
Exploiting Numerical Sparsity for Efficient Learning :
Faster Eigenvector Computation and Regression

Neha Gupta
Department of Computer Science

Stanford University
Stanford, CA USA

nehagupta@cs.stanford.edu

Aaron Sidford
Department of Management Science and Engineering

Stanford University
Stanford, CA USA

sidford@stanford.edu

Abstract

In this paper, we obtain improved running times for regression and top eigenvector
computation for numerically sparse matrices. Given a data matrix A ∈ Rn×d
where every row a ∈ Rd has ‖a‖22 ≤ L and numerical sparsity at most s, i.e.
‖a‖21/‖a‖22 ≤ s, we provide faster algorithms for these problems in many parameter
settings.

For top eigenvector computation, we obtain a running time of Õ(nd + r(s +√
rs)/gap2) where gap > 0 is the relative gap between the top two eigenvectors of

A>A and r is the stable rank of A. This running time improves upon the previous
best unaccelerated running time of O(nd+ rd/gap2) as r ≤ d and s ≤ d.

For regression, we obtain a running time of Õ(nd + (nL/µ)
√
snL/µ) where

µ > 0 is the smallest eigenvalue of A>A. This running time improves upon
the previous best unaccelerated running time of Õ(nd + nLd/µ). This result
expands the regimes where regression can be solved in nearly linear time from
when L/µ = Õ(1) to when L/µ = Õ(d2/3/(sn)1/3).
Furthermore, we obtain similar improvements even when row norms and numerical
sparsities are non-uniform and we show how to achieve even faster running times
by accelerating using approximate proximal point [9] / catalyst [15]. Our running
times depend only on the size of the input and natural numerical measures of the
matrix, i.e. eigenvalues and `p norms, making progress on a key open problem
regarding optimal running times for efficient large-scale learning.

1 Introduction

Regression and top eigenvector computation are two of the most fundamental problems in learning,
optimization, and numerical linear algebra. They are central tools for data analysis and of the simplest
problems in a hierarchy of complex machine learning computational problems. Consequently,
developing provably faster algorithms for these problems is often a first step towards deriving new
theoretically motivated algorithms for large scale data analysis.

Both regression and top eigenvector computation are known to be efficiently reducible [10] to the
more general and prevalent finite sum optimization problem of minimizing a convex function f decom-
posed into the sum of m functions f1, ..., fm, i.e. minx∈Rn f(x) where f(x) = 1

m

∑
i∈[m] fi(x).

This optimization problem encapsulates a variety of learning tasks where we have data points
{(a1, b1), (a2, b2), · · · , (an, bn)} corresponding to feature vectors ai, labels bi, and we wish to find
the predictor x that minimizes the average loss of predicting bi from ai using x, denoted by fi(x).
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Given the centrality of this problem to machine learning and optimization, over the past few years
there have been extensive research efforts to design new provably efficient methods for solving
this problem [12, 9, 13, 6, 20]. Using a variety of sampling techniques, impressive running time
improvements have been achieved. The emphasis in this line of work has been on improving the
dependence on the number of gradient evaluations of the fi that need to be performed, i.e. improving
dependence on m, as well as improving the dependence on other problem parameters.

Much less studied is the question of what structural assumptions on fi allow even faster running
times to be achieved. A natural and fundamental question in this space, is when can we achieve
faster running times by computing the gradients of fi approximately, thereby decreasing iteration
costs. While there has been work on combining coordinate descent methods with these stochastic
methods [13], in the simple cases of regression and top eigenvector computation these methods do not
yield any improvement in iteration cost. More broadly we are unaware of previous work on linearly
convergent algorithms with faster running times for finite sum problems through this approach.

In this paper, we advance our understanding of the computational power of subsampling gradients of
the fi for the problems of top eigenvector computation and regression. In particular, we show that
under assumptions of numerical sparsity of the input matrix we can achieve provably faster algorithms
and new nearly linear time algorithms for a broad range of parameters. We achieve our result by
applying coordinate sampling techniques to Stochastic Variance Reduced Gradient Descent (SVRG)
[13, 12], a popular tool for finite sum optimization, along with linear algebraic data structures (in the
case of eigenvector computation) that we believe may be of independent interest.

The results in this paper constitute an important step towards resolving a key gap in our understanding
of optimal iterative methods for top eigenvector computation and regression. Ideally running times of
these problems would depend only on the size of the input, e.g. the number of non-zero entries in the
input data matrix, row norms, eigenvalues, etc. However, this is not the case for the current fastest
regression algorithms as these methods work by picking rows of the matrix non-uniformly yielding
expected iteration costs that depend on brittle weighted sparsity measures (which for simplicity are
typically instead stated in terms of the maximum sparsity among all rows, see Section 1.4.1). This
causes particularly unusual running times for related problems like nuclear norm estimation [17].

This paper takes an important step towards resolving this problem by providing running times for
top eigenvector computation and regression that depend only on the size of the input and natural
numerical quantities like eigenvalues, `1-norms, `2-norms, etc. While our running times do not
strictly dominate those based on the sparsity structure of the input (and it is unclear if such running
times are possible), they improve upon the previous work in many settings. Ultimately, we hope this
paper provides useful tools for even faster algorithms for solving large scale learning problems.

1.1 The Problems

Throughout this paper we let A ∈ Rn×d denote a data matrix with rows a1, ..., an ∈ Rd. We
let sr(A)

def
= ‖A‖2F /‖A‖22 denote the stable rank of A and we let nnz(A) denote the number of

non-zero entries in A. For symmetric M ∈ Rd×d we let λ1(M) ≥ λ2(M) ≥ ... ≥ λd(M)

denote its eigenvalues, ‖x‖2M = x>Mx and we let gap(M)
def
= (λ1(M) − λ2(M))/λ1(M)

denote its (relative) eigenvalue gap. For convenience we let gap
def
= gap(A>A), λ1

def
= λ1(A>A),

µ
def
= λmin

def
= λd(A

>A), sr
def
= sr(A), nnz(A)

def
= nnz, κ def

= ‖A‖2F /µ and κmax
def
= λ/µ. With this

notation, we consider the following two optimization problems.

Definition 1 (Top Eigenvector Problem) Find v∗ ∈ Rd such that

v∗ = argmax
x∈Rd,‖x‖2=1

x>A>Ax

We call v an ε-approximate solution to the problem if ‖v‖2 = 1 and v>A>Av ≥ (1− ε)λ1(A>A) .

Definition 2 (Regression Problem) Given b ∈ Rn find x∗ ∈ Rd such that

x∗ = argmin
x∈Rd

‖Ax− b‖22

Given initial x0 ∈ Rd, we call x an ε-approximate solution if ‖x− x∗‖A>A ≤ ε‖x0 − x∗‖A>A.
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Each of these are known to be reducible to the finite sum optimization problem. The regression
problem is equivalent to the finite sum problem with fi(x)

def
= (m/2)(a>i x − bi)

2 and the top
eigenvector problem is reducible with only polylogarithmic overhead to the finite sum problem with
fi(x)

def
= λ‖x− x0‖22 − (m/2)(a>i (x− x0))2 + b>i x for carefully chosen λ and x0 [10].

1.2 Our Results

In this paper, we provide improved iterative methods for top eigenvector computation and regression
that depend only on regularity parameters and not the specific sparsity structure of the input. Rather
than assuming uniform row sparsity as in previous work our running times depend on the numerical
sparsity of rows of A, i.e. si

def
= ‖ai‖21/‖ai‖22, which is at most the row sparsity, but may be smaller.

Note that our results, as stated, are worse as compared to the previous running times which depend on
the `0 sparsity in some parameter regimes. For simplicity, we are stating our results in terms of only
the numerical sparsity. However, when the number of zero entries in a row is small, we can always
choose that row completely and not do sampling on it. This would lead to our results always as good
as the previous results and stricly better in some parameter regimes.

1.2.1 Top Eigenvector Computation

For top eigenvector computation, we give an unaccelerated running time of Õ(nnz(A) +

1/(gap2)
∑
i(‖ai‖22/λ1)(

√
si +

√
sr(A))

√
si) and an accelerated running time of Õ(nnz(A) +

(nnz(A)
3
4 /
√

gap)(
∑
i(‖ai‖22/λ1)(

√
si +

√
sr(A))

√
si)

1
4 ) as compared to the previous unacceler-

ated running time of Õ(nnz(A) + maxi nnz(ai)sr(A)/gap2) and accelerated iterative methods of
Õ(nnz(A)3/4(maxi nnz(ai)(sr(A)/gap2))1/4) respectively.

In the simpler case of uniform row norms ‖ai‖22 = ‖a‖22 and uniform row sparsity si = s, our running
time (unaccelerated) becomes Õ(nnz(A) + (sr(A)/gap2)(s +

√
sr(A) · s)). To understand the

relative strength of our results, we give an example of one parameter regime where our running times
are strictly better than the previous running times. When the rows are numerically sparse i.e. s = O(1)

although the number of nnz(ai) = d, then our running time Õ(nnz(A) + (sr(A)/gap2)
√

sr(A))

gives significant improvement over the previous best running time of Õ(nnz(A) + d(sr(A)/gap2))
since sr(A) ≤ d.

1.2.2 Regression

For regression we give an unaccelerated running time of Õ(nnz(A) +
√
κ
∑
i

√
si‖ai‖22/µ) and an

accelerated running time of Õ(nnz(A)2/3κ1/6(
∑
i∈[n]

√
si‖ai‖22/µ)

1/3
). Our methods improve upon

the previous best unaccelerated iterative methods of Õ(nnz(A) + κmaxi nnz(ai)) and accelerated
iterative methods of Õ(nnz(A) + dmaxi nnz(ai) +

∑
i(‖ai‖2/

√
µ)
√
σi(A) maxi nnz(ai)) where

σi = ‖ai‖2(A>A)−1 .

In the simpler case of uniform row norms ‖ai‖22 = ‖a‖22 and uniform row sparsity si = s, our
(unaccelerated) running time becomes Õ(nnz(A) + κ3/2√si).

To understand the relative strength of our results, we give an example of one parameter regime
where our running times are strictly better than the previous running times. Consider the case where
κ = o(d2) and the rows are numerically sparse i.e. s = O(1) but maxi nnz(ai) = d, consider the
particular case of κ = d1.5, then our running time is Õ(nnz(A) + d2.25) whereas the SVRG running
time for regression will be Õ(nnz(A) + d2.5) and our running time is better in this case.

1.3 Overview of Our Approach

We achieve these results by carefully modifying known techniques for finite sum optimization
problem to our setting. The starting point for our algorithms is Stochastic Variance Reduced Gradient
Descent (SVRG) [12] a popular method for finite sum optimization. This method takes steps in the
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direction of negative gradient in expectation and its convergence depends on a measure of variance of
the steps.

We apply SVRG to our problems where we carefully subsample the entries of the rows of the data
matrix so that we can compute steps that are the negative gradient in expectation in time possibly
sublinear in the size of the row. There is an inherent issue in such a procedure, in that this can change
the shape of variance. Previous sampling methods for regression ensure that the variance can be
directly related to the function error, whereas here such sampling methods give `2 error, the bounding
of which in terms of function error can be expensive.

It is unclear how to completely avoid this issue and we leave this as future work. Instead, to mitigate
this issue we provide several techniques for subsampling that ensure we can obtain significant
decrease in this `2 error for small increases in the number of samples we take per row (See Section 3).
Here we crucially use that we have bounds on the numerical sparsity of rows of the data matrix and
prove that we can use this to quantify this decrease.

Formally, the sampling problem we have for each row is as follows. For each row ai at any point
we may receive some vector x and need to compute a random vector g with E[g] = aia

>
i x and with

E ‖g‖22 sufficiently bounded. Ideally, we would have that E ‖g‖22 ≤ α(a>i x) for some value of α, as
previous methods do. However, instead we settle for a bound of the form E ‖g‖22 ≤ α(ai

>x)+β‖x‖22.
Our sampling schemes for this problem works as follows: For the outer ai, we sample from the
coordinates with probability proportional to the coordinate’s absolute value, we take a few (more than
1) samples to control the variance (Lemma 4). For the approximation of ai>x, we always take the dot
product of x with large coordinates of ai and we sample from the rest with probability proportional
to the squared value of the coordinate of ai and take more than one sample to control the variance
(Lemma 5).

Carefully controlling the number of samples we take per row and picking the right distribution over
rows gives our bounds for regression. For eigenvector computation the same broad techniques work
but to keep the iteration costs down but a little more care needs to be taken due to the structure of
fi(x)

def
= λ‖x− x0‖22 − (m/2)(a>i (x− x0))2 + b>i x. Interestingly, for eigenvector computation the

penalty from `2 error is in some sense smaller due to the structure of the objective.

1.4 Previous Results

Here we briefly cover previous work on regression and eigenvector computation (Section 1.4.1),
sparse finite sum optimization (Section 1.4.2), and matrix entrywise sparsification (Section 1.4.3).

1.4.1 Regression and Eigenvector Algorithms

There is an extensive amount of work on regression, eigenvector computation, and finite sum
optimization with far too many results to state but we have tried to include the algorithms with the
best known running times. The results for top eigenvector computation are stated in Table 1 and the
results for regression are stated in Table 2. The algorithms work according to the weighted `0 sparsity
measure of all rows and do not take into account the numerical sparsity which is a natural parameter
to state the running times in and is strictly better than the `0 sparsity.

1.4.2 Sparsity Structure

There has been some prior work on attempting to improve for sparsity structure. Particularly relevant
is the work of [13] on combining coordinate descent and sampling schemes. This paper picks
unbiased estimates of the gradient at each step by first picking a function and then picking a random
coordinate whose variance decreases as time increases. Unfortunately, for regression and eigenvector
computation computing a partial derivative is as expensive as computing the gradient and hence, this
method does not give improved running times for regression and top eigenvector computation.

1.4.3 Entrywise Sparsification

Another natural approach to yielding the results of this paper would be to simply subsample the
entries of A beforehand and use this as a preconditioner to solve the problem. There have been
multiple works on such entrywise sparsification and in Table 3 we provide them. If we optimistically
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Table 1: Previous results for computing ε-approximate top eigenvector (Definition 1).
Algorithm Runtime

Runtime with uniform row norms and
sparsity

Power Method Õ
(

nnz
gap

)
Õ
(
nd
gap

)
Lanczos Method Õ

(
nnz√
gap

)
Õ
(

nd√
gap

)
Fast subspace embeddings +

Lanczos method [7]
Õ

(
nnz + d·sr

max {gap2.5,ε,ε2.5}

)
Õ

(
nd + d·sr

max {gap2.5,ε,ε2.5}

)
SVRG (assuming bounded row

norms and warm start) [21]
Õ

(
nnz + d·sr2

gap2

)
Õ

(
nd + d·sr2

gap2

)
Shift & Invert Power method

with SVRG [10]
Õ

(
nnz + d·sr

gap2

)
Õ

(
nd + d·sr

gap2

)
Shift & Invert Power method
with Accelerated SVRG [10]

Õ

(
nnz +

nnz3/4(d·sr)1/4√
gap

)
Õ

(
nd +

(nd)3/4(d·sr)1/4√
gap

)
This paper Õ(nnz + 1

gap2λ1

∑
i ‖ai‖

2
2

(√
si +

√
sr
)√

si) Õ(nd + sr
gap2

(
√
s +
√
sr)
√
s)

This paper Õ(nnz+ nnz
3
4√

gap
(
∑
i
‖ai‖

2
2

λ1
(
√
si +

√
sr)
√
si))

1
4 ) Õ(nd +

(nd)
3
4√

gap
sr

1
4 (s +

√
sr · s)

1
4
)

Table 2: Previous results for solving approximate regression (Definition 2).

Algorithm Runtime
Runtime with

uniform row norms
and sparsity

Gradient Descent Õ(nnz · κmax) Õ(ndκmax)

Conjugate Gradient Descent Õ(nnz
√
κmax) Õ(nd

√
κmax)

SVRG [12] Õ(nnz + κd) Õ(nd+ κd)

Accelerated SVRG [4, 9, 15] Õ(nnz +
√
nκd) Õ(nd+

√
nκd)

Accelerated SVRG with
leverage score sampling [3]

Õ(nnz + dmaxi nnz(ai) +
∑
i
‖ai‖2√

µ
·

√
σi(A)maxi nnz(ai))

Õ(nd+d2+
√
κ ·d3/2)

This paper Õ(nnz +
√
κ
∑
i

‖ai‖22
µ

√
si) Õ(nd+

√
κ3
√
s)

This paper Õ(nnz
2/3κ

1/6(
∑
i∈[n]

‖ai‖22
µ

√
si)

1/3

) Õ((nd)
2/3κ

1/2s
1/6)

compare them to our approach, by supposing that their sparsity bounds are uniform (i.e. every row
has the same sparsity) and bound its quality as a preconditioner the best of these would give bounds
of Õ(nnz(A) + λmax‖A‖4F /λ3

min) [14] and Õ(nnz(A) +
√
λmax‖A‖2F

∑
i

√
si‖ai‖2/

√
nλ2

min)

[5] and Õ(nnz(A) + ‖A‖2F
∑
i si‖ai‖22λmax/nλ

3
min) [1] for regression. Bound obtained by [14]

depends on the the condition number square and does not depend on the numerical sparsity struc-
ture of the matrix. Bound obtained by [5] is worse as compared to our bound when compared
with matrices having equal row norms and uniform sparsity. Our running time for regression is
Õ(nnz(A)+

√
κ
∑
i(‖ai‖22/µ)

√
si). Our results are not always comparable to that by [1]. Assuming

uniform sparsity and row norms, we get that Our runtime/Runtime by [1] = (λminn)/(
√
sλmax

√
κ).

Depending on the values of the particular parameters, the ratio can be both greater or less than 1 and
hence, the results are incomparable. Our results are always better than that obtained by [14].

2 Notation

Vector Properties: For a ∈ Rd, let s(a) = ‖a‖21/‖a‖22 denote the numerical sparsity. For c ∈
{1, 2, . . . , d}, let (Πc(a))i = ai if i ∈ S where S is a set of the c largest coordinates of a in absolute
value and 0 otherwise and Π̄c(a) = a−Πc(a). Let Ic(a) denote the set of indices with the c largest
coordinates of a in absolute value and Īc(a) = [d]\Ic(a) i.e. everything except the top c co-ordinates.
Let êj denote the ith basis vector i.e. (êj)i = 1 if i = j and 0 otherwise.

Other: Let [d] denote the set {1, 2, . . . , d}. We use Õ notation to hide polylogarithmic factors in the
input parameters and error rates. Refer to Section 1.1 for other definitions.
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3 Sampling techniques

In this section we provide our key tools for sampling from a matrix for both regression and eigenvector
computation. First, we provide a technical lemma on numerical sparsity that we will use throughout
our analysis. Then, we provide and analyze the sampling distribution we use to sample from our
matrix for SVRG. We use the same distribution for both the applications, regression and eigenvector
computation and provide some of the analysis of properties of this distribution. All proofs in this
section are differed to Appendix B.1.

We begin with a lemma at the core of the proofs of our sampling techniques. The lemma essentially
states that for a numerically sparse vector, most of the `2-mass of the vector is concentrated in its
top few coordinates. Consequently, if a vector is numerically sparse then we can remove a few big
coordinates from it and reduce its `2 norm considerably. Later, in our sampling schemes, we will use
this lemma to bound the variance of sampling a vector.

Lemma 3 (Numerical Sparsity) For a ∈ Rd and c ∈ [d], we have ‖Π̄c(a)‖22 ≤ s(a)‖a‖22/c.

The following lemmas state the sampling distribution that we use for sampling the gradient function
in SVRG. Basically, since we want to approximate the gradient of f(x) = 1

2xA
>Ax − b>x i.e.

A>Ax− b, we would like to sample A>Ax =
∑
i∈[n] aia

>
i x.

We show how to perform this sampling and analyze it in several steps. In Lemma 4 we
show how to sample from a and then in Lemma 5 we show how to sample from a>x. In
Lemma 6 we put these together to sample from aa>x and in Lemma 7 we put it all to-
gether to sample from A>A. The distributions and our guarantees on them are stated below.

Algorithm 1: Samplevec(a, c)

1: for t = 1 . . . c (i.i.d. trials) do
2: randomly sample indices jt with
3: Pr(jt = j) = pj =

|aj |
‖a‖1 ∀j ∈ [d]

4: end for
5: Output 1

c

∑c
t=1

ajt
pjt
êjt

Algorithm 2: Sampledotproduct(a, x, c)

1: for t = 1 . . . c (i.i.d. trials) do
2: randomly sample indices jt with

3: Pr(jt = j) = pj =
a2j

‖Π̄c(a)‖22
∀j ∈ Īc(a)

4: end for
5: Output Πc(a)>x+ 1

c

∑c
t=1

ajtxjt
pjt

Algorithm 3: Samplerankonemat(a, x, c)

1: (â)c = Samplevec(a, c)

2: (â>x)c = Sampledotproduct(a, x, c)

3: Output (â)c(â>x)c

Algorithm 4: Samplemat(A, x, k)

1: ci =
√
si · k ∀i ∈ [n]

2: M =
∑
i ‖ai‖22(1 + si

ci
)

3: Select a row index i with probability
pi =

‖ai‖22
M (1 + si

ci
)

4: (âia>i x)ci = Samplerankonemat(ai, x, ci)

5: Output 1
pi

(âia>i x)ci

Lemma 4 (Stochastic Approximation of a) Let a ∈ Rd and c ∈ N and let our estimator (â)c =
Samplevec(a, x) (Algorithm 1) Then,

E[(â)c] = a and E
[
‖(â)c‖22

]
≤ ‖a‖22

(
1 +

s(a)

c

)

Lemma 5 (Stochastic Approximation of a>x) Let a, x ∈ Rd and c ∈ [d], and let our estimator be
defined as (â>x)c = Sampledotproduct(a, x, c) (Algorithm 2) Then,

E[(â>x)c] = a>x and E
[
(â>x)2

c

]
≤ (a>x)2 +

1

c
‖Π̄c(a)‖22‖x‖22
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Lemma 6 (Stochastic Approximation of aa>x) Let a, x ∈ Rd and c ∈ [d], and the estimator be
defined as (âa>x)c = Samplerankonemat(a, x, c) (Algorithm 3) Then,

E[(âa>x)c] = aa>x and E
[
‖(âa>x)c‖22

]
≤ ‖a‖22

(
1 +

s(a)

c

)(
(a>x)2 +

s(a)

c2
‖a‖22‖x‖22

)
Lemma 7 (Stochastic Approximation of A>Ax ) Let A ∈ Rn×d with rows a1, a2, . . . , an and

x ∈ Rd and let (Â>Ax)k = Samplemat(A, x, k) (Algorithm 4) where k is some parameter. Then,

E
[
(Â>Ax)k

]
= A>Ax and E

[∥∥∥∥(Â>Ax)k

∥∥∥∥2

2

]
≤M

(
‖Ax‖22 +

1

k2
‖A‖2F ‖x‖22

)
.

4 Applications

Using the framework of SVRG defined in Theorem 14 and the sampling techniques presented in
Section 3, we now state how do we solve our problems of regression and top eigenvector computation.

4.1 Eigenvector computation

The classic method to estimate the top eigenvector of a matrix is to apply power method which
involves starting with an initial vector x0 and repeatedly multiplying the vector by A>A which
eventually leads to convergence of the vector to the top eigenvector of the matrix A>A if top
eigenvalue of the matrix is well separated from the other eigenvalues i.e. gap is large enough. The
number of iterations required for convergence is O(log(dε )/gap). However, this method can be very
slow when the gap is small. If the gap is small, one thing that can be done to improve convergence rate
is running the power method on a matrix B−1 where B = λI −A>A. B−1 has the same largest
eigenvector as A>A and the eigenvalue gap is ( 1

λ−λ1
− 1

λ−λ2
)/ 1
λ−λ1

= 1
2 if λ ≈ (1 + gap)λ1 and

thus we get a constant eigenvalue gap. Hence, if we have a rough estimate of the largest eigenvalue
of the matrix, we can get the gap parameter as roughly constant. Section 6 of [10] shows how we
can get such an estimate based on the gap free eigenvalue estimation algorithm by [16] in running
time dependent on the linear system solver of B ignoring some additional polylogarithmic factors.
However, doing power iteration on B−1 requires solving linear systems on B whose condition
number now depends on 1/gap and thus, solving linear system on B would become expensive. [10]
showed how we can solve the linear systems in B faster by using SVRG [12] and achieved a better
overall running time for top eigenvector computation. The formal theorem statement is differed to
Theorem 17 in the appendix.

We simply use this framework for solving the eigenvector problem using SVRG and on the top of that,
give different sampling scheme for SVRG for B−1 which reduces the runtime for numerically sparse
matrices. Basically, we use the sampling scheme presented in Lemma 7. The following lemma states
the variance bound that we get for the gradient updates for SVRG for the top eigenvector computation
problem. This will be used to obtain a bound on the solving of linear systems in B = λI −A>A
which will be ultimately used in solving the approximate topeigen vector problem.

Lemma 8 (Variance bound for eigenvector computation) Let ∇g(x) = λx − (Â>Ax)k where

(Â>Ax)k is the estimator of A>Ax defined in Lemma 7, and k =
√

sr(A), then we get

E[∇g(x)] = (λI −A>A)x and E
[
‖∇g(x)−∇g(x∗)‖22

]
≤ (f(x)− f(x∗))8M/gap

with average time taken in calculating ∇g(x), T =
∑
i ‖ai‖22

(
si +

√
sisr(A)

)
/M where M =∑

i ‖ai‖22
(

1 +
√

si
sr(A)

)
and f(x) = 1

2x
>Bx− b>x

Now, using the variance of the gradient estimators and per iteration running time T obtained in
Lemma 8 along with the framework of SVRG [12] (defined in Theorem 14), we can get constant
multiplicative decrease in the error in solving linear systems in B = λI−A>A in total running time
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O(nnz(A)+ 2
gap2λ1(A>A)

∑
i ‖ai‖22(

√
si+

√
sr(A))

√
si) assuming we have a crude approximation

to the top eigenvector and eigenvalue which we have already discussed we can get. The formal
theorem statement (Theorem 18) and proof are differed to the appendix. Now, using the linear system
solver descibed above along with the shift and invert algorithmic framework, we get the following
running time for top eigenvector computation problem. The proof appears in Appendix B.2.

Theorem 9 (Numerically Sparse Top Eigenvector Computation Runtime) Linear system solver
from Theorem 18 combined with the shift and invert framework from [10] stated in Theorem 17 gives
an algorithm which computes ε-approximate top eigenvector (Definition 1) in total running time
O
((

nnz(A) + 1
gap2λ1

∑
i ‖ai‖22

(√
si +

√
sr(A)

)√
si

)
·
(

log2
(

d
gap

)
+ log

(
1
ε

)))
Similarly, using the acceleration framework of [9] mentioned in Theorem 15 in the appendix along
with the linear system solver runtime, we get the following accelerated running time for top eigenvec-
tor computation and the proof appears in Appendix B.2.

Theorem 10 (Numerically Sparse Accelerated Top Eigenvector Computation Runtime)
Linear system solver from Theorem 18 combined with acceleration framework from [9] men-
tioned in Theorem 15 and shift and invert framework from [10] stated in Theorem 17 gives an
algorithm which computes ε-approximate top eigenvector (Definition 1) in total running time

Õ

(
nnz(A) + nnz(A)3/4√

gap

(∑
i
‖ai‖22
λ1

(√
si +

√
sr(A)

)√
si)
)1/4

)
where Õ hides a factor of(

log2
(

d
gap

)
+ log

(
1
ε

))
log
(

d
gap

)
.

4.2 Linear Regression

In linear regression, we want to minimize 1
2‖Ax − b‖22 which is equivalent to minimizing

1
2x
>A>Ax − x>A>b = 1

2

∑
i x
>aiai

>x − x>A>b and hence, we can apply the framework
of SVRG [12] (stated in Theorem 14) for solving it. However, instead of selecting the complete
row for calculating the gradient, we only select a few entries from the row to achieve lower cost
per iteration. In particular, we use the distribution defined in Lemma 7. Note that the sampling
probabilities depend on λd and we need to know a constant factor approximation of λd for the scheme
to work. For most of the ridge regression problems, we know a lower bound on the value of λd and we
can get an approximation by doing a binary search over all the values and paying an extra logarithmic
factor. The following lemma states the sampling distribution which we use for approximating the true
gradient and the corresponding variance that we obtain. The proof of this appears in Appendix B.2.

Lemma 11 (Variance Bound for Regression) Let ∇g(x) = (Â>Ax)k where (Â>Ax)k is the
estimator for A>Ax defined in Lemma 7 and k =

√
κ, assuming κ ≤ d2 we get

E[∇g(x)] = A>Ax and E
[
‖∇g(x)−∇g(x∗)‖22

]
≤M(f(x)− f(x∗))

with average time taken in calculating ∇g(x), T =
√
κ
M

∑
i∈[n] ‖ai‖22

√
si where M =∑

i ‖ai‖22
(
1 +

√
si
κ

)
where f(x) = 1

2‖Ax− b‖
2
2

Using the variance bound obtained in Lemma 11 and the framework of SVRG stated in Theorem
14 for solving approximate linear systems, we show how we can obtain an algorithm for solving
approximate regression in time which is faster in certain regimes when the corresponding matrix is
numerically sparse. The proof of this appears in Appendix B.2.

Theorem 12 (Numerically Sparse Regression Runtime) For solving ε-approximate regression
(Definition 2), if κ ≤ d2, SVRG framework from Theorem 14 and the variance bound from Lemma 11
gives an algorithm with running time O

((
nnz(A) +

√
κ
∑
i∈[n]

‖ai‖22
µ

√
si

)
log
(

1
ε

))
.

Combined with the additional acceleration framework mentione in Theorem 15, we can get an
accelerated algorithm for solving regression. The proof of this appears in Appendix B.2.2.

Theorem 13 (Numerically Sparse Accelerated Regression Runtime) For solving ε-approximate
regression (Definition 2) if κ ≤ d2, SVRG framework from Theorem 14, acceleration framework

8



from Theorem 15 and the variance bound from Lemma 11 gives an algorithm with running time

O

(
nnz(A)2/3κ1/6

(∑
i∈[n]

‖ai‖22
µ

√
si

)1/3

log(κ) log
(

1
ε

))
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