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Abstract

We consider the bilinear inverse problem of recovering two vectors, € R and
w € R, from their entrywise product. We consider the case where  and w have
known signs and are sparse with respect to known dictionaries of size K and IV,
respectively. Here, K and N may be larger than, smaller than, or equal to L. We
introduce ¢, -BranchHull, which is a convex program posed in the natural parameter
space and does not require an approximate solution or initialization in order to
be stated or solved. We study the case where « and w are S;- and S3-sparse
with respect to a random dictionary, with the sparse vectors satisfying an effective
sparsity condition, and present a recovery guarantee that depends on the number of
measurements as L > Q(S) + Sa) log®(K + N). Numerical experiments verify
that the scaling constant in the theorem is not too large. One application of this
problem is the sweep distortion removal task in dielectric imaging, where one of the
signals is a nonnegative reflectivity, and the other signal lives in a known subspace,
for example that given by dominant wavelet coefficients. We also introduce a
variants of /1-BranchHull for the purposes of tolerating noise and outliers, and
for the purpose of recovering piecewise constant signals. We provide an ADMM
implementation of these variants and show they can extract piecewise constant
behavior from real images.

1 Introduction

We study the problem of recovering two unknown signals & and w in R” from observations y =
A(w, z), where A is a bilinear operator. Let B € RE*X and C € REXY such that w = Bh and
x = Cm with ||h||p < S; and ||m||o < S. Let the bilinear operator A : RL x R — RL satisfy

y=Aw,z)=wo, ey

where ©® denotes entrywise product. The bilinear inverse problem (BIP) we consider is to find w and
x from y, B, C and sign (w), up to the inherent scaling ambiguity.
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BIPs, in general, have many applications in signal processing and machine learning and include
fundamental practical problems like phase retrieval (Fienup [1982], Candes and Li [2012], Candes
et al. [2013]), blind deconvolution (Ahmed et al. [2014], Stockham et al. [1975], Kundur and
Hatzinakos [1996], Aghasi et al. [2016a]), non-negative matrix factorization (Hoyer [2004], Lee and
Seung [2001]), self-calibration (Ling and Strohmer [2015]), blind source separation (D. et al. [2005]),
dictionary learning (Tosic and Frossard [2011]), etc. These problems are in general challenging and
suffer from identifiability issues that make the solution set non-unique and non-convex. A common
identifiability issue, also shared by the BIP in (1), is the scaling ambiguity. In particular, if (w?, %)
solves a BIP, then so does (cw?, c~'x?) for any nonzero ¢ € R. In this paper, we resolve this scaling
ambiguity by finding the point in the solution set closest to the origin with respect to the ¢; norm.
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(a) Convex relaxation (b) Geometry of ¢;-BranchHull

Figure 1: Panel (a) shows the convex hull of the relevant branch of a hyperbola given a measurement
ye and the sign information sign(wy). Panel (b) shows the interaction between the ¢;-ball in the
objective of (3) with its feasibility set. The feasibility set is ‘pointy’ along a hyperbola, which
allows for signal recovery where the /1 ball touches it. The gray hyperplane segments correspond
to linearizations of the hyperbolic measurements, which is an important component of our recovery
proof.

Another identifiability issue of the BIP in (1) is if (w?, %) solves (1), then so does (1, w? ® xf),
where 1 is the vector of ones. In prior works like Ahmed et al. [2014], which studies the blind
deconvolution problem and is a BIP in the Fourier Domain, the identifiability issue is resolved by
assuming the signals live in a known subspace. In comparison to Ahmed et al. [2014], we resolve the
identifiability issue with a much weaker structural assumption of sparsity in known bases at the cost
of known signs; justified in actual applications, especially, in imaging. Natural choices for such bases
include the standard basis, the Discrete Cosine Transform (DCT) basis, and a wavelet basis.

Recent work on sparse rank-1 matrix recovery problem in Lee et al. [2017], which is motivated by con-
sidering the lifted version of the sparse blind deconvolution problem, provides an exact recovery guar-
antee of the sparse vectors h and m that satisfy a "peakiness" condition, i.e. min{||h||sc, || ||cc } > ¢
for some absolute constant ¢ € R. This result holds with high probability for random measurements
if the number of measurement, up to a log factor, satisfy L > (S; 4+ S3). For general vectors
without the peakiness condition, the same work shows exact recovery is possible if the number of
measurements, up to a log factor, satisfy L > Q(.51.52).

The main contribution of this paper is to introduce an algorithm for the sparse BIP described in (1)
which recovers sparse vectors that satisfy a comparable effective sparsity condition. Precisely, we say

the sparse vectors h" and m" have comparable effective sparsity if there exist an o € R such that

% m!
I _ o
|h%]2 [[m?]2
g 8
with « satisfying % < a < C for some C € R™. Intuitively, the ratios HZ”H; and thH; are about

the same if the sparsity levels of h* and m" are close and the magnitudes of the nonzero entries of

h" and m" are about the same. Under this assumption on the sparse signals, we present a convex
program stated in the natural parameter space, which in the noiseless setting with random B and



C, exactly recovers the sparse vectors with at most S; + S combined nonzero entries with high
probability if the number measurements satisfy L > Q(S; 4 S5) log?(K + N).

1.1 Convex program and main results

We introduce a convex program written in the natural parameter space for the bilinear inverse problem
described in (1). Let (h*,m") € RX x RN with ||h%||y < S; and |[m¥]jy < Sy. Let w, = by A%,
z; = cJm? and y, = bl h'c]m", where b] and ¢] are the ¢th row of B and C. Also, let s = sign(y)

and t = sign(Bh"). The convex program we consider to recover (h?, m?) is the ¢;-BranchHull
program
) L , Tt
¢1-BH : hglﬂ@lg{glé& |h|l1 + ||m||1 subjectto s¢(bjhcim) > |y (3)
teébjh >0, (=1,2,... L.

The motivation for the feasible set in program (3) follows from the observation that each measurement
Yo = wy - T, defines a hyperbola in R?. As shown in Figure (1a), the sign information t, = wy
restricts (wy, x¢) to one of the branch of the hyperbola. The feasible set in (3) corresponds to the
convex hull of particular branches of the hyperbola for each y,. This also implies that the feasible set
is convex as it is the intersection of I convex sets.

The objective function in (3) is an ¢, minimization over (h,m) that finds a sparse point (h, 7i2) with
|lR]|1 = ||n||1. Geometrically, this happens as the solution lies at the intersection of the ¢;-ball,
and the hyperbolic curve (constraint) as shown in Figure 1a and 1b. So, the minimizer of (3), under

successful recovery, is (hh\/lmhl1 m“\/l”hh‘l‘ )

IRE]L [mEl

Our main result is that under the structural assumptions that w and x live in random subspaces
with (hh, mh) containing at most S; + S2 non zero entries and (hh, m“) satisfing the effective

sparsity condition (2), the ¢;-BranchHull program (3) recovers h”, and mF (to within the scaling
ambiguity) with high probability, provided the number of measurements, up to log factors, satisfy
L > QS + So)log?(K + N).

Theorem 1. Suppose we observe the pointwise product of two vectors B h%, and Cm'® through a bilin-
ear measurement model in (1), where B, and C' are standard Gaussian random matrices. If (hh, mh)

satisfy (2), then the £1-BranchHull program (3) uniquely recovers (hh Imilly ot /LR ) when-

|RE]: [l

ever L > C (\/Sl + Sylog(K + N) + t)Qfor any t > 0 with probability at least 1 — e2L Here
C is an absolute constant.

1.2 Prior art for bilinear inverse problems

Recent approaches to solving bilinear inverse problems like blind deconvolution and phase retrieval
have been to lift the problems into a low rank matrix recovery task or to formulate an optimization
programs in the natural parameter space. Lifting transforms the problem of recovering h € RX and
m € RY from bilinear measurements to the problem of recovering a low rank matrix hmT from
linear measurements. The low rank matrix can then be recovered using a semidefinite program. The
result in Ahmed et al. [2014] for blind deconvolution showed that if h and m are representations
of the target signals with respect to Fourier and Gaussian subspaces, respectively, then the lifting
method successfully recovers the low rank matrix. The recovery occurs with high probability under
near optimal sample complexity. Unfortunately, solving the semidefinite program is prohibitively
computationally expensive because they operate in high-dimension space. Also, it is not clear how to
enforce additional structure like sparsity of h and m in the lifted formulation in a way that allows
optimal sample complexity (Li and Voroninski [2013], Oymak et al. [2015]).

In comparison to the lifting approach for blind deconvolution and phase retrieval, methods that
formulate an algorithm in the natural parameter space like alternating minimization and gradient
descent based method are computationally efficient and also enjoy rigorous recovery guarantees
under optimal or near optimal sample complexity (Li et al. [2016], Candes et al. [2015], Netrapalli
et al. [2013], Sun et al. [2016]). In fact, the work in Lee et al. [2017] for sparse blind deconvolution



is based on alternating minimization. In the paper, the authors use an alternating minimization that
successively approximate the sparse vectors while enforcing the low rank property of the lifted matrix.
However, because these methods are non-convex, convergence to the global optimal requires a good
initialization (Tu et al. [2015], Chen and Candes [2015], Li et al. [2016]).

Other approaches that operate in the natural parameter space include PhaseMax (Bahmani and
Romberg [2016], Goldstein and Studer [2016]) and BranchHull (Aghasi et al. [2016b]). PhaseMax
is a linear program which has been proven to find the target signal in phase retrieval under optimal
sample complexity if a good anchor vector is available. As with alternating minimization and
gradient descent based approach, PhaseMax requires a good initialization. However, in PhaseMax
the initialization is part of the optimization program but in alternating minimization the initialization
is part of the algorithmic implementation. BranchHull is a convex program which solves the BIP
described in (3) excluding the sparsity assumption under optimal sample complexity. Like the
£1-BranchHull presented in this paper, BranchHull does not require an initialization but requires the
sign information of the signals.

The ¢1-BranchHull program (3) combines strengths of both the lifting method and the gradient
descent based method. Specifically, the ¢;-BranchHull program is a convex program that operates in
the natural parameter space, without a need for an initialization, and without restrictive assumptions
on the class of recoverable signals. These strengths are achieved at the cost of the sign information of
the target signals w and . However, the sign assumption can be justified in imaging applications
where the goal might be to recover pixel values of a target image, which are non-negative. Also, as in
PhaseMax, the sign information can be thought of as an anchor vector which anchors the solution to
one of the branches of the L hyperbolic measurements.

1.3 Extension to noise and outlier

Extending the theory of the ¢;-BranchHull program (3) to the case with noise is important as most
real data contain significant noise. Formulation 3 may be particularly susceptible to noise that changes
the sign of even a single measurement. For the bilinear inverse problem as described in (1) with small
dense noise and arbitrary outliers, we propose the following robust ¢; -BranchHull program

RBH: inimi h A bject to s,(c] blh > 4
hmgﬁﬁ@ﬂJHh+%WH-Mm subject to s¢(cjm + &)bjh > |ye|,  (4)
tebTh >0, (=1,...,L.

The slack variable € controls the shape of the feasible set. For measurements ¥y, with incorrect sign,
the corresponding slack variables &, shifts the feasible set so that the target signal is feasible. In the
outlier case, the /1 penalty promotes sparsity of slack variable £&. We implement a slight variation of
the above program, detailed in Section 1.4, to remove distortions from real and synthetic images.

1.4 Total variation extension of /;-BranchHull

The robust ¢1-BranchHull program (4) is flexible and can be altered to remove distortions from an

otherwise piecewise constant signal. In the case where w = B h%is a piecewise constant signal,
x = Cm' is a distortion signal and y = w ® = is the distorted signal, the total variation version (5)
of the robust BranchHull program (4), under successful recovery, produces the piecewise constant

signal BHRY, up to a scaling.

TV BH : minimize TV (Bh) + |m|; + A subject to ¢, m)b, h > 5
o imimize TV (BR) + [mll + A€ subjectto s,(& -+ e/ m)b/ b > | (5)

tebjh >0, (=1,2,... L.
In (5), TV(:) is a total variation operator and is the ¢; norm of the vector containing pairwise

difference of neighboring elements of the target signal Bh. We implement (5) to remove distortions
from images in Section 3.2.

1.5 Notation

Vectors and matrices are written with boldface, while scalars and entries of vectors are written in
plain font. For example, ¢, is the ¢the entry of the vector c. We write 1 as the vector of all ones with



dimensionality appropriate for the context. We write I v as the N x IV identity matrix. For any x € R,
let (z)_ € Zsuchthatz — 1 < (z)_ < z. For any matrix A, let || A|| ¢ be the Frobenius norm of A.
For any vector x, let ||z||o be the number of non-zero entries in . For x € RX and y € RY, (z, y)
is the corresponding vector in R x R™ and ((x1,y;), (T2, ¥,)) = (x1,22) + (y;,y,). For a set
A C R™, and a vector a € R, we define by a & A, a set obtained by incrementing every element
of Aby a.

2 Algorithm

In this section, we present an Alternating Direction Method of Multipliers (ADMM) implementation
of an extension of the robust /;-BranchHull program (4). The ADMM implementation of the ¢;-
BranchHull program (3) is similar to the ADMM implementation of (6) and we leave it to the readers.
The extension of the robust ¢;-BranchHull program we consider is

minimize Phl; + [|m|1 + A subject to s +e¢/m)b) h > 6
pepiinimize [Ph|[y + [[m]ly + All&]lL  subj (& + ¢, m)by h > |y (©)

teb)h >0, 0=1,2,...,L,

where P € R7*¥ for some J € Z. The above extension reduces to the robust ¢;-BranchHull
program if P = I k. Recalling that w = Bh and x = C'm, we make use of the following notations

x m C o0 0 I 0 O
u:(w),v:(h),E: 0 B 0 andQ:(O P 0).
13 N 0 0 )\lIg 0o o0 I,

Using this notation, our convex program can be compactly written as

minimize |Qu]|1 subjectto u = Ev, uecC.
VERN+K+L 4 cR3L

Here C = {(z,w,&) € R3*| s¢(& + zo)wy > |yel, towe >0, £ =1,..., L} is the convex feasible
set of (6). Introducing a new variable z the resulting convex program can be written as

minimize ||z|; subjectto u = Ev, Quv=2z, u€C.
v,z

We may now form the scaled ADMM steps as follows

Up41 = argmin Ze(u) + g w4 o — Evg|? (7
u
zir = argmin [z + 1z + By - Quill ®)
. . p 2, P 2
Vi1 = argmin 5 [lag + ks — Bo||” + 518k + zk1 — Qull”, ©

Qpi1 =+ upy1 — Bogya,
Bit1 = Bi + Vip1 — QUi
where Z¢ () in (7) is the indicator function on C such that Z¢ (u) = 0 if u € C and infinity otherwise.
We would like to note that the first three steps of the proposed ADMM scheme can be presented in
closed form. The update in (7) is the following projection
up41 = proje (Evy, — o) ,
where proj.(v) is the projection of v onto C. Details of computing the projection onto C are presented
in the Supplementary material. The update in (8) can be written in terms of the soft-thresholding
operator
Z; —C Z; > C
Zrt1 = 51/, (Qur — By) where  (Sc(2)), = 0 lz;| <c
zi+c z; < —c
where ¢ > 0 and (S.(z)), is the ith entry of S.(z). Finally, the update in (9) takes the following
form
T -1 T T
Vg1 = (E E + QTQ> (E (o +up1) +Q (B + Zk+1)) :
In our implementation of the ADMM scheme, we initialize the algorithm with the v = 0, a9 = 0,

By = 0.



3 Numerical Experiments

In this section, we provide numerical experiments on synthetic and real data where the signals follow
the multiplicative model (1), which is compatible with physics of lighting (Hold [1986]). This is in
contrast to well-known methods for image de-illumination like He et al. [2011] where the external
light has an additive contribution to the image. Other methods like Chen et al. [2006] work with
additive models by working with the images in the log domain, while we directly work with the
multiplicative model in a robust-to-noise way. The experiment on real data presented in this section
shows total variation ¢;-BranchHull program can be used to remove distortions from an image. The
synthetic experiment numerically verifies Theorem 1 with a low scaling constant.

3.1 Phase Portrait

L =0.25(S1 + S2) log* (N + K)

Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il |
4 12 20 28 36 44 52 60 68 76 84 92 100108 116 124 132 140
L

Figure 2: The empirical recovery probability from synthetic data with sparsity level S as a function
of total number of measurements L. Each block correspond to the average from 10 independent
trials. White blocks correspond to successful recovery and black blocks correspond to unsuccessful
recovery. The area to the right of the line satisfies L > 0.25(S; + So) log*(N + K).

We first show a phase portrait that verifies Theorem 1. Consider the following measurements: fix
N € {20,40,...,300}, L € {4,8,...,140} and let K = N. Let the target signal (hh,m“) €
RE x RY be such that both h* and m! have 0.05N non-zero entries with the nonzero indices

randomly selected and set to +1. Let S7 and .S; be the number of nonzero entries in k! and mh,
respectively. Let B € RE*K and C' € REXN such that B;j ~ %N’(O, 1) and C;; ~ ﬁN(O, 1).

Lastly, let y = Bh® © Cm/ and t = sign(Bh").

Figure 2 shows the fraction of successful recoveries from 10 independent trials using (3) for the
bilinear inverse problem (1) from data as described above. Let (ﬁ7 ) be the output of (3) and let
(I~z, m) be the candidate minimizer. We solve (3) using an ADMM implementation similar to the
ADMM implementation detailed in Section 2 with the step size parameter p = 1. For each trial,
we say (3) successfully recovers the target signal if || (h, ™) — (h, )2 < 1071, Black squares
correspond to no successful recovery and white squares correspond to 100% successful recovery.
The line corresponds to L = C(Sy + S5) log?(K + N) with C' = 0.25 and indicates that the sample
complexity constant in Theorem 1 is not very large.

3.2 Distortion removal from images

We use the total variation BranchHull program (5) to remove distortions from real images ¢ € RP*4,
In the experiments, The observation y € RZ is the column-wise vectorization of the image 9y, the
target signal w = Bh is the vectorization of the piecewise constant image and x = C'm corresponds
to the distortions in the image. We use (5) to recover piecewise constant target images like in the

foreground of Figure 3a with TV(Bh) = ||DBh||;, where D = { g; } in block form. Here,

D, € RE-DXL 3nd D, € RE—PI*XL with

e i—1
Litj=it () ~1 ifj=i

(Dy)ij = 1 ifi=s+1 (ﬂ) , (Dp)ij = 1 ifj=i+p
=+l p=1)_ 0  otherwise

0  otherwise



Lastly, we solve (5) using the ADMM algorithm detailed in Section 2 with P = DB.

(a) Distorted image (b) Recovered image (c) Distorted image (d) Recovered image

2

Figure 3: Panel (a) shows an image of a mousepad with distortions and panel(b) is the piecewise
constant image recovered using total variation ¢;-BranchHull. Similarly, panel (d) shows an image
containing rice grains and panel (e) is the recovered image.

We now show two experiments on real images. The first image, shown in Figure 3a, was captured
using a camera and resized to a 115 x 115 image. The measurement 3y € R” is the vectorization of
the image with L = 13225. Let B be the L x L identity matrix. Let F' be the L x L inverse DCT
matrix. Let C € RL*300 with the first column set to 1 and remaining columns randomly selected
from columns of F' without replacement. The matrix C' is scaled so that |C||r = || B||r = VL.
The vector of known sign ¢ is set to 1. Let (ﬁ, m, é) be the output of (5) with A = 102 and p = 104
Figure 3b corresponds to Bh and shows that the object in the center was successfully recovered.

The second real image, shown in Figure 3c, is an image of rice grains. The size of the image is
128 x 128. The measurement y € R’ is the vectorization of the image with L = 16384. Let B be
the L x L identity matrix. Let C € RY*59 with the first column set to 1. The remaining columns
of C' are sampled from Bessel function of the first kind .J,,(y) with each column corresponding to
a fixed v € R. Specifically, fix g € R* with g; = —9 + 14£:1. For each remaining column ¢
of C, fix { ~ N(0,13) and let ¢; = J__o; 5 01(0.1 +10|C3]). The matrix C is scaled so that

6+0.1[¢q |
|C||r = ||Bl||r = VL. The vector of known sign ¢ is set to 1. Let (h, 1, &) be the output of (5)
with A = 102 and p = 10~7. Figure 3d corresponds to Bh.

4 Proof Outline

In this section, we provide a proof of Theorem 1 by considering a related linear program with larger
feasible set. Let (h",m) € RX x RN with k%o < S; and ||mf|o < Ss. Let wy, = bh",
zp = c]m! and y, = bJh* - cJm". Also, let s = sign(y) and t = sign(Bh?). We will shows that

the (3) recovers (h, 1) such that (h,m) = (hh ‘:Irl?”hl‘llll ,mf th#)

[m& ]l

Consider program (10) which has a linear constraint set that contains the feasible set of the ¢;-
BrachHull program (3).

LP: minimize Rl + |lmi|isubject o se(b[hefri + blhce[m) = 2ly.|  (10)
(=1,2,...,L,
Let
S := {(h,m) e RE xRN | (h,m) = a(fﬁ,m), and o € [—1, 1}}. (11)

Observe that if (h, 1) is a minimizer of (10) then so are all the points in the set (h, 1) & S.

Lemma 1. If the optimization program (10) recovers (h,m) € (h,m) ® S, then the BranchHull
program (3) recovers (h,m).



A proof of Lemma 1, provided in Supplementary material, follows from the observations that the
feasible set of (10) contains the feasible set of (3) and (fz, ) is the only feasible point in (3) among
all (h,m) € (h,m)® S.

We now show that the solution of (10) lies in the set (h, 1) @ S. Let a] = (cjmb],blhc]) €
RE+N denote the /th row of a matrix A. The linear constraint in (10) are now simply s® A(h, m) >
2|y|. Note that S € N := span(—h, 1) C Null(A).

Our strategy will be to show that for any feasible perturbation (§h, dm) € N, the objective of the
linear program (10) strictly increases, where AV} is the orthogonal complement of the subspace N.

This will be equivalent to showing that the solution of (10) lies in the set (h,712) & S.

The subgradient of the ¢;-norm at the proposed solution (ﬁ, m) is

0|l (h, )1 :={g € R"*N : |lg|loc < 1and gr, = sign(ht,) ,gr,, = sign(m]. )},

where I';,, and I';,, denote the support of non-zeros in h?, and m!, respectively. To show the linear

program converges to a solution (h, ) € (h, ) & S, it suffices to show that the set of following
descent directions

{(6h,5m) € N1+ (g, (oh,6m)) <0, g € d|(h, 7)1 }

c {(6h,6m) e N\ : (gr,,0hr,) + (gr,,,0mr,,) + || (5hr , dmr. )

m m ‘1 S O}
C {(6h,0m) e N1 : —|lgr, ur,, l2Il(6hr, . 6mr,)||2 + [|(6hrs , dmre )[1 <0}

- {(5h,5m) €N : [|(Shos , 6mre )1 < /St + Sa|(3hr,, omir,)|l2 } D (12)

does not contain any vector (0h, dm) that is consistent with the constraints. We do this by quantifying
the “width" of the set D through a Rademacher complexity, and a probability that the gradients of the
constraint functions lie in a certain half space. This allows us to use small ball method developed in
Koltchinskii and Mendelson [2015], Mendelson [2014] to ultimately show that it is highly unlikely to
have descent directions in D that meet the constraints in (10). We now concretely state the definitions
of the Rademacher complexity, and probability term mentioned above.

Define linear functions
fo(h,m) == <(bgﬁq,cgmbg), (h,m)> 0=1,23,...,L

The linear constraints in the LP (10) are defined these linear functions as sy fi(h,m)>2|y,]|.

The gradients of f; w.r.t. (h,m) at (h,7) are then simply Vf, = (af’fg}l’m), 8Mf"m)) =

~ om
(szc}ﬁzbg, Sgb} hcy). Define the Rademacher complexity of a set D C RM ag
¢D):=E sup e (Vo TR ) (13)
(h.m)eD fz I(h,m)ll2
where €1, €2, ..., e, are iid Rademacher random variables that are independent of everything else.

For a set D, the quantity €(D) is a measure of width of D around the origin in terms of the gradients
of the constraint functions. For example, an equally distributed random set of gradient functions
might lead to a smaller value of C(D).

Our results also depend on a probability p, (D), and a positive parameter 7 introduced below
- i _(hym)
pT(D) = (h,gzl)fepp(<vfz’ Thm)2 m)” > > 7') (14)
Intuitively, p, (D) quantifies the size of D through the gradient vectors. For a small enough fixed
parameter, a small value of p, (D) means that the D is mainly invisible to to the gradient vectors.
Lemma 2. Let D be the set of descent directions, already characterized in (12) for which €(D), and

p- (D) can be determined using (13), and (14). Choose L > (%) foranyt > 0. Then the

solution (il, m) of the LP in (10) lies in the set (fL, m) @ S with probability at least 1 — e~2Lt",



Proof of this lemma is based on small ball method developed in Koltchinskii and Mendelson [2015],
Mendelson [2014] and further studied in Lecué et al. [2018], Lecué and Mendelson [2017]. The
proof is mainly repeated using the argument in Bahmani and Romberg [2017], and is provided in
the supplementary material for completeness. We now state the main theorem for linear program
(10). The theorems states that if the sparse signals satisfy the effective sparsity condition (2) and
L > Cy(S1 +55) log?(K + N), then the minimizer of the linear program (10) is in the set (b, 7) ®S
with high probability.

Theorem 2 (Exact recovery). Suppose we observe pointwise product of two vectors Bh', and C'm*
through a bilinear measurement model in (1), where B, and C are standard Gaussian random
matrices. If (h*, m?) satisfy (2), then the linear program (10) recovers (h,mm) € (h, ) ® S with

probability at least 1 — e=2Lt" wwhenever L > C (V/S1 + Szlog(K + N) + t)2, where C' is an
absolute constant.

In light of Lemma 2, the proof of Theorem 2 reduces to computing the Rademacher complexity €(D)
defined in (13), and the tail probability estimate p (D) defined in (14) of the set of descent directions
D defined in (12). The Rademacher complexity is bounded from above by

e(D) < O\ (I3 + [R]3) (S + S2) log? (K + N).

and for 7 = min{||h||2, ||7||2}, the tail probability is bounded by p, (D) > 21, where both C' and
c are constants. These bounds are shown in the Supplementary material. The proof of Theorem 1
follows by applying Lemma 1 to Theorem 2.
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