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Abstract

We study adversarial perturbations when the instances are uniformly distributed
over {0, 1}n. We study both “inherent” bounds that apply to any problem and any
classifier for such a problem as well as bounds that apply to specific problems and
specific hypothesis classes.

As the current literature contains multiple definitions of adversarial risk and ro-
bustness, we start by giving a taxonomy for these definitions based on their direct
goals; we identify one of them as the one guaranteeing misclassification by push-
ing the instances to the error region. We then study some classic algorithms for
learning monotone conjunctions and compare their adversarial robustness under
different definitions by attacking the hypotheses using instances drawn from the
uniform distribution. We observe that sometimes these definitions lead to signifi-
cantly different bounds. Thus, this study advocates for the use of the error-region
definition, even though other definitions, in other contexts with context-dependent
assumptions, may coincide with the error-region definition.

Using the error-region definition of adversarial perturbations, we then study inher-
ent bounds on risk and robustness of any classifier for any classification problem
whose instances are uniformly distributed over {0, 1}n. Using the isoperimetric
inequality for the Boolean hypercube, we show that for initial error 0.01, there
always exists an adversarial perturbation that changes O(

√
n) bits of the instances

to increase the risk to 0.5, making classifier’s decisions meaningless. Furthermore,
by also using the central limit theorem we show that when n→∞, at most c ·√n
bits of perturbations, for a universal constant c < 1.17, suffice for increasing the
risk to 0.5, and the same c

√
n bits of perturbations on average suffice to increase

the risk to 1, hence bounding the robustness by c · √n.

1 Introduction

In recent years, modern machine learning tools (e.g., neural networks) have pushed to new heights
the classification results on traditional datasets that are used as testbeds for various machine learning
methods.1 As a result, the properties of these methods have been put into further scrutiny. In
particular, studying the robustness of the trained models in various adversarial contexts has gained
special attention, leading to the active area of adversarial machine learning.

Within adversarial machine learning, one particular direction of research that has gained attention
in recent years deals with the study of the so-called adversarial perturbations of the test instances.
This line of work was particularly popularized, in part, by the work of Szegedy et al. [32] within
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the context of deep learning classifiers, but the same problem can be asked for general classifiers as
well. Briefly, when one is given a particular instance x for classification, an adversarial perturbation
x′ for that instance is a new instance with minimal changes in the features of x so that the resulting
perturbed instance x′ is misclassified by the classifier h. The perturbed instance x′ is commonly
referred to as an adversarial example (for the classifier h). Adversarial machine learning has its
roots at least as back as in [19, 24, 17]. However, the work of [32] revealed pairs of images that
differed slightly so that a human eye could not identify any real differences between the two, and
yet, contrary to what one would naturally expect, machine learning classifiers would predict different
labels for the classifications of such pairs of instances. It is perhaps this striking resemblance to the
human eye of the pairs of images that were provided in [32] that really gave this new push for
intense investigations within the context of adversarial perturbations. Thus, a very intense line of
work started, aiming to understand and explain the properties of machine learning classifiers on such
adversarial perturbations; e.g., [15, 23, 2, 8, 20]. These attacks are also referred to as evasion attacks
[25, 4, 15, 8, 36]. There is also work that aims at making the classifiers more robust under such
attacks [27, 36], yet newer attacks of Carlini and Wagner [7] broke many proposed defenses.

Our general goal. In this work, we study barriers against robust classification of adversarial exam-
ples. We are particularly interested in foundational bounds that potentially apply to broad class of
problems and distributions. One can study this question from the perspectives of both risk and ro-
bustness. In the case of risk, the adversary’s goal is to increase the error probability of the classifier
(e.g., to reach risk 0.5) by small perturbations of the instances, and in the case of robustness, we are
interested in the average amount of perturbations needed for making the classifier always fail.

Studying the uniform distribution. We particularly study adversarial risk and robustness for learn-
ing problems where the input distribution is Un which is uniform over the hypercube {0, 1}n. We
measure the cost of perturbations using the natural metric of Hamming distance. Namely, the dis-
tance between the original and perturbed instances x, x′ ∈ {0, 1}n is the number of locations that
they are different. This class of distributions already include many learning problems of interest.
So, by studying adversarial risk and robustness for such a natural distribution, we can immediately
obtain results for a broad class of problems. We believe it is crucial to understand adversarial risk
and robustness for natural distributions (e.g., Un uniform over the hypercube) and metrics (e.g., the
Hamming distance) to develop a theory of adversarial risk and robustness that can ultimately shed
light on the power and limitations of robust classification for practical data sets. Furthermore, natu-
ral distributions like Un model a broad class of learning problems directly; e.g., see [5, 28, 18, 30].
The hope is that understanding the limitations of robust learning for these basic natural distributions
will ultimately shed light on challenges related to addressing broader problems of interest.

Related work. The work of Gilmer et al. [14] studied the above problem for the special case
of input distributions that are uniform over unit spheres in dimension n. They showed that for
any classification problem with such input distribution, so long as there is an initial constant error
probability µ, the robustness under the ℓ2 norm is at most O(

√
n). Fawzi et al. [11] studied the above

question for Gaussian distributions in dimension n and showed that when the input distribution
has ℓ2 norm ≈ 1, then by ≈ √n perturbations in ℓ2 norm, we can make the classifier change
its prediction (but doing this does not guarantee that the perturbed instance x′ will be misclassified).
Schmidt et al. [29] proved limits on robustness of classifying uniform instances by specific classifiers
and using a definition based on “corrupted inputs” (see Section 2), while we are mainly interested
in bounds that apply to any classifiers and guarantee misclassification of the adversarial inputs.

Discussion. Our results, like all other current provable bounds in the literature for adversarial risk
and robustness only apply to specific distributions that do not cover the case of image distributions.
These results, however, are first steps, and indicate similar phenomena (e.g., relation to isoperimetric
inequalities). Thus, as pursued in [14], these works motivate a deeper study of such inequalities for
real data sets. Finally, as discussed in [11], such theoretical attacks could potentially imply direct
attacks on real data, assuming the existence of smooth generative models for latent vectors with
theoretically nice distributions (such as Gaussian or uniform over the hypercube) into natural data.

1.1 Our Contribution and Results

As mentioned above, our main goal is to understand inherent barriers against robust classification
of adversarial examples, and our focus is on the uniform distribution Un of instances. In order to
achieve that goal, we both do a definitions study and prove technical limitation results.
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General definitions and a taxonomy. As the current literature contains multiple definitions of
adversarial risk and robustness, we start by giving a taxonomy for these definitions based on their
direct goals. More specifically, suppose x is an original instance that the adversary perturbs into a
“close” instance x′. Suppose h(x), h(x′) are the predictions of the hypothesis h(·) and c(x), c(x′)
are the true labels of x, x′ defined by the concept function c(·). To call x′ a successful “adversarial
example”, a natural definition would compare the predicted label h(x′) with some other “anticipated
answer”. However, what h(x′) is exactly compared to is where various definitions of adversarial
examples diverge. We observe in Section 2 that the three possible definitions (based on comparing
h(x′) with either of h(x), c(x) or c(x′)) lead to three different ways of defining adversarial risk and
robustness. We then identify one of them (that compares h(x) with c(x′)) as the one guaranteeing
misclassification by pushing the instances to the error region. We also discuss natural conditions
under which these definitions coincide. However, these conditions do not hold in general.

A comparative study through monotone conjunctions. We next ask: how close/far are these
definitions in settings where, e.g., the instances are drawn from the uniform distribution? To answer
this question, we make a comparative study of adversarial risk and robustness for a particular case
of learning monotone conjunctions under the uniform distribution Un (over {0, 1}n). A monotone
conjunction f is a function of the form f = (xi1 ∧ · · · ∧ xik). This class of functions is perhaps one
of the most natural and basic learning problems that are studied in computational learning theory as
it encapsulates, in the most basic form, the class of functions that determine which features should
be included as relevant for a prediction mechanism. For example, Valiant in [35] used this class of
functions under Un to exemplify the framework of evolvability. We attack monotone conjunctions
under Un in order to contrast different behavior of definitions of adversarial risk and robustness.

In Section 3, we show that previous definitions of robustness that are not based on the error region,
lead to bounds that do not equate the bounds provided by the error-region approach. We do so by
first deriving theorems that characterize the adversarial risk and robustness of a given hypothesis
and a concept function under the uniform distribution. Subsequently, by performing experiments we
show that, on average, hypotheses computed by two popular algorithms (FIND-S [22] and SWAP-
PING ALGORITHM [35]) also exhibit the behavior that is predicted by the theorems. Estimating
the (expected value of) the adversarial risk and robustness of hypotheses produced by other classic
algorithms under specific distributions, or for other concept classes, is an interesting future work.

Inherent bounds for any classification task under the uniform distribution. Finally, after es-
tablishing further motivation to use the error-region definition as the default definition for studying
adversarial examples in general settings, we turn into studying inherent obstacles against robust
classification when the instances are drawn from the uniform distribution. We prove that for any
learning problem P with input distribution Un (i.e., uniform over the hypercube) and for any clas-
sifier h for P with a constant error µ, the robustness of h to adversarial perturbations (in Hamming
distance) is at most O(

√
n). We also show that by the same amount of O(

√
n) perturbations in the

worst case, one can increase the risk to 0.99. Table 1 lists some numerical examples.

Table 1: Each row focuses on the number of tampered bits to achieve its stated goal. The second
column shows results using direct calculations for specific dimensions. The third column shows that
these results are indeed achieved in the limit, and the last column shows bounds proved for all n.

Types of bounds

Adversarial goals n = 103, 104, 105 n 7→ ∞ all n

From initial risk 0.01 to 0.99 ≈ 2.34
√
n < 2.34

√
n < 3.04

√
n

From initial risk 0.01 to 0.50 ≈ 1.17
√
n < 1.17

√
n < 1.52

√
n

Robustness for initial risk 0.01 ≈ 1.17
√
n < 1.17

√
n < 1.53

√
n

To prove results above, we apply the isoperimetric inequality of [26, 16] to the error region of the
classifier h and the ground truth c. In particular, it was shown in [16, 26] that the subsets of the
hypercube with minimum “expansion” (under Hamming distance) are Hamming balls. This fact
enables us to prove our bounds on the risk. We then prove the bounds on robustness by proving a
general connection between risk and robustness that might obe of independent interest. Using the
central limit theorem, we sharpen our bounds for robustness and obtain bounds that closely match
the bounds that we also obtain by direct calculations (based on the isoperimetric inequalities and
picking Hamming balls as error region) for specific values of dimension n = 103, 104, 105.
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Full version. All proofs could be found in the full version of the paper2, which also includes results
related to the adversarial risk of monotone conjunctions, complementing the picture of Section 3.

2 General Definitions of Risk and Robustness for Adversarial Perturbations

Notation. We use calligraphic letters (e.g., X ) for sets and capital non-calligraphic letters (e.g.,
D) for distributions. By x ← D we denote sampling x from D. In a classification problem P =
(X ,Y,D, C,H), the set X is the set of possible instances, Y is the set of possible labels, D is
a set of distributions over X , C is a class of concept functions, and H is a class of hypotheses,
where any f ∈ C ∪ H is a mapping from X to Y . An example is a labeled instance. We did not
state the loss function explicitly, as we work with classification problems, however all main three
definitions of this section directly extend to arbitrary loss functions. For x ∈ X , c ∈ C, D ∈ D, the
risk or error of a hypothesis h ∈ H is the expected (0-1) loss of (h, c) with respect to D, namely
Risk(h, c,D) = Prx←D[h(x) 6= c(x)]. We are usually interested in learning problems with a fixed
distribution D = {D}, as we are particularly interested in robustness of learning under the uniform
distribution Un over {0, 1}n. Note that since we deal with negative results, fixing the distribution
only makes our results stronger. As a result, whenever D = {D}, we omit D from the risk notation
and simply write Risk(h, c). We usually work with problems P = (X ,Y, D, C,H,d) that include
a metric d over the instances. For a set S ⊆ X we let d(x,S) = inf{d(x, y) | y ∈ S}, and
by Ballr(x) = {x′ | d(x, x′) ≤ r} we denote the ball of radius r centered at x under the metric
d. By HD we denote Hamming distance for pairs of instances from {0, 1}n. Finally, we use the
term adversarial instance to refer to an adversarially perturbed instance x′ of an originally sampled
instance x when the label of the adversarial example is either not known or not considered.

Below we present our formal definitions of adversarial risk and robustness. In all of these definitions
we will deal with attackers who perturb the initial test instance x into a close adversarial instance
x′. We will measure how much an adversary can increase the risk by perturbing a given input x into
a close adversarial example x′. When to exactly call x′ a successful adversarial example is where
these definitions differ. First we formalize the main definition that we use in this work based on
adversary’s ability to push instances to the error region.

Definition 2.1 (Error-region risk and robustness). Let P = (X ,Y, D, C,H,d) be a classification
problem (with metric d defined over instances X ).

• Risk. For any r ∈ R+, h ∈ H, c ∈ C, the error-region risk under r-perturbation is

Risk
ER
r (h, c) = Pr

x←D
[∃x′ ∈ Ballr(x), h(x′) 6= c(x′)] .

For r = 0, Risk
ER
r (h, c) = Risk(h, c) becomes the standard notion of risk.

• Robustness. For any h ∈ H, x ∈ X , c ∈ C, the error-region robustness is the expected
distance of a sampled instance to the error region, formally defined as follows

Rob
ER(h, c) = E

x←D
[inf{r : ∃x′ ∈ Ballr(x), h(x′) 6= c(x′)}] .

h(x)

h(x′)
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c(x′)
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Figure 1: The three main definitions
based on what h(x′) is compared with.

Definition 2.1 requires the adversarial instance x′ to be
misclassified, namely, h(x′) 6= c(x′). So, x′ clearly be-
longs to the error region of the hypothesis h compared to
the ground truth c. This definition is implicit in the work
of [14]. In what follows, we compare our main definition
above with previously proposed definitions of adversar-
ial risk and robustness found in the literature and discuss
when they are (and when they are not) equivalent to Def-
inition 2.1. Figure 1 summarizes the differences between
the three main definitions that have appeared in the liter-
ature, where we distinguish cases by comparing the clas-
sifier’s prediction h(x′) at the new point x′ with either of
h(x), c(x), or c(x′), leading to three different definitions.

2See https://arxiv.org/abs/1810.12272.
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Definitions based on hypothesis’s prediction change (PC risk and robustness). Many works,
including the works of [32, 11] use a definition of robustness that compares classifier’s prediction
h(x′) with the prediction h(x) on the original instance x. Namely, they require h(x′) 6= h(x)
rather than h(x′) 6= c(x′) in order to consider x′ an adversarial instance. Here we refer to this
definition (that does not depend on the ground truth c) as prediction-change (PC) risk and robustness

(denoted as Risk
PC
r (h) and Rob

PC(h)). We note that this definition captures the error-region risk
and robustness if we assume the initial correctness (i.e., h(x) = c(x)) of classifier’s prediction on
all x ← X and “truth proximity”, i.e., that c(x) = c(x′) holds for all x′ that are “close” to x. Both
of these assumptions are valid in some natural scenarios. For example, when input instances consist
of images that look similar to humans (if used as the ground truth c(·)) and if h is also correct on the
original (non-adversarial) test examples, then the two definitions (based on error region or prediction
change) coincide. But, these assumptions do not hold in in general.

Definitions based on the notion of corrupted instance (CI risk and robustness). The works
of [21, 12, 13, 1] study the robustness of learning models in the presence of corrupted inputs. A
more recent framework was developed in [20, 29] for modeling risk and robustness that is inspired
by robust optimization [3] (with an underlying metric space) and model adversaries that corrupt the
the original instance in (exponentially more) ways. When studying adversarial perturbations using
corrupted instances, we define adversarial risk by requiring the adversarial instance x′ to satisfy
h(x′) 6= c(x). The term “corrupted instance” is particularly helpful as it emphasizes on the fact that
the goal (of the classifier) is to find the true label of the original (uncorrupted) instance x, while we
are only given a corrupted version x′. Hence, we refer to this definition as the corrupted instance

(CI) risk and robustness and denote them by Risk
CI
r (h, c) and Rob

CI(h, c). The advantage of this
definition compared to the prediction-change based definitions is that here, we no longer need to
assume the initial correctness assumption. Namely, only if the “truth proximity” assumption holds,
then we have c(x) = c(x′) which together with the condition h(x′) 6= c(x) we can conclude that x′

is indeed misclassified. However, if small perturbations can change the ground truth, c(x′) can be
different from c(x), in which case, it is no long clear whether x′ is misclassified or not.

Stronger definitions of risk and robustness with more restrictions on adversarial instance.
The corrupted-input definition requires an adversarial instance x′ to satisfy h(x′) 6= c(x), and the
error-region definition requires h(x′) 6= c(x′). What if we require both of these conditions to call
x′ a true adversarial instance? This is indeed the definition used in the work of Suggala et al. [31],
though more formally in their work, they subtract the original risk (without adversarial perturbation)
from the adversarial risk. This definition is certainly a stronger guarantee for the adversarial instance.
As this definition is a hybrid of the error-region and corrupted-instance definitions, we do not make
a direct study of this definition and only focus on the other three definitions described above.

How about when the classifier h is 100% correct? We emphasize that when h happens to be the
same function as c, (the error region) Definition 2.1 implies h has zero adversarial risk and infinite

adversarial robustness Rob
ER(h, c) = ∞. This is expected, as there is no way an adversary can

perturb any input x into a misclassified x′. However, both of the definitions of risk and robustness
based on prediction change [32] and corrupted instance [21, 20] could compute large risk and small
robustness for such h. In fact, in a recent work [33] it is shown that for definitions based on corrupted
input, correctness might be provably at odds with robustness in some cases. Therefore, even though
all these definitions could perhaps be used to approximate the risk and robustness when we do not
have access to the ground truth c′ on the new point x′, in this work we separate the definition of risk
and robustness from how to compute/approximate them, so we will use Definition 2.1 by default.

3 A Comparative Study through Monotone Conjunctions

In this section, we compare the risk and robustness under the three definitions of Section 2 through
a study of monotone conjunctions under the uniform distribution. Namely, we consider adversarial
perturbations of truth assignments that are drawn from the uniform distribution Un over {0, 1}n
when the concept class contains monotone conjunctions. As we will see, these definitions diverge in
this natural case. Below we fix the setup under which all the subsequent results are obtained.

Problem Setup 1. Let Cn be the concept class of all monotone conjunctions formed by at least one
and at most n Boolean variables. The target concept (ground truth) c that needs to be learned is
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drawn from Cn. Let the hypothesis class be H = Cn and let h ∈ H be the hypothesis obtained by a
learning algorithm after processing the training data. With |h| and |c| we denote the size of h and c
respectively; that is, number of variables that h and c contain.3 Now let,

c =

m
∧

i=1

xi ∧
u
∧

k=1

yk and h =

m
∧

i=1

xi ∧
w
∧

ℓ=1

zℓ . (1)

We will call the variables that appear both in h and c as mutual, the variables that appear in c but
not in h as undiscovered, and the variables that appear in h but not in c as wrong (or redundant).
Therefore in (1) we have m mutual variables, u undiscovered and w wrong. We denote the error
region of a hypothesis h and the target concept c with E (h, c).
That is, E (h, c) = {x ∈ {0, 1}n | h(x) 6= c(x)}. The probability mass of the error region between
h and c, denoted by µ, under the uniform distribution Un over {0, 1}n is then,

Pr
x←Un

[x ∈ E (h, c)] = µ = (2w + 2u − 2) · 2−m−u−w . (2)

In this problem setup we are interested in computing the adversarial risk and robustness that attack-
ers can achieve when instances are drawn from the uniform distribution Un over {0, 1}n.

Remark 3.1. Note that µ is a variable that depends on the particular h and c.

Using the Problem Setup 1, in what follows we compute the adversarial robustness that an arbitrary
hypothesis has against an arbitrary target using the error region (ER) definition that we advocate
in contexts where the perturbed input is supposed to be misclassified and do the same calculations
for adversarial risk and robustness that are based on the definitions of prediction change (PC) and
corrupted instance (CI). The important message is that the adversarial robustness of a hypothesis
based on the ER definition is Θ(min{|h| , |c|}), whereas the adversarial robustness based on PC and
CI is Θ(|h|). In the full version of the paper we also give theorems (that have similar flavor) for
calculating the adversarial risk based on the three main definitions (ER, PC, CI).

Theorem 3.2. Consider the Problem Setup 1. Then, if h = c we have Rob
ER(h, c) = ∞, while if

h 6= c we have min{|h| , |c|}/16 ≤ Rob
ER(h, c) ≤ 1 + min{|h| , |c|}.

Theorem 3.3. Consider the Problem Setup 1. Then, Rob
PC(h) = |h| /2 + 2−|h|.

Theorem 3.4. Consider the Problem Setup 1. Then, |h| /4 < Rob
CI(h, c) < |h|+ 1/2.

3.1 Experiments for the Expected Values of Adversarial Robustness

In this part, we complement the theorems that we presented earlier with experiments. This way we
are able to examine how some popular algorithms behave under attack, and we explore the extent to
which the generated solutions of such algorithms exhibit differences in their (adversarial) robustness
on average against various target functions drawn from the class of monotone conjunctions.

The first algorithm is the standard Occam algorithm that starts from the full conjunction and elimi-
nates variables from the hypothesis that contradict the positive examples received; this algorithm is
known as FIND-S in [22] but has appeared without a name earlier by Valiant in [34] and its roots are
at least as old as in [6]. The second algorithm is the SWAPPING ALGORITHM from the framework
of evolvability [35]. This algorithm searches for an ε-optimal solution among monotone conjunc-
tions that have at most ⌈lg(3/(2ε))⌉ variables in their representation using a local search method
where hypotheses in the neighborhood are obtained by swapping in and out some variable(s) from
the current hypothesis; we follow the analysis that was used in [10] and is a special case of [9].

In each experiment, we first learn hypotheses by using the algorithms under Un against different
target sizes. For both algorithms, during the learning process, we use ε = 0.01 and δ = 0.05 for
the learning parameters. We then examine the robustness of the generated hypotheses by drawing
examples again from the uniform distribution Un as this is the main theme of this paper. In particular,
we test against the 30 target sizes from the set {1, 2, . . . , 24, 25, 30, 50, 75, 99, 100}. For each such
target size, we plot the average value, over 500 runs, of the robustness of the learned hypothesis that

3 For example, h1 = x1 ∧ x5 ∧ x8 is a monotone conjunction of three variables in a space where we have
n ≥ 8 variables and |h1| = 3.
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we obtain. In each run, we repeat the learning process using a random target of the particular size as
well as a fresh training sample and subsequently estimate the robustness of the learned hypothesis
by drawing another 10, 000 examples from Un that we violate (depending on the definition). The
dimension of the instances is n = 100.

Figure 2 presents the values of the three robustness measures for the case of FIND-S. In the full
version of the paper we provide more details on the algorithms and more information regarding our
experiments. The message is that the adversarial robustness that is based on the definitions of pre-
diction change and corrupted instance is more or less the same, whereas the adversarial robustness
based on the error region definition may obtain wildly different values compared to the other two.
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Figure 2: Experimental comparison of the different robustness measures. The values for PC and CI
almost coincide and they can hardly be distinguished. The value for ER robustness is completely
different compared to the other two. Note that ER robustness is ∞ when the target size |c| is in
{1, . . . , 8}∪{100} and for this reason only the points between 9 and 99 are plotted. When |c| ≥ 20,
almost always the learned hypothesis is the initialized full conjunction. The reason is that positive
examples are very rare and our training set contains none. As a result no variable is eliminated
from the initialized hypothesis h (full conjunction). Hence, when |c| ≥ 20 we see that PC and CI
robustness is about max{|h| , |c|}/2 = |h|/2, whereas ER is roughly min{|h| , |c|}/2 = |c|/2.

4 Inherent Bounds on Risk and Robustness for the Uniform Distribution

In this section, we state our main theorems about error region adversarial risk and robustness of arbi-
trary learning problems whose instances are distributed uniformly over the n-dimension hypercube
{0, 1}n. The proofs of the theorems below are available in the full version of the paper.

We first define a useful notation for the size of the (partial) Hamming balls.

Definition 4.1. For every n ∈ N we define the (partial) “Hamming Ball Size” function
BSizen : [n]× [0, 1)→ [0, 1) as follows

BSizen(k, λ) = 2−n ·
(

k−1
∑

i=0

(

n

i

)

+ λ ·
(

n

k

)

)

.

Note that this function is a bijection and we use BSize
−1(·) to denote its inverse. When n is clear

from the context, we will simply use BSize(·, ·) and BSize
−1(·) instead.

The following theorem, gives a general lower bound for the adversarial risk of any classification
problem for uniform distribution Un over the hypercube {0, 1}n, depending on the original error.

Theorem 4.2. Suppose P = ({0, 1}n,Y, Un, C,H,HD) is a classification problem. For any h ∈
H, c ∈ C and r ∈ N, let µ = Risk(h, c) > 0 be the original risk and (k, λ) = BSize

−1 (µ) be a
function of the original risk. Then, the error-region adversarial risk under r-perturbation is at least

Risk
ER
r (h, c) ≥ BSize(k + r, λ).

7



The following corollary determines an asymptotic lower bound for risk based on Theorem 4.2.

Corollary 4.3 (Error-region risk for all n). Suppose P = ({0, 1}n,Y, Un, C,H,HD) is a classifica-
tion problem. For any hypothesis h, c with risk µ ∈ (0, 1

2 ] in predicting a concept function c, we can

increase the risk of (h, c) from µ ∈ (0, 1
2 ] to µ′ ∈ [ 12 , 1] by changing at most

r =

√

−n · lnµ
2

+

√

−n · ln(1− µ′)

2

bits in the input instances. Namely, by using the above r, we have Risk
ER
r (h, c) ≥ µ′. Also, to

increase the error to 1
2 we only need to change at most r′ =

√

−n·ln(µ)
2 bits.

Example. Corollary 4.3 implies that for classification tasks over Un, by changing at most 3.04
√
n

number of bits in each example we can increase the error of an hypothesis from 1% to 99%. Further-
more, for increasing the error just to 0.5 we need half of the number of bits, which is 1.52

√
n.

Also, the corollary bellow, gives a lower bound on the limit of adversarial risk when n 7→ ∞. This
lower bound matches the bound we have in our computational experiments.

Corollary 4.4 (Error-region risk for large n). Let µ ∈ (0, 1] and µ′ ∈ (µ, 1] and P =
({0, 1}n,Y, Un, C,H,HD) be a classification problem. Then for any h ∈ H, c ∈ C such that
Risk(h, c) ≥ µ we have Riskr(h, c) ≥ µ′ for

r ≈
√
n · Φ

−1(µ′)− Φ−1(µ)

2
when n 7→ ∞

where Φ is the CDF of the standard normal distribution.

Example. Corollary 4.4 implies that for classification tasks over Un, when n is large enough, we
can increase the error from 1% to 99% by changing at most 2.34

√
n bits, and we can we can increase

the error from 1% to 50% by changing at most 1.17
√
n bits in test instances.

The following theorem shows how to upper bound the adversarial robustness using the original risk.

Theorem 4.5. Suppose P = ({0, 1}n,Y, Un, C,H,HD) is a classification problem. For any h ∈ H
and c ∈ C, if µ = Risk(h, c) and (k, λ) = BSize

−1(µ) depends on the original risk, then the
error-region robustness is at most

Rob
ER(h, c) ≤

n−k+1
∑

r=0

(1− BSize(k + r, λ)) .

Following, using Theorem 4.5, we give an asymptotic lower bound for robustness .

Corollary 4.6. Suppose P = ({0, 1}n,Y, Un, C,H,HD) is a classification problem. For any
hypothesis h with risk µ ∈ (0, 1

2 ], we can make h to give always wrong answers by changing

r =
√

−n · lnµ/2 + µ ·
√

n/2 number of bits on average. Namely, we have

Rob
ER(h, c) ≤

√

−n · lnµ
2

+ µ ·
√

n

2
.

And the following Corollary gives a lower bound on the robustness in limit.

Corollary 4.7. For any µ ∈ (0, 1], classification problem P = ({0, 1}n,Y, Un, C,H,HD), and any
h ∈ H, c ∈ C such that Risk(h, c) ≥ µ, we have

Rob
ER(h, c) ≤ Φ−1(µ)

2
·
√
n+ µ ·

√

π · n
8

when n 7→ ∞,

where Φ is the CDF of the standard normall distribution.

Example. By changing 1.53
√
n number of bits on average we can increase the error of an hypoth-

esis from 1% to 100%. Also, if n 7→ ∞, by changing only 1.17
√
n number of bits on average we

can increase the error from 1% to 100%.

8
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