the column vector obtained by stacking columns of X
and let [xj ]` denote the `-th coordinate of xj . We first restate a definition on compatibility from [23].

Definition 3.1. A non-negative function g is capable of generating a conditional density function
p(y|x) if

p(y|x) = g(y, x)
R

g(y, x)dy
. (3.1)

Two conditional densities are said to be compatible if there exists a function g that can generate both
conditional densities. When g is a density, the conditional densities are called strongly compatible.

Since M is symmetric, according to Proposition 1 in [4], we have the following proposition.

Proposition 3.2. The conditional distributions (2.3) is compatible and the joint distribution of X
col

is of the form p(x
col

) / exp

�� 1

2

x>
col

· ⌃�1

col

· x
col

�

for some ⌃

col

2 Rpm⇥pm. When the choice of
M and ⌃j is such that ⌃

col

� 0, the conditional distributions are strongly compatible and we have
X

col

⇠ N(0,⌃
col

).

The explicit expression of ⌃
col

can be derived from (2.3), however, in general is quite complicated.
The following example provides an explicit formula in the case where ⌃j = I .

Example 3.3. Suppose that ⌃j = I for all j = 1, . . . ,m. Let A 2 Rm⇥m denote the adjacency
matrix of the graph G, with aj,k = 1 when there is an edge between nodes j and k and 0 otherwise.
Denote `c = {1, . . . , `� 1, `+ 1, . . . , p}, the conditional distribution of [xj ]` is given by

[xj ]`

�

�

�

xcj , [xj ]`c ⇠ N

✓

h

M
X

k2cj

xk

i

`
, 1

◆

.

Moreover, there exists a joint distribution X
col

⇠ N(0,⌃
col

) where ⌃

col

2 Rpm⇥pm satisfies

⌃

�1

col

= I �A⌦M, (3.2)

and A ⌦M denotes the Kronecker product between A and M . Clearly, we need ⌃

col

� 0, which
imposes implicit restrictions on A and M . To ensure that ⌃

col

is positive definite, we need to
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ensure that all the eigenvalues of A ⌦ M are smaller than 1. One sufficient condition for this is
kAk

2

· kMk
2

< 1. For example, consider a chain graph with

A =

2

6

6

6

6

4

0 1

1 0

. . .
. . . . . .

1

1 0

3

7

7

7

7

5

2 Rp⇥p and ⌃

�1

col

=

2

6

6

6

6

4

I �M

�M I
. . .

. . . . . . �M
�M I

3

7

7

7

7

5

2 Rpm⇥pm. (3.3)

Then it suffices to have kMk
2

< 1/2. Similarly for !-nearest neighbor structure, it suffices to have
kMk

2

< 1/2! and for the lattice structure to have kMk
2

< 1/4.

3.1 Estimation Procedures

Since ⌃j is unknown, we propose to minimize the following loss function based on the conditional
log-likelihood

L(M) = m�1

m
X

j=1

Lj
(M), (3.4)

where Lj
(M) :=

1

2

· ��xj � M
P

k2cj
xk

�

�

2. Let M⇤
= V ⇤V ⇤> denote the true rank r matrix

with V ⇤ 2 Rp⇥r. Note that V ⇤ is not unique, but M⇤ is. Observe that minimizing (3.4) leads to a
consistent estimator, since

E
h

rLj
(M⇤

)

i

= E


⇣

xj �M⇤ X

k2cj

xk

⌘

X

k2cj

x>
k

�

= Excj
Exj



⇣

xj �M⇤ X

k2cj

xk

⌘

X

k2cj

x>
k

�

�

�

xcj

�

= 0.

In order to find a low rank solution cM that approximates M⇤, we consider the following two
procedures.

Convex Relaxation We solve the following problem

min

M2Rp⇥p,M>
=M,M⌫0

L(M) + �kMk⇤, (3.5)

where k · k⇤ is the nuclear norm of a matrix and � is the regularization parameter to be specified in
the next section. The problem (3.5) is convex and hence can be solved by proximal gradient descent
method [15] with any initialization point.

Non-convex Optimization Although it is guaranteed to find global minimum by solving the convex
relaxation problem (3.5), in practice it may be slow. In our problem, since M is low rank and positive
semidefinite, we can always write M = V V > for some V 2 Rp⇥r and solve the following non-
convex problem

min

V 2Rp⇥r
L(V V >

). (3.6)

With an appropriate initialization V (0), in each iteration we update V by gradient descent

V (t+1)

= V (t) � ⌘ · rV L(V V >
)

�

�

V=V (t) ,

where ⌘ is the step size. The choice of initialization V (0) and step size ⌘ will be specified in details in
the next section. The unknown rank r can be estimated as in [2].

4 Theoretical Result

We establish convergence rates for the two estimation procedures.
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4.1 Convex Relaxation

In order to show that a minimizer of (3.5) gives a good estimator for M , we first show that the
objective function L(·) is strongly convex under the assumption that the data are distributed according
to (2.3) with the true parameter M⇤

= V ⇤V ⇤> with V ⇤ 2 Rp⇥r. Let

�L(�) = L(M⇤
+�)� L(M⇤

)� hrL(M⇤
),�i,

where hA,Bi = tr(A>B) and � is a symmetric matrix. Let �i denote the i-th column of � and let
�

col

= [�

>
1

, . . . ,�>
p ]

> 2 Rp2⇥1 be the vector obtained by stacking columns of �. Then a simple
calculation shows that

�L(�) =

1

m
·

m
X

j=1

�

�

�

X

k2cj

xk

�

�

2

=

p
X

i=1

�

>
i



1

m

m
X

j=1

�

X

k2cj

xk

� · �
X

k2cj

xk

�>
�

�i

has a quadratic form in each �i with the same Hessian matrix H . Let

eX =

h

X

k2c1

xk,
X

k2c2

xk, ...,
X

k2cm

xk

i

= X ·A 2 Rp⇥m,

where A is the adjacency matrix of the graph G. Then the Hessian matrix is given by

H =

1

m

m
X

j=1

�

X

k2cj

xk

� · �
X

k2cj

xk

�>
=

1

m
eX eX>

=

1

m
XAA>X> 2 Rp⇥p (4.1)

and therefore we can succinctly write �L(�) = �

>
col

·H
col

·�
col

, where the total Hessian matrix
H

col

= diag(H,H, . . . , H) 2 Rp2⇥p2

is a block diagonal matrix.

To show that L(·) is strongly convex, it suffices to lower bound the minimum eigenvalue of H , defined
in (4.1). If the columns of eX were independent, the minimum eigenvalue of H would be bounded
away from zero with overwhelming probability for a large enough m [16]. However, in our setting
the columns of eX are dependent and we need to prove this lower bound using different tools. As the
distribution of X depends on the unknown conditional covariance matrices ⌃j , j = 1, . . . ,m in a
complicated way, we impose the following assumption on the expected version of H .

Assumption EC. The minimum and maximum eigenvalues of EH are bounded from below and
from above: 0 < c

min

 �
min

(EH)  �
max

(EH)  c
max

< 1.

Assumption (EC) puts restrictions on conditional covariance matrices ⌃j and can be verified in
specific instances of the problem. In the context of Example 3.3, where ⌃j = I , j = 1, . . . ,m, and
the graph is a chain, we have the adjacency matrix A and the covariance matrix ⌃

col

given in (3.3).
Then simple linear algebra [5] gives us that

EH = m�1EXAA>X>
= 2I + cM2

+ o(M2

),

which guarantees that �
min

(EH) � 1 and �
max

(EH)  c+ 3 for large enough m.

The following assumption requires that the spectral norm of A and ⌃

col

do not scale with m.

Assumption SC. There exists a constant ⇢
0

such that max

�kAk
2

, k⌃1/2
col

k
2

  ⇢
0

.

Assumption (SC) gives sufficient condition on the graph structure, and it requires that the dependency
among nodes is weak. In fact, it can be relaxed to ⇢

0

= o(m1/4
) which allows the spectral norm to

scale with m slowly. In this way, the minimum and maximum eigenvalues in assumption (EC) also
scale with m and it results in a much larger sample complexity on m. However, if ⇢

0

grows even
faster, then there is no way to guarantee a reasonable estimation. We see that ⇢

0

⇠ m1/4 is the critical
condition, and we have the phase transition on this boundary.

It is useful to point out that these assumptions are not restrictive. For example, under the simplification
that ⌃j = I , we have k⌃

col

k
2

= 1/(1�kAk
2

· kMk
2

). The condition kAk
2

· kMk
2

< 1 is satisfied
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naturally for a valid Gaussian embedding model. Therefore in order to have k⌃1/2
col

k
2

 ⇢
0

, we only
need that kAk

2

· kMk
2

 1� 1/⇢2
0

, i.e., it is bounded away from 1 by a constant distance.

It is straightforward to verify that assumption (SC) holds for the chain structure in Example 3.3. If
the graph is fully connected, we have kAk

2

= m � 1, which violates the assumption. In general,
assumption (SC) gives a sufficient condition on the graph structure so that the embedding is learnable.

With these assumptions, the following lemma proves that the minimum and maximum eigenvalues of
the sample Hessian matrix H are also bounded from below and above with high probability.

Lemma 4.1. Suppose the assumption (EC) and (SC) hold. Then for m � c
0

p we have �
min

(H) �
1

2

c
min

and �
max

(H)  2c
max

with probability at least 1 � c
1

exp(�c
2

m), where c
0

, c
1

, c
2

are
absolute constants. Therefore

µ · k�k2F  �L(�)  L · k�k2F , (4.2)

with µ =

1

2

c
min

and L = 2c
max

for any � 2 Rp⇥p.

Lemma 4.1 is the key technical result, which shows that although all the xj are dependent, the
objective function L(·) is still strongly convex and smooth in �. Since the loss function L(·) is
strongly convex, an application of Theorem 1 in [14] gives the following result on the performance of
the convex relaxation approach proposed in the previous section.

Theorem 4.2. Suppose the assumptions (SC) and (EC) are satisfied. The minimizer cM of (3.5) with
� �

�

�

�

1

m

Pm
j=1

⇣

xj �M⇤P
k2cj

xk

⌘

·Pk2cj
x>
k

�

�

�

2

satisfies

kcM �M⇤kF  32

p
r�

µ
.

The following lemma gives us a way to set the regularization parameter �.

Lemma 4.3. Let G =

1

m

Pm
j=1

⌃j . Assume that the maximum eigenvalue of G is bounded from
above as �

max

(G)  ⌘
max

for some constant ⌘
max

. Then there exist constants c
0

, c
1

, c
2

, c
3

> 0 such
that for m � c

0

p, we have

P
"

�

�

�

�

1

m

m
X

j=1

⇣

xj �M⇤ X

k2cj

xk

⌘

·
X

k2cj

x>
k

�

�

�

�

2

� c
1

r

p

m

#

 c
2

exp(�c
3

m).

Combining the result of Lemma 4.3 with Theorem 4.2, we see that � should be chosen as � =

O�pp/m
�

, which leads to the error rate

kcM �M⇤kF = OP

✓

1

µ

r

rp

m

◆

. (4.3)

4.2 Non-convex Optimization

Next, we consider the convergence rate for the non-convex method resulting in minimizing (3.6) in V .
Since the factorization of M⇤ is not unique, we measure the subspace distance between V and V ⇤.
Subspace distance. Let V ⇤ be such that V ⇤V ⇤>

= ⇥

⇤. Define the subspace distance between V
and V ⇤ as

d2(V, V ⇤
) = min

O2O(r)
kV � V ⇤Ok2F , (4.4)

where O(r) = {O : O 2 Rr⇥r, OO>
= O>O = I}.

Next, we introduce the notion of the statistical error. Denote

⌦ =

�

� : � 2 Rp⇥p,� = �

>, rank(�) = 2r, k�kF = 1

 

.

The statistical error is defined as
estat = sup

�2⌦

⌦rL(M⇤
),�

↵

. (4.5)
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Figure 2: Estimation accuracy for three context structures

Intuitively, the statistical error quantifies how close the estimator can be to the true value. Specifically,
if V is within c · estat distance from V ⇤, then it is already optimal. For any � 2 ⌦, we have the
factorization � = U

�

V >
�

where U
�

, V
�

2 Rp⇥2r and kU
�

k
2

= kV
�

kF = 1. We then have
⌦rL(M⇤

),�
↵

=

⌦rL(M⇤
)V

�

, U
�

↵  krL(M⇤
)V

�

kF · kU
�

kF
 krL(M⇤

)k
2

kV
�

kF kU�

�

�

F


p
2r�,

(4.6)

where the last inequality follows from Lemma 4.3. In particular, we see that both convex relaxation
and non-convex optimization give the same rate.

Initialization. In order to prove a linear rate of convergence for the procedure, we need to initialize
it properly. Since the loss function L(M) is quadratic in M , we can ignore all the constraints on M
and get a closed form solution as

M (0)

=

h

m
X

j=1

�

X

k2cj

xk

��

X

k2cj

xk

�>i�1

·
h

m
X

j=1

x>
j

�

X

k2cj

xk

�

i

. (4.7)

We then apply rank-r eigenvalue decomposition on fM (0)

=

1

2

�

M (0)

+ M (0)

>�
and obtain

[

eV , eS, eV ] = rank-r svd of fM (0). Then V (0)

=

eV eS1/2 is the initial point for the gradient descent.
The following lemma quantifies the accuracy of this initialization.

Lemma 4.4. The initialization M (0) and V (0) satisfy

kM (0) �M⇤kF  2

p
p�

µ
and d2

�

V (0), V ⇤�  20p�2

2

µ · �r(M⇤
)

where �r(M⇤
) is the minimum non-zero singular value of M⇤.

With this initialization, we obtain the following main result for the non-convex optimization approach,
which establishes a linear rate of convergence to a point that has the same statistical error rate as the
convex relaxation approach studied in Theorem 4.2.

Theorem 4.5. Suppose the assumption (EC) and (SC) are satisfied, and suppose the step size ⌘

satisfies ⌘  ⇥

32kM (0)k2
2

· (µ + L)
⇤�1. For large enough m, after T iterations we have

d2
⇣

V (T ), V ⇤
⌘

 �T d2
⇣

V (0), V ⇤
⌘

+

C

2

µ

· e2
stat

, (4.8)

for some constant � < 1 and a constant C.

5 Experiment

In this section, we evaluate our methods through experiments. We first justify that although ⌃j is
unknown, minimizing (3.4) still leads to a consistent estimator. We compare the estimation accuracy
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Figure 3: Testing loss for three context structures

with known and unknown covariance matrix ⌃j . We set ⌃j = �j · Toeplitz(⇢j) where Toeplitz(⇢j)
denotes Toeplitz matrix with parameter ⇢j . We set ⇢j ⇠ U [0, 0.3] and �j ⇠ U [0.4, 1.6] to make them
non-isotropic. The estimation accuracy with known and unknown ⌃j are given in Table 1. We can
see that although knowing ⌃j could give slightly better accuracy, the difference is tiny. Therefore,
even if the covariance matrices are not isotropic, ignoring them still gives a consistent estimator.

Table 1: Comparison of estimation accuracy with known and unknown covariance matrix

m = 1000 m = 2500 m = 5000 m = 8000 m = 15000
unknown 0.8184 0.4432 0.3210 0.2472 0.1723

known 0.7142 0.3990 0.2908 0.2288 0.1649

We then consider three kinds of graph structures given in Figure 1: chain structure, !-nearest neighbor
structure, and lattice structure. We generate the data according to the conditional distribution (2.3)
using Gibbs Sampling. We set p = 100, r = 5 and vary the number of nodes m. For each j, we
set ⌃j = ⌃ to be a Toeplitz matrix with ⌃i` = ⇢|i�`| with ⇢ = 0.3. We generate independent train,
validation, and test sets. For convex relaxation, the regularization parameter is selected using the
validation set. We consider two metrics, one is the estimation accuracy kcM �M⇤kF /kM⇤kF , and
the other is the loss L(cM) on the test set.

The simulation results for estimation accuracy for the three graph structures are shown in Figure 2,
and the results for loss on test sets are shown in Figure 3. Each result is based on 20 replicates. For the
estimation accuracy, we see that when the number of nodes is small, neither method gives accurate
estimation; for reasonably large m, non-convex method gives better estimation accuracy since it
does not introduce bias; for large enough m, both methods give accurate and similar estimation.
For the loss on test sets, we see that in general, both methods give smaller loss as m increases. The
non-convex method gives marginally better loss. This demonstrates the effectiveness of our methods.

6 Conclusion

In this paper, we focus on Gaussian embedding and develop the first theoretical result for exponential
family embedding model. We show that for various kinds of context structures, we are able to learn
the embedding structure with only one observation. Although all the data we observe are dependent,
we show that the objective function is still well-behaved and therefore we can learn the embedding
structure reasonably well.

It is useful to point out that, the theoretical framework we proposed is for general exponential family
embedding models. As long as the similar conditions are satisfied, the framework and theoretical
results hold for any general exponential family embedding model as well. However, proving these
conditions is quite challenging from the probability perspective. Nevertheless, our framework still
holds and all we need are more complicated probability tools. Extending the result to other embedding
models, for example the Ising model, is work in progress.
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