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Abstract

Several applications of Reinforcement Learning suffer from instability due to high
variance. This is especially prevalent in high dimensional domains. Regularization
is a commonly used technique in machine learning to reduce variance, at the cost
of introducing some bias. Most existing regularization techniques focus on spatial
(perceptual) regularization. Yet in reinforcement learning, due to the nature of the
Bellman equation, there is an opportunity to also exploit temporal regularization
based on smoothness in value estimates over trajectories. This paper explores a
class of methods for temporal regularization. We formally characterize the bias
induced by this technique using Markov chain concepts. We illustrate the various
characteristics of temporal regularization via a sequence of simple discrete and
continuous MDPs, and show that the technique provides improvement even in
high-dimensional Atari games.

1 Introduction

There has been much progress in Reinforcement Learning (RL) techniques, with some impressive
success with games [30], and several interesting applications on the horizon [17, 29, 26, 9]. However
RL methods are too often hampered by high variance, whether due to randomness in data collection,
effects of initial conditions, complexity of learner function class, hyper-parameter configuration, or
sparsity of the reward signal [15]. Regularization is a commonly used technique in machine learning
to reduce variance, at the cost of introducing some (smaller) bias. Regularization typically takes the
form of smoothing over the observation space to reduce the complexity of the learner’s hypothesis
class.

In the RL setting, we have an interesting opportunity to consider an alternative form of regularization,
namely temporal regularization. Effectively, temporal regularization considers smoothing over the
trajectory, whereby the estimate of the value function at one state is assumed to be related to the value
function at the state(s) that typically occur before it in the trajectory. This structure arises naturally
out of the fact that the value at each state is estimated using the Bellman equation. The standard
Bellman equation clearly defines the dependency between value estimates. In temporal regularization,
we amplify this dependency by making each state depend more strongly on estimates of previous
states as opposed to multi-step methods that considers future states.

This paper proposes a class of temporally regularized value function estimates. We discuss properties
of these estimates, based on notions from Markov chains, under the policy evaluation setting, and
extend the notion to the control case. Our experiments show that temporal regularization effectively
reduces variance and estimation error in discrete and continuous MDPs. The experiments also
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highlight that regularizing in the time domain rather than in the spatial domain allows more robustness
to cases where state features are mispecified or noisy, as is the case in some Atari games.

2 Related work

Regularization in RL has been considered via several different perspectives. One line of investigation
focuses on regularizing the features learned on the state space [11, 25, 24, 10, 21, 14]. In particular
backward bootstrapping method’s can be seen as regularizing in feature space based on temporal
proximity [34, 20, 1]. These approaches assume that nearby states in the state space have similar
value. Other works focus on regularizing the changes in policy directly. Those approaches are often
based on entropy methods [23, 28, 2]. Explicit regularization in the temporal space has received
much less attention. Temporal regularization in some sense may be seen as a “backward” multi-step
method [32]. The closest work to ours is possibly [36], where they define natural value approximator
by projecting the previous states estimates by adjusting for the reward and γ. Their formulation, while
sharing similarity in motivation, leads to different theory and algorithm. Convergence properties and
bias induced by this class of methods were also not analyzed in Xu et al. [36].

3 Technical Background

3.1 Markov chains

We begin by introducing discrete Markov chains concepts that will be used to study the properties
of temporally regularized MDPs. A discrete-time Markov chain [19] is defined by a discrete set of
states S and a transition function P : S × S 7→ [0, 1] which can also be written in matrix form as
Pij = P(i|j). Throughout the paper, we make the following mild assumption on the Markov chain:
Assumption 1. The Markov chain P is ergodic: P has a unique stationary distribution µ.

In Markov chains theory, one of the main challenge is to study the mixing time of the chain [19].
Several results have been obtained when the chain is called reversible, that is when it satisfies detailed
balance.
Definition 1 (Detailed balance [16]). Let P be an irreducible Markov chain with invariant stationary
distribution µ1. A chain is said to satisfy detailed balance if and only if

µiPij = µjPji ∀i, j ∈ S. (1)

Intuitively this means that if we start the chain in a stationary distribution, the amount of probability
that flows from i to j is equal to the one from j to i. In other words, the system must be at equilibrium.
An intuitive example of a physical system not satisfying detailed balance is a snow flake in a coffee.
Indeed, many chains do not satisfy this detailed balance property. In this case it is possible to use a
different, but related, chain called the reversal Markov chain to infer mixing time bounds [7].

Definition 2 (Reversal Markov chain [16]). Let P̃ the reversal Markov chain of P be defined as:

P̃ij =
µjPji
µi

∀i, j ∈ S. (2)

If P is irreducible with invariant distribution µ, then P̃ is also irreducible with invariant distribution
µ.

The reversal Markov chain P̃ can be interpreted as the Markov chain P with time running backwards.
If the chain is reversible, then P = P̃ .

3.2 Markov Decision Process

A Markov Decision Process (MDP), as defined in [27], consists of a discrete set of states S, a
transition function P : S ×A× S 7→ [0, 1], and a reward function r : S ×A 7→ R. On each round t,
the learner observes current state st ∈ S and selects action at ∈ A, after which it receives reward
rt = r(st, at) and moves to new state st+1 ∼ P(·|st, at). We define a stationary policy π as a
probability distribution over actions conditioned on states π : S ×A 7→ [0, 1].

1µi defines the ith element of µ
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3.2.1 Discounted Markov Decision Process

When performing policy evaluation in the discounted case, the goal is to estimate the discounted
expected return of policy π at a state s ∈ S , vπ(s) = Eπ[

∑∞
t=0 γ

trt+1|s0 = s], with discount factor
γ ∈ [0, 1). This vπ can be obtained as the fixed point of the Bellman operator T π such that:

T πvπ = rπ + γPπvπ, (3)

where Pπ denotes the |S|× |S| transition matrix under policy π, vπ is the state values column-vector,
and r is the reward column-vector. The matrix Pπ also defines a Markov chain.

In the control case, the goal is to find the optimal policy π∗ that maximizes the discounted expected
return. Under the optimal policy, the optimal value function v∗ is the fixed point of the non-linear
optimal Bellman operator:

T ∗v∗ = max
a∈A

[r(a) + γP (a)v∗]. (4)

4 Temporal regularization

Regularization in the feature/state space, or spatial regularization as we call it, exploits the regularities
that exist in the observation (or state). In contrast, temporal regularization considers the temporal
structure of the value estimates through a trajectory. Practically this is done by smoothing the value
estimate of a state using estimates of states that occurred earlier in the trajectory. In this section
we first introduce the concept of temporal regularization and discuss its properties in the policy
evaluation setting. We then show how this concept can be extended to exploit information from the
entire trajectory by casting temporal regularization as a time series prediction problem.

Let us focus on the simplest case where the value estimate at the current state is regularized using
only the value estimate at the previous state in the trajectory, yielding updates of the form:

vβ(st) = E
st+1,st−1∼π

[r(st) + γ((1− β)vβ(st+1) + βvβ(st−1))]

= r(st) + γ(1− β)
∑

st+1∈S
p(st+1|st)vβ(st+1) + γβ

∑
st−1∈S

p(st|st−1)p(st−1)
p(st)

vβ(st−1),

(5)

for a parameter β ∈ [0, 1] and p(st+1|st) the transition probability induced by the policy π. It can
be rewritten in matrix form as vβ = r + γ(((1− β)Pπ + βP̃π)vβ), where P̃π corresponds to the
reversal Markov chain of the MDP. We define a temporally regularized Bellman operator as:

T πβ vβ = r + γ((1− β)Pπvβ + βP̃πvβ). (6)

To alleviate the notation, we denote Pπ as P and P̃π as P̃ .
Remark. For β = 0, Eq. 6 corresponds to the original Bellman operator.

We can prove that this operator has the following property.
Theorem 1. The operator T πβ has a unique fixed point vπβ and T πβ is a contraction mapping.

Proof. We first prove that T πβ is a contraction mapping in L∞ norm. We have that∥∥∥T πβ u− T πβ v∥∥∥∞ =
∥∥∥r + γ((1− β)Pu+ βP̃u)− (r + γ((1− β)Pv + βP̃v))

∥∥∥
∞

= γ
∥∥∥((1− β)P + βP̃ )(u− v)

∥∥∥
∞

≤ γ‖u− v‖∞ ,

(7)

where the last inequality uses the fact that the convex combination of two row stochastic matrices is
also row stochastic (the proof can be found in the appendix). Then using Banach fixed point theorem,
we obtain that vπβ is a unique fixed point.

Furthermore the new induced Markov chain (1− β)P + βP̃ has the same stationary distribution as
the original P (the proof can be found in the appendix).
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Lemma 1. P and (1− β)P + βP̃ have the same stationary distribution µ ∀β ∈ [0, 1].

In the policy evaluation setting, the bias between the original value function vπ and the regularized
one vπβ can be characterized as a function of the difference between P and its Markov reversal P̃ ,
weighted by β and the reward distribution.

Proposition 1. Let vπ =
∑∞
i=0 γ

iP ir and vπβ =
∑∞
i=0 γ

i((1− β)P + βP̃ )ir. We have that

∥∥∥vπ − vπβ∥∥∥∞ =

∥∥∥∥∥∥
∞∑
i=0

γi(P i − ((1− β)P + βP̃ )i)r

∥∥∥∥∥∥
∞

≤
∞∑
i=0

γi
∥∥∥(P i − ((1− β)P + βP̃ )i)r

∥∥∥
∞
.

(8)

This quantity is naturally bounded for γ < 1.

Remark. Let P∞ denote a matrix where columns consist of the stationary distribution µ. By
the property of reversal Markov chains and lemma 1, we have that limi→∞ ‖P ir − P∞r‖ → 0

and limi→∞ ‖((1 − β)P + βP̃ )ir − P∞r‖ → 0, such that the Marvov chain P and its reversal
(1−β)P +βP̃ converge to the same value. Therefore, the norm ‖(P i− ((1−β)P +βP̃ )i)r‖p also
converges to 0 in the limit.

Remark. It can be interesting to note that if the chain is reversible, meaning that P = P̃ , then the
fixed point of both operators is the same, that is vπ = vπβ .

Discounted average reward case: The temporally regularized MDP has the same discounted
average reward as the original one as it is possible to define the discounted average reward [35] as
a function of the stationary distribution π, the reward vector and γ . This leads to the following
property (the proof can be found in the appendix).

Proposition 2. For a reward vector r, the MDPs defined by the the transition matrices P and
(1− β)P + βP̃ have the same average reward ρ.

Intuitively, this means that temporal regularization only reweighs the reward on each state based on
the Markov reversal, while preserving the average reward.

Temporal Regularization as a time series prediction problem: It is possible to cast this problem
of temporal regularization as a time series prediction problem, and use richer models of temporal
dependencies, such as exponential smoothing [12], ARMA model [5], etc. We can write the update
in a general form using n different regularizers (ṽ0, ṽ1...ṽn−1):

v(st) = r(s) + γ

n−1∑
i=0

[β(i)ṽi(st+1)], (9)

where ṽ0(st+1) = v(st+1) and
∑n−1
i=0 β(i) = 1. For example, using exponential smoothing where

ṽ(st+1) = (1− λ)v(st−1) + (1− λ)λv(st−2)..., the update can be written in operator form as:

T πβ v = r + γ

(
(1− β)Pv + β (1− λ)

∞∑
i=1

λi−1P̃ iv

)
, (10)

and a similar argument as Theorem 1 can be used to show the contraction property. The bias of
exponential smoothing in policy evaluation can be characterized as:

∥∥∥vπ − vπβ∥∥∥∞ ≤
∞∑
i=0

γi

∥∥∥∥∥∥(P i − ((1− β)P + β(1− λ)
∞∑
j=1

λj−1P̃ j)i)r

∥∥∥∥∥∥
∞

. (11)

Using more powerful regularizers could be beneficial, for example to reduce variance by smoothing
over more values (exponential smoothing) or to model the trend of the value function through the
trajectory using trend adjusted model [13]. An example of a temporal policy evaluation with temporal
regularization using exponential smoothing is provided in Algorithm 1.
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Algorithm 1 Policy evaluation with exponential smoothing

1: Input: π, α, γ, β, λ
2: p = v(s)

3: for all steps do
4: Choose a ∼ π(s)
5: Take action a, observe reward r(s) and next state s′

6: v(s) = v(s) + α(r(s) + γ((1− β)v(s′) + βp))

7: p = (1− λ)v(s) + λp

8: end for

Control case: Temporal regularization can be extended to MDPs with actions by modifying the
target of the value function (or the Q values) using temporal regularization. Experiments (Sec. 5.6)
present an example of how temporal regularization can be applied within an actor-critic framework.
The theoretical analysis of the control case is outside the scope of this paper.

Temporal difference with function approximation: It is also possible to extend temporal regu-
larization using function approximation such as semi-gradient TD [33]. Assuming a function vβθ
parameterized by θ, we can consider r(s) + γ((1− β)vβθ (st+1) + βvβθ (st−1))− v

β
θ (st) as the target

and differentiate with respect to vβθ (st). An example of a temporally regularized semi-gradient TD
algorithm can be found in the appendix.

5 Experiment

We now presents empirical results illustrating potential advantages of temporal regularization, and
characterizing its bias and variance effects on value estimation and control.

5.1 Mixing time

This first experiment showcases that the underlying Markov chain of a MDP can have a smaller
mixing time when temporally regularized. The mixing time can be seen as the number of time
steps required for the Markov chain to get close enough to its stationary distribution. Therefore,
the mixing time also determines the rate at which policy evaluation will converge to the optimal
value function [3]. We consider a synthetic MDP with 10 states where transition probabilities are
sampled from the uniform distribution. Let P∞ denote a matrix where columns consists of the
stationary distribution µ. To compare the mixing time, we evaluate the error corresponding to the
distance of P i and

(
(1 − β)P + βP̃

)i
to the convergence point P∞ after i iterations. Figure 1

displays the error curve when varying the regularization parameter β. We observe a U-shaped error
curve, that intermediate values of β in this example yields faster mixing time. One explanation is
that transition matrices with extreme probabilities (low or high) yield poorly conditioned transition
matrices. Regularizing with the reversal Markov chain often leads to a better conditioned matrix at
the cost of injecting bias.

5.2 Bias

It is well known that reducing variance comes at the expense of inducing (smaller) bias. This has
been characterized previously (Sec. 4) in terms of the difference between the original Markov chain
and the reversal weighted by the reward. In this experiment, we attempt to give an intuitive idea
of what this means. More specifically, we would expect the bias to be small if values along the
trajectories have similar values. To this end, we consider a synthetic MDP with 10 states where
both transition functions and rewards are sampled randomly from a uniform distribution. In order to
create temporal dependencies in the trajectory, we smooth the rewards of N states that are temporally
close (in terms of trajectory) using the following formula: r(st) =

r(st)+r(st+1)
2 . Figure 2 shows the

difference between the regularized and un-regularized MDPs as N changes, for different values of
regularization parameter β. We observe that increasing N , meaning more states get rewards close
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Figure 3: Synthetic MDP where state S1 has
high variance.

Figure 4: Left plot shows absolute difference
between original (vπ(S1)) and regularized
(vπβ (S1)) state value estimates to the optimal
value v∗(S1). Right plot shows the variance
of the estimates v.

to one another, results into less bias. This is due to rewards putting emphasis on states where the
original and reversal Markov chain are similar.

5.3 Variance

The primary motivation of this work is to reduce variance, therefore we now consider an experiment
targeting this aspect. Figure 3 shows an example of a synthetic, 3-state MDP, where the variance of
S1 is (relatively) high. We consider an agent that is evolving in this world, changing states following
the stochastic policy indicated. We are interested in the error when estimating the optimal state value
of S1, v∗(S1), with and without temporal regularization, denoted vπβ (S1), vπ(S1), respectively.

Figure 4 shows these errors at each iteration, averaged over 100 runs. We observe that temporal
regularization indeed reduces the variance and thus helps the learning process by making the value
function easier to learn.

5.4 Propagation of the information

We now illustrate with a simple experiment how temporal regularization allows the information to
spread faster among the different states of the MDP. For this purpose, we consider a simple MDP,
where an agent walks randomly in two rooms (18 states) using four actions (up, down, left, right),
and a discount factor γ = 0.9. The reward is rt = 1 everywhere and passing the door between rooms
(shown in red on Figure 5) only happens 50% of the time (on attempt). The episode starts at the
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Figure 5: Proximity of the estimated state value to the optimal value after N trajectories. Top row is
the original room environment and bottom row is the regularized one (β = 0.5). Darker is better.

top left and terminates when the agent reaches the bottom right corner. The sole goal is to learn the
optimal value function by walking along this MDP (this is not a race toward the end).

Figure 5 shows the proximity of the estimated state value to the optimal value with and without
temporal regularization. The darker the state, the closer it is to its optimal value. The heatmap
scale has been adjusted at each trajectory to observe the difference between both methods. We
first notice that the overall propagation of the information in the regularized MDP is faster than
in the original one. We also observe that, when first entering the second room, bootstrapping on
values coming from the first room allows the agent to learn the optimal value faster. This suggest
that temporal regularization could help agents explore faster by using their prior from the previous
visited state for learning the corresponding optimal value faster. It is also possible to consider more
complex and powerful regularizers. Let us study a different time series prediction model, namely
exponential averaging, as defined in (10). The complexity of such models is usually articulated by
hyper-parameters, allowing complex models to improve performance by better adapting to problems.
We illustrate this by comparing the performance of regularization using the previous state and an
exponential averaging of all previous states. Fig. 6 shows the average error on the value estimate using
past state smoothing, exponential smoothing, and without smoothing. In this setting, exponential
smoothing transfers information faster, thus enabling faster convergence to the true value.
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Figure 6: Benefits of complex regularizers on the room domain.

5.5 Noisy state representation

The next experiment illustrates a major strength of temporal regularization, that is its robustness to
noise in the state representation. This situation can naturally arise when the state sensors are noisy or
insufficient to avoid aliasing. For this task, we consider the synthetic, one dimensional, continuous
setting. A learner evolving in this environment walks randomly along this line with a discount factor
γ = 0.95. Let xt ∈ [0, 1] denote the position of the agent along the line at time t. The next position
xt+1 = xt + at, where action at ∼ N (0, 0.05). The state of the agent corresponds to the position
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Figure 8: Impact of complex regularizer pa-
rameterization (λ) on the noisy walk using
exponential smoothing.

perturbed by a zero-centered Gaussian noise εt, such that st = xt + εt, where εt ∼ N (0, σ2) are
i.i.d. When the agent moves to a new position xt+1, it receives a reward rt = xt+1. The episode
ends after 1000 steps. In this experiment we model the value function using a linear model with a
single parameter θ. We are interested in the error when estimating the optimal parameter function
θ∗ with and without temporal regularization, that is θπβ and θπ, respectively. In this case we use
the TD version of temporal regularization presented at the end of Sec. 4. Figure 7 shows these
errors, averaged over 1000 repetitions, for different values of noise variance σ2. We observe that
as the noise variance increases, the un-regularized estimate becomes less accurate, while temporal
regularization is more robust. Using more complex regularizer can improve performance as shown
in the previous section but this potential gain comes at the price of a potential loss in case of model
misfit. Fig. 8 shows the absolute distance from the regularized state estimate (using exponential
smoothing) to the optimal value while varying λ (higher λ = more smoothing). Increasing smoothing
improves performance up to some point, but when λ is not well fit the bias becomes too strong and
performance declines. This is a classic bias-variance tradeoff. This experiment highlights a case
where temporal regularization is effective even in the absence of smoothness in the state space (which
other regularization methods would target). This is further highlighted in the next experiments.

5.6 Deep reinforcement learning

To showcase the potential of temporal regularization in high dimensional settings, we adapt an
actor-critic based method (PPO [28]) using temporal regularization. More specifically, we incorporate
temporal regularization as exponential smoothing in the target of the critic. PPO uses the general
advantage estimator Ât = δt + γλδt+1 + ... + (γλ)T−t+1δT where δt = rt + γv(st+1) − v(st).
We regularize δt such that δβt = rt + γ((1 − β)v(st+1) + βṽ(st−1))) − v(st) using exponential
smoothing ṽ(st) = (1− λ)v(st) + λṽ(st−1) as described in Eq. (10). ṽ is an exponentially decaying
sum over all t previous state values encountered in the trajectory. We evaluate the performance in the
Arcade Learning Environment [4], where we consider the following performance measure:

regularized− baseline
baseline− random

. (12)

The hyper-parameters for the temporal regularization are β = λ = 0.2 and a decay of 1e−5. Those
are selected on 7 games and 3 training seeds. All other hyper-parameters correspond to the one used
in the PPO paper. Our implementation2 is based on the publicly available OpenAI codebase [8]. The
previous four frames are considered as the state representation [22]. For each game, 10 independent
runs (10 random seeds) are performed.

The results reported in Figure 9 show that adding temporal regularization improves the performance
on multiple games. This suggests that the regularized optimal value function may be smoother and
thus easier to learn, even when using function approximation with deep learning. Also, as shown in

2The code can be found https://github.com/pierthodo/temporal_regularization.

8

https://github.com/pierthodo/temporal_regularization


Figure 9: Performance (Eq. 12) of a temporally regularized PPO on a suite of Atari games.

previous experiments (Sec. 5.5), temporal regularization being independent of spatial representation
makes it more robust to mis-specification of the state features, which is a challenge in some of these
games (e.g. when assuming full state representation using some previous frames).

6 Discussion

Noisy states: Is is often assumed that the full state can be determined, while in practice, the Markov
property rarely holds. This is the case, for example, when taking the four last frames to represent the
state in Atari games [22]. A problem that arises when treating a partially observable MDP (POMDP)
as a fully observable is that it may no longer be possible to assume that the value function is smooth
over the state space [31]. For example, the observed features may be similar for two states that are
intrinsically different, leading to highly different values for states that are nearby in the state space.
Previous experiments on noisy state representation (Sec. 5.5) and on the Atari games (Sec. 5.6) show
that temporal regularization provides robustness to those cases. This makes it an appealing technique
in real-world environments, where it is harder to provide the agent with the full state.

Choice of the regularization parameter: The bias induced by the regularization parameter β can
be detrimental for the learning in the long run. A first attempt to mitigate this bias is just to decay the
regularization as learning advances, as it is done in the deep learning experiment (Sec. 5.6). Among
different avenues that could be explored, an interesting one could be to aim for a state dependent
regularization. For example, in the tabular case, one could consider β as a function of the number of
visits to a particular state.

Smoother objective: Previous work [18] looked at how the smoothness of the objective function
relates to the convergence speed of RL algorithms. An analogy can be drawn with convex optimization
where the rate of convergence is dependent on the Lipschitz (smoothness) constant [6]. By smoothing
the value temporally we argue that the optimal value function can be smoother. This would be
beneficial in high-dimensional state space where the use of deep neural network is required. This
could explain the performance displayed using temporal regularization on Atari games (Sec. 5.6).
The notion of temporal regularization is also behind multi-step methods [32]; it may be worthwhile
to further explore how these methods are related.

Conclusion: This paper tackles the problem of regularization in RL from a new angle, that is from
a temporal perspective. In contrast with typical spatial regularization, where one assumes that rewards
are close for nearby states in the state space, temporal regularization rather assumes that rewards
are close for states visited closely in time. This approach allows information to propagate faster into
states that are hard to reach, which could prove useful for exploration. The robustness of the proposed
approach to noisy state representations and its interesting properties should motivate further work to
explore novel ways of exploiting temporal information.
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