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Abstract

The study of cross-domain mapping without supervision has recently attracted
much attention. Much of the recent progress was enabled by the use of adversarial
training as well as cycle constraints. The practical difficulty of adversarial training
motivates research into non-adversarial methods. In a recent paper, it was shown
that cross-domain mapping is possible without the use of cycles or GANs. Although
promising, this approach suffers from several drawbacks including costly inference
and an optimization variable for every training example preventing the method
from using large training sets. We present an alternative approach which is able to
achieve non-adversarial mapping using a novel form of Variational Auto-Encoder.
Our method is much faster at inference time, is able to leverage large datasets and
has a simple interpretation.

1 Introduction

Making analogies is a key component in human intelligence. Evidence for that is the significant
component of analogy questions in standardized intelligence tests. In order to achieve true artificial
intelligence it is likely that computers would need to be able to learn to make analogies. Although
making analogies with full supervision is very related to standard supervised learning which has been
at the core of machine learning research, the unsupervised setting which is far more challenging, has
received less attention. The task has been attempted over the last few decades, but positive results
have only recently been achieved for making analogies across very distant domains.

Let us consider two domains X and Y . Each domain contains an unordered set of samples. In the
unsupervised setting, we do not have correspondences between the samples of the two domains.
There are two different types of unsupervised analogies that can be learned between different domains:
matching and mapping. The matching task sets to find for each sample x in domain X , a sample in
domain Y which is the most analogous to it. The degree of analogy is either defined by humans or a
more objective computerized measure. The mapping task attempts to map each sample x in the X
domain to a new sample such that it appears to come from the Y domain while still being analogous
to x. A special case is exact matching [1] when the exact analogy for x appears in the Y domain
training set. In this case the optimal match is also the optimal mapped analogy.

In this work we tackle unsupervised mapping across domains. This task has only recently been
successfully attempted between sufficiently different domains. Nearly all successful methods but one,
have used the combination of two constraints: i) Adversarial domain confusion: the method trains a
mapping TXY (x) for mapping between domain X to domain Y . A discriminator DY () is trained to
distinguish between mapped X domain sample TXY (x) and original Y domain samples. Mapping
function T () and discriminator D() are trained in an adversarial fashion iteratively. The objective
is that at the end of training, mapped X domain samples will be indistinguishable from Y domain
samples. ii) The adversarial constraint, on its own, is not able to force mapped images to correspond
to a semantically related Y domain sample. An additional circularity constraint was found necessary
where mappings are learned from both X → Y and Y → X . The constraint is that a sample mapped
to the other domain and back to the original domain will be unchanged by this mapping. This was
found effective at preserving semantic information across mappings.
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Despite the effectiveness of the two constraints, they present several issues. Adversarial optimization
is a saddle point problem and its optimization is hard. This makes architecture selection challenging.
Scaling to high resolutions is difficult for adversarial training. This has only very recently been
achieved, using cascades of generators, using a slow and complex training regime. Combining such
high resolution generative architectures with cross-domain mapping presents a formidable challenge.
The circularity constraint presents its own challenges: the assumption that the mapping functions
TXY and TY X are inverse functions, is equivalent to requiring the transformation between the two
domains to be one-to-one. This is not true even for the simplest transformations such as colorization
or super-resolution.

Hoshen and Wolf have recently introduced, NAM [2, 3] - a method for unsupervised mapping which
does not rely on adversarial training during mapping or on circularity. The main idea behind NAM is
to parametrize domain X by a pre-trained parametric generator G(z), taking parameters z which they
call the latent code. The generator is trained using some off-the-shelf method such as unconditional
GAN (e.g. DCGAN [4], StackGAN [5], PGGAN [6]) or VAE [7]. NAM also receives a set of training
samples from the Y domain. NAM attempts to learn two sets of variables, i) weights of mapping
function TXY () ii) latent code zy for every training sample y. The latent code is optimized such that
y = T (G(zy)). Both TXY () and the set of latent codes {zy|y ∈ Y} are trained jointly end-to-end.

NAM suffers from several significant issues: i) NAM learns a latent variable zy per training sample
y. This means that every image only contributes to a single code during an epoch, which causes
an imbalance between the training speeds of the mapping and the codes. ii) NAM does not have a
forward encoder, mapping a sample y to its X domain analogy. Instead it is learned by optimization
‖T (G(zy)), y‖. This can require many iterations for a single sample making it quite slow. iii)
Although one of the greatest advantages of NAM is the ability to obtain multiple solutions – every
solution requires solving the optimization problem in (ii), and there is no guarantee on the variability
between the solutions obtained, It simply relies on the non-convexity of neural networks.

In this paper we present a new method VAE-NAM, which overcomes the aforementioned issues
with NAM. VAE-NAM replaces the per-example learned latent codes, by a forward encoder E(),
regressing example y directly to code zy. Learning a simple encoder encounters the same issues as
with the circularity constraint. We choose instead to have a stochastic encoder that learns a latent
distribution similar to VAE. Along with the the abilities (shared with NAM) to model many-to-one
or one-to-many mappings and to enjoy non-adversarial training of the mapping stage, our final
formulation has the following advantages: a feedforward mapping for analogies and no reliance on
multiple iterations during evaluation, a principled parametric model for the set of possible multiple
solutions and a clear analogy to VAEs, allowing direct transfer of VAE research to VAE-NAM.

2 Related Work

Unsupervised domain alignment: Mapping across similar domains without supervision has been
successfully achieved by classical methods such as Congealing [8]. Unsupervised translation across
very different domains has only very recently began to generate strong results, due to the advent of
generative adversarial networks (GANs), and all state-of-the-art unsupervised translation methods we
are aware of employ GAN technology. The most popular additional constraint is cycle-consistency:
enforcing that samples mapped to the other domain and back are unchanged. This approach is
taken by DiscoGAN [9], CycleGAN [10] and DualGAN [11]. Recently, StarGAN [12] extended the
approach to more than two domains. Circularity has recently also been applied by [13] for solving
the task of unsupervised word translation. Another type of constraint was proposed by CoGAN [14]
and later extended by UNIT [15] - employing a shared latent space. UNIT learns a Variational
Auto-encoder (VAE) [16] for each of the domains and adversarially ensures that both share the same
latent space. Although CoGAN showed that the shared latent constraint is weaker than the circularity
constraint, UNIT showed that the combination yields the best result. Similarly to the code released
with UNIT [15], our work uses for some of the tasks a VGG “perceptual loss” that employs an
Imagenet pre-trained network. This is a generic feature extraction method that is not domain specific
(and is therefore still unsupervised). Our work is built upon NAM, but uses a learned probabilistic
encoder rather than learning the codes directly, which has many advantages described in detail in
later sections.
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Unconditional Generative Modeling: Many methods were proposed for generative modeling of image
distributions. Currently the most popular approaches rely on GANs and VAEs [7]. GAN-based
methods are plagued by instability during training. Many methods were proposed to address this
issue for unconditional generation, e.g., [17, 18, 19]. The modifications are typically not employed
in cross-domain mapping works. Our method trains a generative model (typically a GAN), in the
X domain completely independently from the Y domain, and can directly benefit from the latest
advancements in the unconditional image generation literature. GLO [20] is an alternative to GAN,
which iteratively fits per-image latent vectors (starting from random “noise”) and learns a mapping
G() between the noise vectors and the training images. GLO is trained using a reconstruction loss,
minimizing the difference between the training images and those generated from the noise vectors.
Differently from our approach is tackles unconditional generation rather than domain mapping.

3 VAE-NAM

In this section we present our proposed method: VAE-NAM. Formally the task of unsupervised
domain mapping can be written as follows: Let X and Y be two image domains. The task is to
find transformation T () such that for every x ∈ X , the mapped T (x) is the analogy of x in the Y
domain. In this paper we specialize to image domains, however we speculate that our method can be
transfered to non-image domains.

3.1 Non-Adversarial Mapping (NAM)

NAM [3] is a recent method for unsupervised mapping across image domains. It takes as input
an unconditional model of the X domain, as well as a set of Y domain training images {y}. If a
set of X domain training images was given as input, NAM assumes it is used to train a parametric
unconditional generative model G(z) by some other method. NAM does not specify requirements
on this method as long as the resulting model satisfies: i) compactness: for every allowed set of
parameters z, the generated image G(z) lies within the X domain. ii) completeness: for every
possible image x ∈ X , there exists a set of parameters zx such that x = G(zx). Unconditional
generative modeling is a very active research field, and althought no technique known to us is able
to satisfy the requirements exactly (for interesting datasets), some good approximations exist e.g.
state-of-the-art GANs or VAEs.

Given a pre-trained X domain generative model G(z) and a set of Y domain training images {y},
NAM estimates two sets of variables: i) Parameters of transformation T () from domain X to domain
Y ii) A latent code zy for every Y domain training image so that the generated X domain image from
this latent code G(zy) maps to Y domain image y. The entire optimization problem is:

argminT,{zy}
∑
y∈Y
‖T (G(zy)), y‖ (1)

NAM optimizes the parameters of T () as well as all latent codes jointly {zy}. Note that a latent code
zy is estimated for every training image y.

NAM has significant advantages over other methods: it does not use adversarial training for learning
a mapping, the mapping can be one to many and multiple solutions can be obtained for a single input
image. NAM is able to use pre-trained generative models i.e. a generative model of the target domain
needs to be estimated only once, and can be mapped to many other domains without retraining.

Unfortunately, the NAM framework also has several issues both at training and evaluation time.
Having a latent code for every training image means that the number of variables to be estimated
scales with the number of images. Having per-image latent code variables means the images do
not directly help each other estimate their latent code, but only very indirectly through the mapping
function. Additionally, a gradient step is calculated for every latent code only once per epoch whereas
the mapping function has a gradient step once per batch. This causes an imbalance in the learning
rates as well as sometimes poor estimation for each latent variable. There are also issues at inference:
Evaluation by optimization implies that multiple (hundreds) of feedforward and backprop iterations
are required. Furthermore multiple solutions are obtained by solving Eq. 1 multiple times, each with
a different random initialization, without a principled model for the set of acceptable solutions.
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3.2 AE-NAM

We first present a simple method, AE-NAM, that overcomes the issues identified in the previous
section.

Similarly to NAM, AE-NAM takes as input a pre-trained generator of the X domain, G(z), and a
set of Y domain training images {y}. Differently from NAM, VAE-NAM does not directly estimate
a latent code for each training image independently. Instead it learns a feedforward encoder that
estimates a code zy given y. We will denote the encoder function E().

The simplest solution is to have a deterministic encoder zy = E(y), encoding the input Y domain
image y into a latent code of domain X . We denote this method AE-NAM. AE-NAM estimates both
E() and T () directly:

argminT,E
∑
y∈Y
‖T (G(E(y)), y‖ (2)

The intuition for this method, is that we simply autoencode the Y domain however with the decoder
decomposed into two parts: i) an X domain prior G() and an X → Y mapping T (). The autoencoder
forces X and Y to share the same latent space. UNIT [15] attempts to ensure shared latent space
using adversarial constraints on the X and Y domains. Our method escapes this requirement by using
the pre-trained generator prior, which fixes the latent space.

This method has the benefit of simplicity, and fast evaluation due to its feedforward nature. AE-NAM
however suffers from a significant drawback - it assumes a one-to-one mapping. In fact it has the
same issues as the circularity constraint used by other methods. Every Y domain image y, maps into
exactly a single X domain image x̃ = G(E(y)). Such mapping will fail in the cases for which the
real transformation is one-to-many e.g.: image colorization. A single gray scale image can map into
a whole space of RGB images. A key requirement from a mapping function is the ability to learn
multiple possible solutions for a single input.

3.3 VAE-NAM

To address the variability issue suffered by AE-NAM we present our final approach: VAE-NAM.
VAE-NAM encodes every Y domain image y into a distribution of latent codes P (zy|y) rather than
just a single deterministic transformation. To learn the probabilistic encoding we use the VAE
formulation first developed by Kingma and Welling [7].

In a probabilstic autoencoder, the observed (y) and latent (z) variables are modeled as p(y, z). To
infer from this model we would need to compute p(z|y). Using Bayes’ law to marginalize over z, is
hard in the general case. Instead, VAEs use the variational approximation to estimate the posterior
distribution p(z|y) by a parametric function qλ(z|y). In our case, instead of directly evaluating
p(z|y), we approximate it using a neural network. We choose a probability distribution which is
simple and parametric, specifically the Gaussian distribution which is simply parametrized by µy and
σ2
y for every sample. We thus train a neural network encoder E() regressing y to µy and log(σ2

y):

(µy, log σ
2
y) = E(y) (3)

VAEs optimize the KL Divergence between the true and approximate posteriors KL(qλ(z|y)|p(z|y)).
It can be shown that for an autoencoder this optimization criterion is equivalent to optimizing:

LV AE = −Eqλ(z|y)[log p(y|z)] +KL(qλ(z|y)|p(z)) (4)

Where we follow traditional VAEs and choose a normal prior for p(z).

VAEs model p(y|z) as a neural network decoder D(), mapping latent code z to reconstruct the
original image y = D(z). Differently from VAEs however, we impose a strong domain prior on the
decoder. The decoder D() is replaced by a combination of the X domain generative model G() and
the X → Y mapping function T (). The decoder is therefore given by D(z) = T (G(z)). VAE-NAM
is optimized end-to-end using the re-parametrization trick [7], where we simply use samples from the
model, and treat them as deterministic variables. The full optimization loss is therefore given as:

LV AENAM = ‖T (G(µy + ε ∗ σy)), y‖+KL(q(z|y)|p(z)) (5)
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A new sample of normally distributed ε is drawn for every example. Under the normal prior the KL
divergence is given by:

KL(q(z|y)|p(z)) = 1

2
(1 + log(σ2

y)− µ2
y − σ2

y) (6)

Instead of using the Euclidean pixel loss used in the original VAE formulation, we use the perceptual
loss (the theory is invariant to this modification). Optimization is straight forward, T () and E() can
use the same learning rates and we are able to use arbitrarily large amounts of training data (whereas
only limited training sets can be used for NAM).

3.4 Inference and Multiple Solutions

By the end of training, all 3 networks E(), G() and T () have been estimated. To evaluate the solution
to a new Y domain image y, we first encode:

(µy, log σ
2
y) = E(y) (7)

For every component in the code, we independently sample a normally distributed value ε (where
εi ∼ N(0, 1)):

ziy = µi(y) + σi(y) ∗ εi (8)

We then compute the X domain analogy by evaluating the generator:

x̃ = G(zy) (9)

To obtain multiple solutions we simply sample multiple codes, each generation being a solution.
Differently from NAM we now possess a parametric model of the solution space. We can therefore
sample the solutions with maximal variety such as the ones along different components with maximal
variance, or along a line segment in solution space.

Inference requires just a single evaluation of E() and as many generator evaluations as the number
of solutions required. This is far more efficient than NAM which requires hundreds of forward and
backward steps for each solution.

3.5 Implementation Details

In this section we give a detailed description of the procedure used to generate the experiments
presented in this paper.

Unconditional Generative Models: VAE-NAM takes as input a generative model of theX domain. We
experimented with a variety of generative models and obtained the best performance with a standard
DCGAN For the 32× 32 and 64× 64 resolution domains including Shoes-RGB and Handbags-RGB,
SVHN, MNIST and Cars. We generally found that it was helpful to choose the latent code dimension
to agree with the dataset complexity therefore we used dimension 32 for MNIST and 100 for the rest.

Encoder: For the VAE encoder we used a standard modification of the DCGAN discriminator, where
the sigmoid was removed from the output layer, and the output dimension was increased to twice the
latent code dimension (to model both µ and log(σ2)).

Mapping: We use a CRN [21] mapping function as used by NAM. We modified the architecture to
64× 64 images by removing the appropriate number of layers so that the central residual blocks will
operate on the same 32× 32 resolution as in the original architecture. The number of channels used
in the MNIST and SVHN experiments is 8, in all other experiments the number is 32.

Optimization: The pre-training of the generative models was done using the code supplied by the
authors with standard hyperparameter choices. VAE-NAM was optimized end-to-end over E() and
T (). Differently from NAM, a single learning rate (3× 10−3) was used across all parameters as all
parameters are updated with every training batch. We also use all Y domain training images available,
rather than just 2000. This is due to VAE-NAM’s parametric encoder allowing it to benefit from the
gradient updates from every training sample.

5



Table 1: MNIST→SVHN Translation quality measured by translated digit classification accuracy (%)

CycleGAN DistanceGAN NAM AE-NAM VAE-NAM

17.7 26.8 31.9 16.7 51.7

Table 2: SVHN→MNIST Translation quality measured by translated digit classification accuracy (%)

CycleGAN DistanceGAN NAM AE-NAM VAE-NAM

26.1 26.8 33.3 37.4 37.4

4 Experiments

In this section we evaluate the proposed VAE-NAM against NAM, which is at present the only
unsupervised cross-domain mapping method that does not use adversarial training. We evaluate the
visual quality of generations, accuracy of analogies and runtime during evaluation.

4.1 Quantitative Results

We conduct several quantitative experiments to benchmark the relative performance of VAE-NAM.

MNIST→SVHN: MNIST and SVHN are standard benchmarks for evaluating classification algorithms.
Several domain mapping algorithms (including DiscoGAN and NAM) evaluated their performance
on mapping between the two datasets. The protocal consists of mapping images from MNIST to
SVHN (using DiscoGAN, DistanceGAN, NAM, NAM-AE and NAM-VAE) and are then classified by
a pre-trained SVHN classification network. This is used to evaluate the percentage of images mapped
to the same label in the other domain. The results can be seen in Tab. 1. VAE-NAM significantly
outperformed NAM, DiscoGAN and DistanceGAN [22] on the more challenging MNIST to SVHN
task (where much information needs to be hallucinated).

SVHN→MNIST: This experiment is performed in exactly the same manner as MNIST→SVHN,
with the role of the two datasets reversed. As we can see from Tab. 2, AE-NAM and VAE-NAM
outperform all other methods. Note that AE-NAM achieves the same results as VAE-NAM (the best
result is achieved with the KL-divergence loss term turned off) due to the many-to-one nature of this
task.

Car2Car: In the car2car task, each domain consists of a set of distinct car models, displayed at an
angle θ = {−90,−75, ..., 90} degrees. The task is to map across the domains such that the model is
translated to the other domain while the angle is preserved. We evaluate performance by the root
median of the squares of the residuals between the mapped and ground truth orientations. This
is measured by a pretrained angle regressor with Network in Network architecture, trained on the
X domain training images. VAE-NAM outperformed NAM on this task (and both significantly
outperformed DiscoGAN which presented this benchmark). Per-latent variable optimization is more
error prone than training an encoder, hence VAE-NAM’s better performance. Due to the one-to-one
nature of this task, AE-NAM performed similarly to VAE-NAM.

4.2 Qualitative Results

We present a qualitative evaluation of our method, both in comparison to other approaches and an
investigation into the effects of the different loss components. We evaluated the different methods of
the edges2shoes dataset. It consists of 48000 images of shoes first collected by [23]. Domain X is
the set of shoe RGB images, whereas domain Y is the set of their edge maps. No correspondences are
given to any of the algorithms during training, the dataset therefore forms an unsupervised analogy
dataset.

Comparison of methods: Several analogies by VAE-NAM and NAM can be observed in Fig. 1. We
can see the VAE-NAM visual quality is comparable to NAM on this dataset, where VAE-NAM
adheres better to the ground truth. We evaluated the merits of using VAE-NAM vs. the deterministic
AE-NAM. It is evident that using the deterministic AE-NAM yields more precise adherence to target
image than VAE-NAM. The AE-NAM result however is significantly less realistic than those obtained
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Table 3: Car2Car root median residual error (lower is better).

DiscoGAN NAM VAE-NAM

13.81 1.47 1.38

NAM

AE-NAM

VAE-NAM

VAE-NAM

VAE-NAM

GT

Figure 1: Comparison between NAM (top row) AE-NAM (second row) and VAE-NAM (bottom
rows)

from VAE-NAM (e.g. as only a single solution is assigned to each image, it is an average of all
possible solutions, and in many cases does not look particularly realistic). AE-NAM also suffers from
sample variety issues, it can be seen that analogies of different images have mostly the same color.
This is remedied by switching to the VAE-NAM formulation which enables the trade-off between
reconstruction accuracy and modeling the variability of the solution space.

Exploring the latent space parametrized by σ2(y): VAE-NAM finds a Gaussian probability distribu-
tion of X domain analogies. In Fig. 1 we visually explore the set of analogies encoded by the learned
probability distribution. We can see that the learned analogy distribution exhibits much variety which
is inherent in the nature of the many-to-one mapping problem.

4.3 Runtime Analysis

One of the greatest advantages of VAE-NAM over NAM is the availability of a forward encoder. By
the end of training, T () is obtained for NAM, and both T () and E() are obtained for NAM-VAE.
At evaluation time, every y domain image requires solving the optimization problem in Eq. 1, this
typically requires around 100 iterations each requiring a forward and backward step. For NAM,
each iteration requires the evaluation of G() and T () as well as the VGG loss which dominates the
evaluation time. For VAE-NAM, only a single evaluation of E() and G() are required. If multiple
solutions are required, runtime for both NAM and VAE-NAM increase linearly with the number of
solutions.

Evaluating 100 analogies on a P100 GPU and for 64×64 images took 0.013s for VAE-NAM whereas
NAM required 23s. Our proposed method is therefore about 2000× faster than NAM at evaluation
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time. We conclude that for applications for which evaluation runtime is important, VAE-NAM should
always be preferred over NAM.

5 Discussion

Our method VAE-NAM presented a new interpretation for cross-domain mapping. We formulated the
mapping as a variational autoencoder on the Y domain, with special properties. The encoder E(y)
maps the Y domain image into the pre-trained latent space of X . The decoder consists of two parts,
the first being a pre-trained X domain generative model G(z) serving as a transformation prior.

VAE-NAM has some relation to CoGAN and UNIT, which assume that analogous images in the
X and Y domains share the same latent code. Various constraint are used to ensure this property
including adversarial and circularity constraints (although the latter was slightly relaxed in MUNIT).
Our model is however significantly different. In CoGAN and later works the only relation between
the two domains is through the latent code space Z . In NAM, only the X domain is directly related
to the Z domain whereas Y is only directly related to the X domain (and to Z only through X ). This
forces the two domains to share the same latent space without adversarial constraints. VAE-NAM,
adds a uni-directional connection between Y → Z , however the direct connection between X → Y
is maintained. This ensures the two domains share the same latent space while also benefiting from
the advantages of having a parametric encoding model.

The success of VAE-NAM suggests that the main component required for unsupervised cross-domain
mapping is a strong domain prior. Given such strong prior, the method learns to effectively map
between the two domains. The formulation as VAE allows future work to use the vast research
developed by the auto-encoder research community for example the Wasserstein autoencoder [24] or
recurrence for dealing with temporal data [25].

Generalization to multiple domains occurs naturally, and has a possible cognitive interpretation. Let
us assume the agent has a good generative model of a privileged domain, which the agent is very
familiar with (in our notation, the domain is denoted X ). For every new domain Y , the agent will train
a VAE, with the decoder factorized by the known generative model GX(), and a learned mapping
function TXY . The familiar domain therefore serves as a familiar grounding space, onto which all
other knowledge is aligned. Further research is needed to verify if this model in fact accords with
human cognitive patterns.

There are multiple ways in which the current work may be extended. Each input sample is mapped
so that the latent space is a Gaussian unit ball with identity covariance. This might be too restrictive,
and does not fully explore the state of possible multiple analogies. We think that better probabilistic
modeling of the latent space can be a fruitful direction.

NAM and VAE-NAM have so far only been applied to image domains. The next step in unsupervised
mapping research is to explore the applicability of VAE-NAM to different modalities such as word
translation and speech. Non-adversarial mapping is particularly exciting for tasks for which we
already have good parametric models. An example of settings for which excellent parametric
generators were developed include: face and 3D modeling, as well as general physics simulations
and game engines. Successful alignment between the world and a simulation can advance the fields
of model based learning and virtual reality.

6 Conclusions

We presented VAE-NAM, a method for learning to map across image domains without supervision.
Differently from NAM, it uses a parametric stochastic function to map input samples to latent codes,
rather than learning the latent code by direct optimization. The model also parameterizes the latent
space, and multiple analogies that can arise from a single input sample. VAE-NAM is shown to be
better at using large datasets than NAM, is simpler to train, generally converges to better solutions
and is much faster at evaluation time.
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