
Gradient Sparsification for Communication-Efficient
Distributed Optimization

Jianqiao Wangni
University of Pennsylvania

Tencent AI Lab
wnjq@seas.upenn.edu

Jialei Wang
Two Sigma Investments

jialei.wang@twosigma.com

Ji Liu
University of Rochester

Tencent AI Lab
ji.liu.uwisc@gmail.com

Tong Zhang
Tencent AI Lab

tongzhang@tongzhang-ml.org

Abstract

Modern large-scale machine learning applications require stochastic optimization
algorithms to be implemented on distributed computational architectures. A key
bottleneck is the communication overhead for exchanging information such as
stochastic gradients among different workers. In this paper, to reduce the communi-
cation cost, we propose a convex optimization formulation to minimize the coding
length of stochastic gradients. The key idea is to randomly drop out coordinates of
the stochastic gradient vectors and amplify the remaining coordinates appropriately
to ensure the sparsified gradient to be unbiased. To solve the optimal sparsification
efficiently, a simple and fast algorithm is proposed for an approximate solution,
with a theoretical guarantee for sparseness. Experiments on `2-regularized logistic
regression, support vector machines and convolutional neural networks validate
our sparsification approaches.

1 Introduction

Scaling stochastic optimization algorithms [26, 24, 14, 11] to distributed computational architectures
[10, 17, 33] or multicore systems [23, 9, 19, 22] is a crucial problem for large-scale machine learning.
In the synchronous stochastic gradient method, each worker processes a random minibatch of its
training data, and then the local updates are synchronized by making an All-Reduce step, which
aggregates stochastic gradients from all workers, and taking a Broadcast step that transmits the
updated parameter vector back to all workers. The process is repeated until a certain convergence
criterion is met. An important factor that may significantly slow down any optimization algorithm is
the communication cost among workers. Even for the single machine multi-core setting, where the
cores communicate with each other by reading and writing to a chunk of shared memory, conflicts of
(memory access) resources may significantly degrade the efficiency. There are solutions to specific
problems like mean estimation [29, 28], component analysis [20], clustering [6], sparse regression
[16] and boosting [7]. Other existing works on distributed machine learning include two directions:
1) how to design communication efficient algorithms to reduce the round of communications among
workers [37, 27, 12, 36], and 2) how to use large mini-batches without compromising the convergence
speed [18, 31]. Several papers considered the problem of reducing the precision of gradient by using
fewer bits to represent floating-point numbers [25, 2, 34, 8, 32] or only transmitting coordinates
of large magnitudes[1, 21]. This problem has also drawn significant attention from theoretical
perspectives about its communication complexity [30, 37, 3].

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

In this paper, we propose a novel approach to complement these methods above. Specifically, we
sparsify stochastic gradients to reduce the communication cost, with minor increase in the number
of iterations. The key idea behind our sparsification technique is to drop some coordinates of the
stochastic gradient and appropriately amplify the remaining coordinates to ensure the unbiasedness
of the sparsified stochastic gradient. The sparsification approach can significantly reduce the coding
length of the stochastic gradient and only slightly increase the variance of the stochastic gradient.
This paper proposes a convex formulation to achieve the optimal tradeoff of variance and sparsity: the
optimal probabilities to sample coordinates can be obtained given any fixed variance budget. To solve
this optimization within a linear time, several efficient algorithms are proposed to find approximately
optimal solutions with sparsity guarantees. The proposed sparsification approach can be encapsulated
seamlessly to many bench-mark stochastic optimization algorithms in machine learning, such as SGD
[4], SVRG [14, 35], SAGA [11], and ADAM [15]. We conducted empirical studies to validate the
proposed approach on `2-regularized logistic regression, support vector machines, and convolutional
neural networks on both synthetic and real-world data sets.

2 Algorithms

We consider the problem of sparsifying a stochastic gradient vector, and formulate it as a linear
planning problem. Consider a training data set {xn}Nn=1 and N loss functions {fn}Nn=1, each of
which fn : Ω→ R depends on a training data point xn ∈ Ω. We use w ∈ Rd to denote the model
parameter vector, and consider solving the following problem using stochastic optimization:

min
w

f(w) :=
1

N

N∑
n=1

fn(w), wt+1 = wt − ηtgt(wt), (1)

where t indicates the iterations and E [gt(w)] = ∇f(w) serves as an unbiased estimate for the true
gradient∇f(wt). The following are two ways to choose gt, like SGD [35, 4] and SVRG [14]

SGD : gt(wt) = ∇fnt
(wt), SVRG : gt(wt) = ∇fnt

(wt)−∇fnt
(w̃) +∇f(w̃) (2)

where nt is uniformly sampled from the data set and w̃ is a reference point. The above algorithm
implies that the convergence of SGD is significantly dominated by E‖gt(wt)‖2 or equivalently the
variance of gt(wt). It can be seen from the following simple derivation. Assume that the loss function
f(w) isL-smooth with respect tow, which means that for ∀x, y ∈ Rd, ‖∇f(x)−∇f(y)‖ ≤ L‖x−y‖
(where ‖ · ‖ is the `2-norm). Then the expected loss function is given by

E [f(wt+1)] ≤ E
[
f(wt) +∇f(wt)

>(xt+1 − xt) +
L

2
‖xt+1 − xt‖2

]
(3)

=E
[
f(wt)− ηt∇f(wt)

T gt(wt) +
L

2
η2t ‖gt(wt)‖2

]
= f(wt)− ηt‖∇f(wt)‖2 +

L

2
η2t E ‖gt(wt)‖2︸ ︷︷ ︸

variance

,

where the inequality is due to the Lipschitz property, and the second equality is due to the unbiased
nature of the gradient E [gt(w)] = ∇f(w). So the magnitude of E(‖gt(wt)‖2) or equivalently the
variance of gt(wt) will significantly affect the convergence efficiency.

Next we consider how to reduce the communication cost in distributed machine learning by using a
sparsified gradient gt(wt), denoted byQ(g(wt)), such thatQ(gt(wt)) is unbiased, and has a relatively
small variance. In the following, to simplify notation, we denote the current stochastic gradient
gt(wt) by g for short. Note that g can be obtained either by SGD or SVRG. We also let gi be the i-th
component of vector g ∈ Rd: g = [g1, . . . , gd]. We propose to randomly drop out the i-th coordinate
by a probability of 1− pi, which means that the coordinates remain non-zero with a probability of pi
for each coordinate. Let Zi ∈ {0, 1} be a binary-valued random variable indicating whether the i-th
coordinate is selected: Zi = 1 with probability pi and Zi = 0 with probability 1− pi. Then, to make
the resulting sparsified gradient vector Q(g) unbiased, we amplify the non-zero coordinates, from gi
to gi/pi. So the final sparsified vector is Q(g)i = Zi(gi/pi). The whole protocol can be summarized
as follows:

Gradients g = [g1, g2, · · · , gd],Probabilities p = [p1, p2, · · · , pd],Selectors Z = [Z1, Z2, · · · , Zd],

where P (Zi = 1) = pi, =⇒ Results Q(g) =

[
Z1
g1
p1
, Z2

g2
p2
, · · · , Zd

gd
pd

]
(4)

2

We note that if g is an unbiased estimate of the gradient, then Q(g) is also an unbiased estimate of
the gradient since E [Q(g)i] = pi × gi

pi
+ (1− pi)× 0 = gi.

In distributed machine learning, each worker calculates gradient g and transmits it to the master
node or the parameter server for an update. We use an index m to indicate a node, and assume there
are total M nodes. The gradient sparsification method can be used with a synchronous distributed
stochastic optimization algorithm in Algorithm 1. Asynchronous algorithms can also be used with
our technique in a similar fashion.

Algorithm 1 A synchronous distributed optimization algorithm
1: Initialize the clock t = 0 and initialize the weight w0.
2: repeat
3: Each worker m calculates local gradient gm(wt) and the probability vector pm.
4: Sparsify the gradients Q(gm(wt)) and take an All-Reduce step vt = 1

M

∑M
m=1Q(gm(wt)).

5: Broadcast the average gradient vt and take a descent step wt+1 = wt − ηtvt on all workers.
6: until convergence or the number of iteration reaches the maximum setting.

Our method could be combined with other methods which are orthogonal to us, like only transmitting
large coordinates and accumulating the gradient residual which might be transmitted in the next
step [1, 21]. Advanced quantization and coding strategy from [2] can be used for transmitting valid
coordinates of our method. In addition, this method concords with [29] for the mean estimation
problem on distributed data, with a statistical guarantee under skewness.

2.1 Mathematical formulation

Although the gradient sparsification technique can reduce communication cost, it increases the
variance of the gradient vector, which might slow down the convergence rate. In the following
section, we will investigate how to find the optimal tradeoff between sparsity and variance for the
sparsification technique. In particular, we consider how to find out the optimal sparsification strategy,
given a budget of maximal variance. First, note that the variance of Q(g) can be bounded by

E
d∑
i=1

[Q(g)2i] =

d∑
i=1

[
g2i
p2i
× pi + 0× (1− pi)

]
=

d∑
i=1

g2i
pi
. (5)

In addition, the expected sparsity of Q(gi) is given by E [‖Q(g)‖0] =
∑d
i=1 pi. In this paper, we try

to balance these two factors (sparsity and variance) by formulating it as a linear planning problem as
follows:

min
p

d∑
i=1

pi s.t.

d∑
i=1

g2i
pi
≤ (1 + ε)

d∑
i=1

g2i , (6)

where 0 < pi ≤ 1,∀i ∈ [d], and ε is a factor that controls the variance increase of the stochastic
gradient g. This leads to an optimal strategy for sparsification given an upper bound on the variance.
The following proposition provides a closed-form solution for problem (6).

Proposition 1. The solution to the optimal sparsification problem (6) is a probability vector p such
that pi = min(λ|gi|, 1),∀i ∈ [d], where λ > 0 is a constant only depending on g and ε.

Proof. By introducing Lagrange multipliers λ and µi, we know that the solution of (6) is given by
the solution of the following objective:

min
p

max
λ

max
µ

L(pi, λ, µi) =

d∑
i=1

pi + λ2

(
d∑
i=1

g2i
pi
− (1 + ε)

d∑
i=1

g2i

)
+

d∑
i=1

µi(pi − 1). (7)

Consider the KKT conditions of the above formulation, by stationarity with respect to pi we have:

1− λ2 g
2
i

p2i
+ µi = 0, ∀i ∈ [d]. (8)

3

Note that we have to permit pi = 0 for KKT condition to apply. Combined with the complementary
slackness condition that guarantees µi(pi − 1) = 0,∀i ∈ [d], we know that pi = 1 for µi 6= 0, and
pi = λ|gi| for µi = 0. This tells us that for several coordinates the probability of keeping the value is
1 (when µi 6= 0), and for other coordinates the probability of keeping the value is proportional to the
magnitude of the gradient gi. Also, by simple reasoning we know that if |gi| ≥ |gj | then |pi| ≥ |pj |
(otherwise we simply switch pi and pj and get a sparser result). Therefore there is a dominating
set of coordinates S with pj = 1,∀j ∈ S, and it must be the set of |gj | with the largest absolute
magnitudes. Suppose this set has a size of |S| = k (0 ≤ k ≤ d) and denote by g(1), g(2), ..., g(d) the
elements of g ordered by their magnitudes (for the largest to the smallest), we have pi = 1 for i ≤ k,
and pi = λ|gi| for i > k.

2.2 Sparsification algorithms

In this section, we propose two algorithms for efficiently calculating the optimal probability vector p
in Proposition 1. Since λ > 0, by the complementary slackness condition, we have

d∑
i=1

g2i
pi
− (1 + ε)

d∑
i=1

g2i =

k∑
i=1

g2(i) +

d∑
i=k+1

|g(i)|
λ
− (1 + ε)

d∑
i=1

g2i = 0. (9)

This further implies

λ = (ε

d∑
i=1

g2i +

d∑
i=k+1

g2(i))
−1(

d∑
i=k+1

|g(i)|), (10)

then we used the constraint λ|g(k+1)| ≤ 1 and get

|g(k+1)|

(
d∑

i=k+1

|g(i)|

)
≤ ε

d∑
i=1

g2i +

d∑
i=k+1

g2(i). (11)

It follows that we should find the smallest k which satisfies the above inequality. Based on the above
reasoning, we get the following closed-form solution for pi in Algorithm 2.

Algorithm 2 Closed-form solution
1: Find the smallest k such that the second inequality of (10) is true, and let Sk be the set of

coordinates with top k largest magnitude of |gi|.
2: Set the probability vector p by

pi =

{
1, if i ∈ Sk
(ε
∑d
j=1 g

2
(j) +

∑d
j=k+1 g

2
(j))
−1|gi|

(∑d
j=k+1 |g(j)|

)
, if i 6∈ Sk.

In practice, Algorithm 2 requires partial sorting of the gradient magnitude values to find Sk, which
could be computationally expensive. Therefore we developed a greedy algorithm for approximately
solving the problem. We pre-define a sparsity parameter κ ∈ (0, 1), which implies that we aim to
find pi that satisfies

∑
i pi/d ≈ κ. Loosely speaking, we want to initially set p̃i = κd|gi|/

∑
i |gi|,

which sums to
∑
i p̃i = κd, meeting our requirement on κ. However, by the truncation operation

pi = min(p̃i, 1), the expected nonzero density will be less than κ. Now, we can use an iterative
procedure that in the next iteration, we fix the set of {pi : pi = 1} and scale the remaining values, as
summarized in Algorithm 3. This algorithm is much easier to implement, and computationally more
efficient on parallel computing architecture. Since the operations mainly consist of accumulations,
multiplications and minimizations, they can be easily accelerated on graphic processing units (GPU)
or other hardware supporting single instruction multiple data (SIMD).

2.3 Coding strategy

Once we have computed a sparsified gradient vector Q(g), we need to pack the resulting vector
into a message for transmission. Here we apply a hybrid strategy for encoding Q(g). Suppose that

4

Algorithm 3 Greedy algorithm
1: Input g ∈ Rd, κ ∈ (0, 1). Initialize p0 ∈ Rd, j = 0. Set p0i = min (κd|gi|/

∑
i |gi|, 1) for all i.

2: repeat
3: Identify an active set I = {1 ≤ i ≤ D|pji 6= 1} and compute c = (κd− d+ |I|)/

∑
i∈I p

j
i .

4: Recalibrate the values by pj+1
i = min(cpji , 1). j = j + 1.

5: until If c ≤ 1 or j reaches the maximum iterations. Return p = pj .

computers represent a floating-point scalar using b bits, with negligible loss in precision. We use two
vectors QA(g) and QB(g) for representing non-zero coordinates, one for coordinates i ∈ Sk, and
the other for coordinates i /∈ Sk. The vector QA(g) represents {gi : i ∈ Sk}, where each item of
QA(g) needs log d bits to represent the coordinates and b bits for the value gi/pi. The vector QB(g)
represents {gi : i 6∈ Sk}, since in this case, we have pi = λ|gi|, we have for all i 6∈ Sk the quantized
value Q(gi) = gi/pi = sign(gi)/λ. Therefore to represent QB(g), we only need one floating-point
scalar 1/λ, plus the non-zero coordinates i and its sign sign(gi). Here we give an example about the
format,

Q(g) :

[
g1
p1
, 0, 0,

g4
p4
,
g5
p5
,
g6
p6
, · · · , 0

]
, where g1, g5 ∈ Sk, g4 < 0, g6 > 0,

QA(g) :

[
1,
g1
p1
, 5,

g5
p5
· · · , 0

]
, QB(g) : [4,−1/λ, 6, 1/λ, · · ·] . (12)

where i = 1, 5 ∈ Sk, i = 4, 6 6∈ Sk, g4 < 0, g6 > 0. Moreover, we can also represent the indices of
A and vector QB(g) using a dense vector of q̃ ∈ {0,±1, 2}d, where each component q̃i is defined as
Q(gi) = λQ(gi) when i 6∈ Sk and q̃i = 2 if i ∈ Sk. Using the standard entropy coding, we know
that q̃ requires at most

∑2
`=−1 d` log2(d/d`) ≤ 2d bits to represent.

3 Theoretical guarantees on sparsity

In this section we analyze the expected sparsity of Q(g), which equals to
∑d
i=1 pi. In particular we

show when the distribution of gradient magnitude values is highly skewed, there is a significant gain
in applying the proposed sparsification strategy. First, we define the following notion of approximate
sparsity on the magnitude at each coordinate of g:
Definition 2. A vector g ∈ Rd is (ρ, s)-approximately sparse if there exists a subset S ⊂ [d] such
that |S| = s and ‖gSc‖1 ≤ ρ ‖gS‖1, where Sc is the complement of S.

The notion of (ρ, s)-approximately sparsity is inspired by the restricted eigenvalue condition used
in high-dimensional statistics [5]. (ρ, s)-approximately sparsity measures how well the signal of
a vector is concentrated on a small subset of the coordinates of size s. As we will see later, the
quantity (1 + ρ)s plays an important role in establishing the expected sparsity bound. Note that we
can always take s = d and ρ = 0 so that (ρ, s) satisfies the above definition with (1 + ρ)s ≤ d. If the
distribution of magnitude values in g is highly skewed, we would expect the existence of (ρ, s) such
that (1 + ρ)s� d. For example when g is exactly s-sparse, we can choose ρ = 0 and the quantity
(1 + ρ)s reduces to s which can be significantly smaller than d.

Lemma 3. If the gradient g ∈ Rd of the loss function is (ρ, s)-approximately sparse as in Definition 2.
Then we can find a sparsification Q(g) with ε = ρ in (6) (that is, the variance of Q(g) is increased
by a factor of no more than 1 + ρ), and the expected sparsity of Q(g) can be upper bounded by
E [‖Q(g)‖0] ≤ (1 + ρ)s.

Proof. Based on Definition 2, we can choose ε = ρ and Sk = S that satisfies (10), thus

E [‖Q(g)‖0] =

d∑
i=1

pi =
∑
i∈Sk

pi +
∑
i 6∈Sk

pi = s+
∑
i6∈Sk

|gi|(
∑d
j=k+1 |g(j)|)

ε
∑k
j=1 g

2
(j) + (1 + ε)

∑d
j=k+1 g

2
(j)

=s+

∥∥gSc
k

∥∥2
1

ρ ‖gSk
‖22 + (1 + ρ)

∥∥gSc
k

∥∥2
2

≤ s+
ρ2s ‖gSk

‖22
ρ ‖gSk

‖22 + (1 + ρ)
∥∥gSc

k

∥∥2
2

≤ (1 + ρ)s, (13)

5

which completes the proof.

Remark 1. Lemma 3 indicates that the variance after sparsification only increases by a factor of
(1+ρ), while in expectation we only need to communicate a (1+ρ)s-sparse vector after sparsification.
In order to achieve the same optimization accuracy, we may need to increase the number of iterations
by a factor of up to (1 + ρ), and the overall number of floating-point numbers communicated is
reduced by a factor of up to (1 + ρ)2s/d.

Above lemma shows the number of floating-point numbers needed to communicate per iteration
is reduced by the proposed sparsification strategy. As shown in Section 2.3, we only need to use
one floating-point number to encode the gradient values in Sck, so there is a further reduction in
communication when considering the total number of bits transmitted, this is characterized by the
Theorem below. The details of proof are put in a full version (https://arxiv.org/abs/1710.
09854) of this paper.
Theorem 4. If the gradient g ∈ Rd of the loss function is (ρ, s)-approximately sparse as in Defini-
tion 2, and a floating-point number costs b bits, then the coding length of Q(g) in Lemma 3 can be
bounded by s(b+ log2 d) + min(ρs log2 d, d) + b.
Remark 2. The coding length of the original gradient vector g is db, by considering the slightly
increased number of iterations to reach the same optimization accuracy, the total communication
cost is reduced by a factor of at least (1 + ρ)((s+ 1)b+ log2 d)/db.

4 Experiments

5 10 15 20

10
−0.5

10
−0.4

10
−0.3

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1.3 spa:0.5

UniSp var:2 spa:0.5

GSpar var:3.9 spa:0.17

UniSp var:6 spa:0.17

GSpar var:12 spa:0.056

UniSp var:18 spa:0.056

5 10 15 20

10
−0.34

10
−0.33

10
−0.32

10
−0.31

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1 spa:0.5

UniSp var:2 spa:0.5

GSpar var:1.7 spa:0.17

UniSp var:6 spa:0.17

GSpar var:5 spa:0.056

UniSp var:18 spa:0.056

5 10 15 20

10
−0.38

10
−0.35

10
−0.32

10
−0.29

datapasses

f(
w

)−
f(

w
*)

 baseline:

GSpar var:1 spa:0.5

UniSp var:2 spa:0.5

GSpar var:1.1 spa:0.17

UniSp var:6 spa:0.17

GSpar var:2.4 spa:0.056

UniSp var:18 spa:0.056

5 10 15 20

10
−0.7

10
−0.6

10
−0.5

10
−0.4

10
−0.3

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1.3 spa:0.5

UniSp var:2 spa:0.5

GSpar var:3.9 spa:0.17

UniSp var:6 spa:0.17

GSpar var:12 spa:0.056

UniSp var:18 spa:0.056

5 10 15 20

10
−0.5

10
−0.4

10
−0.3

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1.1 spa:0.5

UniSp var:2 spa:0.5

GSpar var:2 spa:0.17

UniSp var:6 spa:0.17

GSpar var:6.1 spa:0.056

UniSp var:18 spa:0.056

5 10 15 20

10
−0.58

10
−0.57

10
−0.56

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1 spa:0.5

UniSp var:2 spa:0.5

GSpar var:1.1 spa:0.17

UniSp var:6 spa:0.17

GSpar var:2.2 spa:0.056

UniSp var:18 spa:0.056

Figure 1: SGD type comparison between gradient sparsification (GSpar) with random sparsification
with uniform sampling (UniSp).

In this section we conduct experiments to validate the effectiveness and efficiency of the proposed
sparsification technique. We use `2-regularized logistic regression as an example for convex problems,
and take convolutional neural networks as an example for non-convex problems. The sparsification
technique shows strong improvement over the uniform sampling approach as a baseline, the iteration
complexity is only slightly increased as we strongly reduce the communication costs. Moreover, we
also conduct asynchronous parallel experiments on the shared memory architecture. In particular, our
experiments show that the proposed sparsification technique significantly reduces the conflicts among
multiple threads and dramatically improves the performance. In all experiments, the probability
vector p is calculated by Algorithm 3 and set the maximum iterations to be 2, which generates good
enough high-quality approximation of the optimal p vector.

6

https://arxiv.org/abs/1710.09854
https://arxiv.org/abs/1710.09854

5 10 15 20

10
−0.9

10
−0.7

10
−0.5

10
−0.3

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1.5 spa:0.5

UniSp var:2 spa:0.5

GSpar var:4.5 spa:0.17

UniSp var:6 spa:0.17

GSpar var:14 spa:0.055

UniSp var:18 spa:0.055

5 10 15 20

10
−0.34

10
−0.33

10
−0.32

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1.1 spa:0.5

UniSp var:2 spa:0.5

GSpar var:2.1 spa:0.17

UniSp var:6 spa:0.17

GSpar var:6.4 spa:0.055

UniSp var:18 spa:0.055

5 10 15 20

10
−0.4

10
−0.3

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1 spa:0.5

UniSp var:2 spa:0.5

GSpar var:1.1 spa:0.17

UniSp var:6 spa:0.17

GSpar var:2.8 spa:0.055

UniSp var:18 spa:0.055

5 10 15 20

10
−0.9

10
−0.7

10
−0.5

10
−0.3

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1.5 spa:0.5

UniSp var:2 spa:0.5

GSpar var:4.5 spa:0.17

UniSp var:6 spa:0.17

GSpar var:14 spa:0.055

UniSp var:18 spa:0.055

5 10 15 20

10
−0.4

10
−0.3

10
−0.2

datapasses

f(
w

)−
f(

w
*)

baseline:

GSpar var:1.1 spa:0.5

UniSp var:2 spa:0.5

GSpar var:2.2 spa:0.17

UniSp var:6 spa:0.17

GSpar var:6.6 spa:0.055

UniSp var:18 spa:0.055

5 10 15 20

10
−0.4

10
−0.3

10
−0.2

datapasses

f(
w

)−
f(

w
*)

 baseline:

GSpar var:1 spa:0.5

UniSp var:2 spa:0.5

GSpar var:1.1 spa:0.17

UniSp var:6 spa:0.17

GSpar var:2.8 spa:0.055

UniSp var:18 spa:0.055

Figure 2: SVRG type comparison between gradient sparsification (GSpar) with random sparsification
with uniform sampling (UniSp)

We first validate the sparsification technique on the `2-regularized logistic regression problem using
SGD and SVRG respectively: f(w) = 1

N

∑
n log2

(
1 + exp(−a>nwbn)

)
+λ2‖w‖22, where an ∈ Rd,

bn ∈ {−1, 1}. The experiments are conducted on synthetic data for the convenience to control the
data sparsity. The mini-batch size is set to be 8 by default unless otherwise specified. We simulated
with M = 4 machines, where one machine is both a worker and the master that aggregates stochastic
gradients received from other workers. We compare our algorithm with a uniform sampling method as
baseline, where each element of the probability vector is set to be pi = κ, and a similar sparsification
follows to apply. In this method, the sparsified vector has a nonzero density of κ in expectation. The
data set {an}Nn=1 is generated as follows

dense data: āni ∼ N (0, 1), ∀i ∈ [d], n ∈ [N], sparsify: B̄ ∼ Uniform[0, 1]d, B̄i ← C1B̄i,

if: B̄i ≤ C2, ∀i ∈ [d], an ← ān � B̄, label: w̄ ∼ N (0, I), bn ← sign(ā>n w̄)

where � is the element-wise multiplication. In the equations above, the first step is a standard data
sampling procedure from a multivariate Gaussian distribution; the second step generates a magnitude
vector B̄, which is later sparsified by decreasing elements that are smaller than a threshold C2 by
a factor of C1; the third line describes the application of magnitude vectors on the dataset; and the
fourth line generates a weight vector w̄, and labels yn, based on the signs of multiplications of data
and the weights. We should note that the parameters C1 and C2 give us a easier way to control the
sparsity of data points and the gradients: the smaller these two constants are, the sparser the gradients
are. The gradient of linear models on the dataset should be expected to be

(
(1− C2)d,C2

C1

C1+2

)
-

approximately sparse, and the gradient of regularization needs not to be communicated. We set the
dataset of size N = 1024, dimension d = 2048. The step sizes are fine-tuned on each case, and
in our findings, the empirically optimal step size is inversely related to the gradient variance as the
theoretical analysis.

In Figures 1 and 2, from the top row to the bottom row, the `2-regularization parameter λ is set to
1/(10N), 1/N . And in each row, from the first column to the last column, C2 is set to 4−1, 4−2, 4−3.
In these figures, our algorithm is denoted by ‘GSpar’, and the uniform sampling method is denoted by
‘UniSp’, and the SGD/SVRG algorithm with non-sparsified communication is denoted by ‘baseline’,
indicating the original distributed optimization algorithm. The x-axis shows the number of data
passes, and the y-axis draws the suboptimality of the objective function (f(wt)−minw f (w)). For
the experiments, we report the sparsified-gradient SGD variance as the notation ‘var’ in Figure 1. And
‘spa’ in all figures represents the nonzero density κ in Algorithm 3. We observe that the theoretical
complexity reduction against the baseline in terms of the communication rounds, which can be
inferred by var× spa, from the labels in Figures 1 to 2, where C1 = 0.9, and the rest of the figures
are put in the full version due to the limited space.

7

From Figure 1, we observe that results on sparser data yield smaller gradient variance than results on
denser data. Compared to uniform sampling, our algorithm generates gradients with less variance,
and converges much faster. This observation is consistent with the objective of our algorithm, which
is to minimize gradient variance given a certain sparsity. The convergence slowed down linearly
w.r.t. the increase of variance. The results on SVRG show better speed up — although our algorithm
increases the variance of gradients, the convergence rate degrades only slightly.

5 10 15

10
−0.39

10
−0.36

10
−0.33

10
−0.3

communications

f(
w

)−
f(

w
*)

baseline:

GSpar Bits:34

QSGD(20) Bits:20

GSpar Bits:9.3

GSpar Bits:5.2

QSGD(5) Bits:5

GSpar Bits:1.8

GSpar Bits:0.75

QSGD(2) Bits:2

5 10 15 20

10
−0.324

10
−0.323

10
−0.322

communications

f(
w

)−
f(

w
*)

baseline:

GSpar Bits:30

QSGD(20) Bits:20

GSpar Bits:11

GSpar Bits:5.5

QSGD(5) Bits:5

GSpar Bits:3.4

GSpar Bits:1

QSGD(2) Bits:2

5 10 15 20

10
−0.5

10
−0.4

10
−0.3

communications

f(
w

)−
f(

w
*)

baseline:

GSpar Bits:34

QSGD(20) Bits:20

GSpar Bits:7

GSpar Bits:5.4

QSGD(5) Bits:5

GSpar Bits:1.5

GSpar Bits:0.75

QSGD(2) Bits:2

5 10 15 20

10
−0.5

10
−0.4

10
−0.3

communications

f(
w

)−
f(

w
*)

baseline:

GSpar Bits:32

QSGD(20) Bits:20

GSpar Bits:7.2

GSpar Bits:5.6

QSGD(5) Bits:5

GSpar Bits:3.8

GSpar Bits:0.76

QSGD(2) Bits:2

Figure 3: Comparison of the sparisified-SGD with QSGD.

We compared the gradient sparsifi-
cation method with the quantized
stochastic gradient descent (QSGD)
algorithm in [2]. The results are
shown in Figures 4. The data are gen-
erated as previous, with both strong
and weak sparsity settings. From the
top row to the bottom row, the `2-
regularization parameter λ is set to
1/(10N), 1/N . And in each row,
from the first column to the last col-
umn, C2 is set to 4−1, 4−2. The
step sizes are set to be the same for
both methods for a fair comparison
after fine-tuning. In this compari-
son, we use the overall communica-
tion coding length of each algorithm,
and note the length in x-axis. For
QSGD, the communication cost per
element is linearly related to b, which
refers to the bits of floating-point num-
ber. QSGD(b) denotes QSGD algorithm with bit number b in these figures, and the average bits
required to represent per element is on the labels. We also tried to compare with the gradient residual
accumulation approaches [1], which unfortunately failed on our experiments, since the gradient is
relatively sparse so that lots of small coordinates could be delayed infinitely, resulting in a large
gradient bias to cause the divergence on convex problems. From Figures 4, we observe that the
proposed sparsification approach is at least comparable to QSGD, and significantly outperforms
QSGD when the gradient sparsity is stronger; and this concords with our analysis on the gradient
approximate sparsity encouraging faster speed up.

4.1 Experiments on deep learning

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Computations

0.50

0.75

1.00

1.25

1.50

1.75

2.00
rho=1.0
rho=0.07
rho=0.045
rho=0.015
rho=0.004
rho=0.001

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Communications

0.50

0.75

1.00

1.25

1.50

1.75

2.00
rho=1.0
rho=0.07
rho=0.045
rho=0.015
rho=0.004
rho=0.001

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Computations

0.50

0.75

1.00

1.25

1.50

1.75

2.00 rho=1.0
rho=0.07
rho=0.045
rho=0.015
rho=0.004
rho=0.001

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Communications

0.50

0.75

1.00

1.25

1.50

1.75

2.00 rho=1.0
rho=0.07
rho=0.045
rho=0.015
rho=0.004
rho=0.001

Figure 4: Comparison of 3-layer CNN of channels of 64
(top) and 48 (bottom) on CIFAR-10. (Y-axis: f(wt).)

This section conducts experiments on
non-convex problems. We consider
the convolutional neural networks
(CNN) on the CIFAR-10 dataset with
different settings. Generally, the net-
works consist of three convolutional
layers (3 × 3), two pooling layers
(2 × 2), and one 256 dimensional
fully connected layer. Each convo-
lution layer is followed by a batch-
normalization layer. The channels
of each convolutional layer is set to
{24, 32, 48, 64}. We use the ADAM
optimization algorithm [15], and the
initial step size is set to 0.02.

In Figure 4.1, we plot the objective
function against the computational
complexity measured by the number
of epochs (1 epoch is equal to 1 pass of all training samples). We also plot the convergence with
respect to the communication cost, which is the product of computations and the sparsification pa-

8

rameter κ. The experiments on each setting are repeated 4 times and we report the average objective
function values. The results show that for this non-convex problem, the gradient sparsification slows
down the training efficiency only slightly. In particular, the optimization algorithm converges even
when the sparsity ratio is about κ = 0.004, and the communication cost is significantly reduced in
this setting. This experiments also show that the optimization of neural networks is less sensitive to
gradient noises, and the noises within a certain range may even help the algorithm to avoid bad local
minimums [13].

4.2 Experiments on asynchronous parallel SGD

In this section, we study parallel implementations of SGD on the single-machine multi-core archi-
tecture. We employ the support vector machine for binary classification, where the loss function
is f(w) = 1

N

∑
n max(1 − a>nwbn, 0) + λ2‖w‖22, an ∈ Rd, bn ∈ {−1, 1}. We implemented

shared memory multi-thread SGD, where each thread employs a locked read, which may block
other threads’ writing to the same coordinate. We implement a multi-thread algorithm with locks
which are implemented using compare-and-swap operations. To improve the speed of the algorithm,
we also employ several engineering tricks. First, we observe that ∀pi < 1, gi/pi = sign(gi)/λ
from Proposition 1, therefore we only need to assign constant values to these variables, without
applying floating-point division operations. Another costly operation is the pseudo-random number
generation in the sampling procedure; therefore we generate a large array of pseudo-random numbers
in [0, 1], and iteratively read the numbers during training without calling a random number generating
function. The data are generated by first generating dense data, sparsifying them and generating the
corresponding labels:

āni ∼ N (0, 1),∀i ∈ [d], n ∈ [N], w̄ ∼ Uniform[−0.5, 0.5]d, B̄ ∼ Uniform[0, 1]d,

B̄i ← C1B̄i, if:B̄i ≤ C2,∀i ∈ [d], an ← ān � B̄, bn ← sign(x>n w̄ + σ),whereσ ∼ N (0, 1).

We set the dataset of size N = 51200, dimension d = 256, also set C1 = 0.01 and C2 = 0.9.

0 200 400 600
−2

−1

0

1

2

3

4

5

6
W:16 reg:0.5 lrt:0.5

rho=1/1
rho=1/2
rho=1/3
rho=1/4

0 200 400 600

−1

0

1

2

3

4

W:16 reg:0.5 lrt:0.25
rho=1/1
rho=1/2
rho=1/3
rho=1/4

0 200 400 600

0

1

2

3

4

5

6

7

W:16 reg:0.1 lrt:0.1
rho=1/1
rho=1/2
rho=1/3
rho=1/4

0 200 400 600
0

1

2

3

4

5

6

W:16 reg:0.1 lrt:0.05
rho=1/1
rho=1/2
rho=1/3
rho=1/4

0 200 400 600

1

2

3

4

5

6

7

8
W:16 reg:0.05 lrt:0.05

rho=1/1
rho=1/2
rho=1/3
rho=1/4

0 200 400 600

1

2

3

4

5

6

7

W:16 reg:0.05 lrt:0.025
rho=1/1
rho=1/2
rho=1/3
rho=1/4

Figure 5: Loss functions by a multi-thread SVM. X-axis:
time in milliseconds, Y-axis: log2(f(wt)).

The regularization parameter λ2 is de-
noted by reg, the number of threads
is denoted by W (workers), and the
learning rate is denoted by lrt. The
number of workers is set to 16 or 32,
the regularization parameter is set to
{0.5, 0.1, 0.05}, and the learning rate
is chosen from {0.5, 0.25, 0.05, 0.25}.
The convergence of objective value
against running time (milliseconds) is
plotted in Figure 4.2, and the rest of
figures are put in the full version.

From Figure 4.2, we can observe
that using gradient sparsification, the
conflicts among multiple threads for
reading and writing the same coordi-
nate are significantly reduced. There-
fore the training speed is significantly
faster. By comparing with other set-
tings, we also observe that the sparsification technique works better at the case when more threads
are available, since the more threads, the more frequently the lock conflicts occur.

5 Conclusions

In this paper, we propose a gradient sparsification technique to reduce the communication cost for
large-scale distributed machine learning. We propose a convex optimization formulation to minimize
the coding length of stochastic gradients given the variance budget that monotonically depends on
the computational complexity, with efficient algorithms and a theoretical guarantee. Comprehensive
experiments on distributed and parallel optimization of multiple models proved our algorithm can
effectively reduce the communication cost during training or reduce conflicts among multiple threads.

9

Acknowledgments

Ji Liu is in part supported by NSF CCF1718513, IBM faculty award, and NEC fellowship.

References
[1] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. In

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages
440–445, 2017.

[2] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. In Advances in Neural Information Processing
Systems, pages 1707–1718, 2017.

[3] Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning and optimiza-
tion. In Advances in Neural Information Processing Systems, pages 1756–1764, 2015.

[4] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMP-
STAT’2010, pages 177–186. Springer, 2010.

[5] Peter Bühlmann and Sara Van De Geer. Statistics for high-dimensional data: methods, theory and
applications. Springer Science & Business Media, 2011.

[6] Jiecao Chen, He Sun, David Woodruff, and Qin Zhang. Communication-optimal distributed clustering. In
Advances in Neural Information Processing Systems, pages 3727–3735, 2016.

[7] Shang-Tse Chen, Maria-Florina Balcan, and Duen Horng Chau. Communication efficient distributed
agnostic boosting. In Artificial Intelligence and Statistics, pages 1299–1307, 2016.

[8] Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle Olukotun. Understanding and optimizing
asynchronous low-precision stochastic gradient descent. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, pages 561–574. ACM, 2017.

[9] Christopher De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming the wild: A unified analysis
of hogwild-style algorithms. In Advances in Neural Information Processing Systems, pages 2674–2682,
2015.

[10] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large clusters. Communi-
cations of the ACM, 51(1):107–113, 2008.

[11] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. In Advances in Neural Information Processing
Systems, pages 1646–1654, 2014.

[12] Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas Hofmann, and
Michael I Jordan. Communication-efficient distributed dual coordinate ascent. In Advances in Neural
Information Processing Systems, pages 3068–3076, 2014.

[13] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle
points efficiently. In International Conference on Machine Learning, pages 1724–1732, 2017.

[14] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
In Advances in Neural Information Processing Systems, pages 315–323, 2013.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2014.

[16] Jason D Lee, Qiang Liu, Yuekai Sun, and Jonathan E Taylor. Communication-efficient sparse regression.
Journal of Machine Learning Research, 18(5):1–30, 2017.

[17] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James
Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter server.
In 11th USENIX Symposium on Operating Systems Design and Implementation, pages 583–598, 2014.

[18] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient mini-batch training for stochastic
optimization. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 661–670. ACM, 2014.

10

[19] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient for
nonconvex optimization. In Advances in Neural Information Processing Systems, pages 2737–2745, 2015.

[20] Yingyu Liang, Maria-Florina F Balcan, Vandana Kanchanapally, and David Woodruff. Improved distributed
principal component analysis. In Advances in Neural Information Processing Systems, pages 3113–3121,
2014.

[21] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression: Reduc-
ing the communication bandwidth for distributed training. In International Conference on Learning
Representations, 2018.

[22] Ji Liu, Stephen J Wright, Christopher Ré, Victor Bittorf, and Srikrishna Sridhar. An asynchronous parallel
stochastic coordinate descent algorithm. The Journal of Machine Learning Research, 16(1):285–322, 2015.

[23] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Advances in Neural Information Processing Systems, pages
693–701, 2011.

[24] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic average
gradient. Mathematical Programming: Series A and B, 162(1-2):83–112, 2017.

[25] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. In Fifteenth Annual Conference of the
International Speech Communication Association, 2014.

[26] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized loss
minimization. Journal of Machine Learning Research, 14(Feb):567–599, 2013.

[27] Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization using an
approximate newton-type method. In International Conference on Machine Learning, pages 1000–1008,
2014.

[28] Ananda Theertha Suresh, X Yu Felix, Sanjiv Kumar, and H Brendan McMahan. Distributed mean estimation
with limited communication. In International Conference on Machine Learning, pages 3329–3337, 2017.

[29] Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and H. Brendan McMahan. Distributed mean
estimation with limited communication. In International Conference on Machine Learning, pages 3329–
3337, 2017.

[30] John N Tsitsiklis and Zhi-Quan Luo. Communication complexity of convex optimization. Journal of
Complexity, 3(3):231–243, 1987.

[31] Jialei Wang, Weiran Wang, and Nathan Srebro. Memory and communication efficient distributed stochastic
optimization with minibatch prox. In Conference on Learning Theory, pages 1882–1919, 2017.

[32] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. TernGrad: Ternary
gradients to reduce communication in distributed deep learning. In Advances in Neural Information
Processing Systems, pages 1509–1519, 2017.

[33] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng, Pengtao Xie,
Abhimanu Kumar, and Yaoliang Yu. Petuum: A new platform for distributed machine learning on big data.
IEEE Transactions on Big Data, 1(2):49–67, 2015.

[34] Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang. ZipML: Training linear models
with end-to-end low precision, and a little bit of deep learning. International Conference on Machine
Learning, page 4035–4043, 2017.

[35] Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms.
In International Conference on Machine Learning, page 116, 2004.

[36] Yuchen Zhang and Xiao Lin. DISCO: Distributed optimization for self-concordant empirical loss. In
International Conference on Machine Learning, pages 362–370, 2015.

[37] Yuchen Zhang, Martin J Wainwright, and John C Duchi. Communication-efficient algorithms for statistical
optimization. In Advances in Neural Information Processing Systems, pages 1502–1510, 2012.

11

