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Abstract

A conjugate Gamma-Poisson model for Dynamic Matrix Factorization incorpo-
rated with metadata influence (mGDMF for short) is proposed to effectively and
efficiently model massive, sparse and dynamic data in recommendations. Modeling
recommendation problems with a massive number of ratings and very sparse or
even no ratings on some users/items in a dynamic setting is very demanding and
poses critical challenges to well-studied matrix factorization models due to the
large-scale, sparse and dynamic nature of the data. Our proposed mGDMF tackles
these challenges by introducing three strategies: (1) constructing a stable Gamma-
Markov chain model that smoothly drifts over time by combining both static and
dynamic latent features of data; (2) incorporating the user/item metadata into the
model to tackle sparse ratings; and (3) undertaking stochastic variational inference
to efficiently handle massive data. mGDMF is conjugate, dynamic and scalable.
Experiments show that mGDMF significantly (both effectively and efficiently)
outperforms the state-of-the-art static and dynamic models on large, sparse and
dynamic data.

1 Introduction

An increasing amount of research [8, 21, 13, 25, 3, 16, 34] focuses on the significant real-life
recommendation challenges of modeling massive and evolving ratings (e.g., a girl likes cartoon
movies in her childhood but this may change to romantic movies when she is older) but some users
(or items) have only a few or or even no ratings (forming sparse or cold-start user/item ratings). For
example, Netflix data have 97.5M ratings, 225K users, 14K movies, and 98.8% missing ratings.
The intensively-studied collaborative filtering models, in particular matrix factorization (MF) models,
fail to model such massive, dynamic and sparse recommendation problems as they usually model
static data, assume certain user/item rating similarity, and are too costly to estimate missing ratings in
massive data.

Several Poisson-based MF models were proposed recently to model large and sparse static ratings,
e.g., Poisson Factorization (PF) [25], and collaborative topic PF for modeling content-based recom-
mendations [27]; and dynamic data, e.g., dynamic PF (dPF) [16], dynamic compound PF (DCPF)
[34], and deep dynamic PF [24]. However, none of these can effectively and efficiently handle
massive, dynamic and sparse ratings simultaneously (see more analysis in Section 2).

To effectively model sparse, dynamic and massive ratings, we propose a Gamma-Poisson Dynamic
Matrix Factorization model incorporated with metadata influence (mGDMF). mGDMF has three built-
in mechanisms to jointly address user/item rating sparsity, large-scale ratings, and rating dynamics.
First, mGDMF is a factorization model that uses a Gamma-Poisson structure to model massive,
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sparse and long-tailed data [32, 45, 43]; the Gamma-Poisson structure with Poisson likelihood and
non-negative representations enjoys more efficient inference and better handling of sparse data than
the Gaussian Factorization in PMF [25, 19, 20].

Second, mGDMF has a conjugate Gamma-Gamma of integrating the observable user/item metadata
(e.g., ‘age’ of a user and ‘genre’ of a movie) with latent user preference and latent item attractiveness
factorized from ratings to model user/item rating sparsity. This is inspired by the observation that
rating behaviors are driven by user/item metadata, and the couplings between users/items (i.e., users
(or items) with similar metadata may share similar items (or users)) [10, 9, 11]. This metadata-based
representation leverages the rating factorization to handle sparse item/user ratings or cold-start rating
issues.

Lastly, mGDMF has the conjugate Gamma-Markov chains to model user preferences and item features
that change smoothly over time. As a result of jointly handling all three challenges: scalability,
sparsity and dynamics, mGDMF forms a conjugate Gamma-Gamma-Gamma-Poisson structure, on
which we perform the stochastic variational inference to model massive data.

Extensive empirical results show that mGDMF effectively and efficiently outperforms the state-of-
the-art static and dynamic PF models on five large and sparse datasets.

2 Related Work

Here, we review the work related to ours, including MF-based models and statistical models for
dynamic data and for handling user/item rating sparsity.

MF-based models. Classic MF models are improper for handling a large number of ratings [39, 25]
as they require intensive mathematical computation and may fail to find similar users in sparse data
(they assume two users have rated at least some items in common). Many probabilistic MF models,
such as PMF [39], have been proposed to deal with large data. However, data with sparse ratings
significantly challenges them since they have to compute all data with many missing ratings.

Modeling dynamic data. Several previous studies tend to capture the evolving characteristics of
users and items over time, such as TimeSVD++ [36] and Bayesian Probabilistic Tensor (BPTF)
Factorization [44]. TimeSVD++ only captures the user-evolving factors but ignores the item-evolving
factors. BPTF models the user and item factors at each time index independently from previous ones,
and cannot handle specific users/items. The work in [17, 18, 41] extends PMF to dynamic data, but
takes the Gaussian state space and cannot handle sparsity as in the long-tail Gamma priors taken
in PF [25]. Further, computing on all data (including missing and non-missing elements) makes
these models inefficient on large data. Poisson-based dynamic matrix factorization models are recent
advances for modeling dynamic data, such as dPF [16] and DCPF [34] for recommendations. dPF
faces the same problem as dynamic PMF since it uses the Gaussian state space. DCPF uses the
conjugate Gamma-Markov chains but assumes the static portions as a prior of dynamic portions.
This makes the chains grow too fast or too slow [34], resulting in unpredictable results. In addition,
recent dynamic Poisson-based models such as [24, 47, 40, 1] analyze sequential count vectors. In
contrast, mGDMF has the conjugate Gamma-Markov chains and aggregates the static portions with
the dynamic portions at each time slice and prevents the instability of the chains. They capture stably
evolving user preferences and item attractiveness over time. As a result, it is more efficient and
effective to model the nature of dynamic observations.

Handling user/item rating sparsity. No work reported directly incorporates user/item metadata
into PF for dynamic data. The work in [2, 27, 46, 31] integrates a document-word matrix into PF.
Other recent work [48, 22] also tends to integrate observable attributes into some probabilistic models
for link prediction, but only works on small data, so sparsity is not addressed there. In addition, SPF
[15] and RPF [30] only incorporate the binary relations (0 and 1) of users, however, our method can
weight the relations of both users and items. The Gamma-Poisson models in [19, 20] incorporate
general attributes for modeling large and sparse data but cannot model dynamic data. mGDMF is
the only PF model that incorporates user/item metadata, embedded with more general attributes
(e.g., categorical attributes) to work with dynamic data. First, the user/item metadata is modeled
as Gamma priors of the latent user preference/latent item attractiveness in the static portion (see
1.(a).ii/1.(b).ii in the mGDMF generative process). Second, these latent user/item features are further
given as Gamma priors for the user/item global static factors (as shown in 1.(a).iii/1.(b).iii). Lastly,
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we aggregate the above static user/item latent features with the user/item local dynamic factors. This
iterative integration process adds more weight to similar items/users, which cannot be captured by
any existing PF models.

3 The mGDMF Model

For a recommendation problem, we assume the availability of the rating matrix Yt, where each entry
is the rating given by user u to item i at time slice t and 0 indicates no rating, and the user metadata
HU and item metadata HI . The time slice corresponds to the period of time (e.g., months) when
users place ratings on items.

Further, we assume the rating matrix Yt at time slice t follows the Poisson distribution and can
be factorized to vectors representing K latent user preferences and vectors representing K latent
item attractiveness. The latent user preference vectors and the latent item attractiveness vectors are
assumed to combine both static and dynamic portions. The static portions (θuk for user and βik for
item) represent the time-independent aspects of users/items, while the dynamic portions (θuk,t for
user and βik,t for item) capture the time-evolving aspects of users/items.

Metadata Integration. The static portions (θuk and βik) capture the global stationary (i.e., global
static) factors for user u and item i, which are not influenced by time, and are assumed to follow the
Gamma distribution. We further assume the Gamma distribution of each user’s latent preferences,
ξu, and each item’s latent attractiveness, ηi. The influence of user (item) metadata is captured by
giving the second parameter (i.e., rate) of Gamma distribution of a user’s latent preference (item’s
latent attractiveness) the product of the appearance of the user (item) attribute value in the metadata.
The weight (i.e., the importance) of each user attribute, hum, is given a Gamma prior. The weight
of user attribute hum affects the preference of a user ξu and further affects the static portion of user
representations, θuk, if and only if fuu,m = 1. We note that fuu,m is binary value that indicates
whether user u has the attribute m (i.e., fuu,m = 1) or not (i.e., fuu,m = 0). hum measures the
degree of influence of each user attribute, e.g., a user’s ‘location’ may have less influence than the
user’s ‘age’ on movie ratings. The weight of an item attribute hin is also assumed with a Gamma
distribution. hin affects the item’s latent attractiveness ηi and further affects the static portion of item
representations, βik, when item i has the attribute n (i.e., fii,n = 1).

Dynamic Modelling. The dynamic portions (θuk,t and βik,t) serve as the local non-stationary (i.e.,
local dynamic) factors to capture the evolution of users and items over time. As shown in [14], it is pos-
sible to define a Gamma-Markov chain in a straightforward way by θuk,t ∼ Gamma(aθ, θuk,t−1/aθ).
The full conditional distribution p(θuk,t|θuk,t−1, θuk,t+1) is conjugate. However, it is not possible to
attain a positive correlation between θuk,t and θuk,t−1 since E[θuk,t] = 1/θuk,t−1. Hence, we build
a chain that smoothly evolves over time by adding the auxiliary variables λuk,t between θuk,t and
θuk,t−1. The auxiliary variables make E[θuk,t] = θuk,t−1. Hence, θuk,t increases/decreases when
θuk,t−1 increases/decreases. Operations similar to the above are also taken on the item’s dynamic
portions.

The generative process of mGDMF is presented below and the graphical model of mGDMF can be
found in the supplementary.

1. Metadata Integration:
(a) For each user:

i. Draw the weight of mth attribute in user metadata hum ∼ Gamma(a′, b′)

ii. Draw latent user preference ξu ∼ Gamma(a,
∏M
m=1 hu

fuu,m
m )

iii. Draw global static factor θuk ∼ Gamma(b, ξu)

(b) For each item:
i. Draw the weight of nth attribute in item metadata hin ∼ Gamma(c′, d′)

ii. Draw latent item attractiveness ηi ∼ Gamma(c,
∏N
n=1 hi

fii,n
n )

iii. Draw global static factor βik ∼ Gamma(d, ηi)

2. Dynamic Modeling:
(a) For each user:

3



i. Draw initialized state of local dynamic factor θuk,1 ∼ Gamma(aθ, aθbθ)

ii. For each time slice t > 1:
A. Draw auxiliary variable λuk,t−1 ∼ Gamma(aλ, aλθuk,t−1)

B. Draw local dynamic factor θuk,t ∼ Gamma(aθ, aθλuk,t−1)

(b) For each item:

i. Draw initialized state of local dynamic factor βik,1 ∼ Gamma(aβ , aβbβ)

ii. For each time slice t > 1:
A. Draw auxiliary variable ιik,t−1 ∼ Gamma(aι, aιβik,t−1)

B. Draw local dynamic factor βik,t ∼ Gamma(aβ , aβιik,t−1)

3. For each rating:

(a) Draw yui,t ∼ Poisson(
∑
k(θuk,t + θuk)(βik,t + βik))

As a result, mGDMF effectively models both static and dynamic characteristics of user preference
and item attractiveness in the context of having sparse ratings on users/items.

Handling massive data. We further describe how mGDMF models massive data. We calculate the
probability of rating yui,t by user u on item i at time slice t as:

p(yui|θu, θu, βi, βi) =
((θu + θu)(βi + βi))

yuiexp{−((θu + θu)(βi + βi)}
yui!

(1)

When yui = 0, it does not affect the probability. Owing to the Poisson factorization [25], it does not
require optimization to reduce the computational time as in the classical MF [38]. The probability
only depends on θu, θu, βi and βi.

Better prediction with metadata integration. Richer priors are provided by integrating user meta-
data to represent the user’s latent preference ξu as in Eq. (2). This enhanced user’s latent preference
representation ξu in turn provides richer priors to the user’s global static factor θuk.

ξu|θ ∼ Gamma(a+Kb,

M∏
m=1

hufuu,m
m +

∑
k

θuk) (2)

The global static factors then affect the time-sensitive local dynamic factors. Similarly, we integrate
item metadata into representing latent item attractiveness and its evolution. As a result, mGDMF
integrates both observable user/item metadata and latent static/dynamic portions.

4 Stochastic Variational Inference for mGDMF

We first apply the mean-field Variational Inference (VI) [42] to the approximate inference of the
posterior distribution, which is shown [42] to be more efficient than methods like MCMC [23] for
large-scale probabilistic models. The mean-field VI chooses a family of variational distributions over
all hidden variables. The posteriors of all variational distributions are then approximated by tuning
the parameters to minimize the Kullback-Leibler divergence to the true posterior.

Given the rating tables Yt and the user/item metadata HU and HI , we compute the posterior
distributions of the weight of each user attribute in metadata hum, the weight of each item attribute
in metadata hin, the user’s latent preference ξu (expressed as the static global factor θuk and local
dynamic factor θuk,t), and the item’s latent attractiveness ηi (represented as the static global factor
βuk and local dynamic factor βik,t).

To ensure the conjugacy of the model structure, inspired by [25, 21, 49, 26], the rating yui,t is
replaced with auxiliary latent variable zui,k,t ∼ Poisson((θuk,t + θuk)(βik,t + βik)). With the
additive property of Poisson distribution, yui,t is expressed as yui,t =

∑
k zui,k,t. Then, the mean-

field family assumes each distribution is independent of each other and is governed by its own
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distribution.
q(hu, hi, ξ, η, θ, β,λ, ι, θ, β, z) =

∏
m

q(hum|ζm)
∏
n

q(hin|ρn)
∏
u

q(ξu|κu)
∏
i

q(ηi|τi)∏
u,k

q(θuk|νuk)
∏
i,k

q(βik|µik)
∏
u,k,t

q(θuk,t|νuk,t)
∏
i,k,t

q(βik,t|µik,t)∏
u,k,t

q(λuk,t|γuk,t)
∏
i,k,t

q(ιik,t|ωik,t)
∏
u,i,t,k

q(zui,t,k|φui,t,k)

(3)

We use the class of conditionally conjugate priors for hum, hin, ξu, ηi, θuk, βik, θuk, λuk,t, βik,
ιik,t and zui,t,k to update the variational parameters {ζ, ρ, κ, τ, ν, µ, ν, γ, µ, ω, φ}. For the Gamma
distribution, we update both hyper-parameters: shape and rate.

Table 1: Latent Variables, Type, Variational Variables and Variational Update for Users. Similar
variables for items (i.e., hin, ηi, βik, βik, ιik,t) can be found in the supplementary. ℵm is the number
of users having the mth attribute, K is the number of latent components, and Ψ(.) is the digamma
function. The Gamma distribution is parameterized by shape (shp) and rate (rte).

Latent Type Variational Variational UpdateVariable Variable

hum Gamma ζshpm , ζrtem a′ + ℵma, b′ +
∑
u

κshp
u
κrte
u

ξu Gamma κshpu , κrteu a+Kb,
∏M
m=1

( ζshp
m
ζrtem

)fuu,m +
∑
k

ν
shp
uk

νrte
uk

zui,t,k Mult φui,t,k
(exp{Ψ(νshpuk,t)− log(νrteuk,t)} +exp{Ψ(νshpuk )− log(νrteuk )})
∗(exp{Ψ(µshpik,t)− log(µrteik,t} +exp{Ψ(µshpik )− log(µrteik ))})

θuk Gamma νshpuk , νrteuk b+
∑
i,t yui,tφui,t,k, κ

shp
u
κrte
u

+
∑
i

(µshp
ik

µrte
ik

+
∑
t

µ
shp
ik,t

µrte
ik,t

)
θuk,t Gamma

νshpuk,t aθ + aλ +
∑
i yui,tφui,t,k

νrteuk,1 aθbθ + aλ
γ
shp
uk,1

γrte
uk,1

+
∑
i

(µshp
ik

µrte
ik

+
µ
shp
ik,1

µrte
ik,1

)
νrteuk,t,(t>1) aθ

γ
shp
uk,t−1

γrte
uk,t−1

+ aλ
γ
shp
uk,t

γrte
uk,t

+
∑
i

(µshp
ik

µrte
ik

+
µ
shp
ik,t

µrte
ik,t

)
λuk,t Gamma γshpuk,t, γ

rte
uk,t aλ + aθ , aλ

ν
shp
uk,t

νrte
uk,t

+ aθ
ν
shp
uk,t+1

νrte
uk,t+1

With the mean-field VI, the coordinate ascent is used to iteratively optimize each variational parameter
while holding the others fixed [35]. The full variational parameter update is shown in Table 1 and the
batch algorithm can be found in the supplementary material.

Stochastic Algorithm.

Mean-field VI iterates to update variational parameters by involving the entire data at each iteration
until convergence to a local optimum, which could be computationally intensive for large data.

We thus adopt stochastic optimization by sampling a data point from the rating yui,t of user u on item
i to update its local parameters as in batch inference, and then update the global variables (similar to
[29]). For example, to update the shape of a user’s dynamic factors, we form the intermediate shape
of a user’s dynamic factors with the sampled rating’s optimized local parameters as follows:

ν
shp(imd)
uk,t = aθ + aλ + I.yui,tφui,t,k (4)

where I is the total number of items in the dataset.

We then update the global variational parameters by taking step ε in the direction of the stochastic
natural gradient.

ν
shp(iter+1)
uk,t = (1− σiter)νshp(iter)uk,t + σiterν

shp(imd)
uk,t (5)

where σiter > 0 is a step size at iteration iter. As shown in [7, 29], to ensure convergence, one
possible choice of σiter is (iter0 + iter)−ε for iter0 > 0 and ε ∈ (0.5, 1]. iter0 and ε are called the
learning rate delay and the learning rate power respectively.
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Algorithm 1 SVI for mGDMF
Initialize {ζ, ρ, κ, τ, ν, µ, ν, µ, γ, ω, φ}.
Set K: # latent components, U : # users, I: # items, iter0 and ε.
repeat

for each time slice t = 1...T do
Sample a rating yui,t uniformly from the dataset.
Update the local variational parameter of multivariate parameter φ.
Update all intermediate variational parameters similar to Eq. (4).
Update all global variational parameters similar to Eq. (5).
Update the learning rates iter.

end for
until convergence

The updating of the other global variational parameters is similar to that of the user’s dynamic factors.
The SVI algorithm for mGDMF is presented in Algorithm 1.

Computational efficiency. The SVI is more efficient than batch inference algorithms in terms of
working with massive data. The computational cost per iteration of batch is O(U0 + I0)K, where
U0 and I0 are the non-zero observations in the rating matrix. It is more efficient than classic PMF
with the computational cost O(U + I)K (U and I are the total numbers of user/item observations
respectively). The computational cost of the SVI algorithm per iteration is O(Us + Is)K, Us and Is
are the non-zero observations sampled from users and items respectively.

5 Experiments

Here, mGDMF is evaluated in terms of its capability to model dynamic data and data with sparse
user/item ratings and its efficiency in handling large data.

5.1 Datasets

GDMF/mGDMF are tested on the following five public dynamic datasets with massive and
sparse/cold-start ratings and some metadata.

Netflix-Time. Similar procedure as in [37, 16, 34] is taken to obtain a subset of Netflix Prize data [4]
with only active users and movies between 1998 and 2005. It contains 10.4K users, 6.5K movies
and 2.5M non-missing ratings (from 1 to 5) over 16 time slices (with the duration of each time slice
as 3 months) with the metadata: the ‘year of release’ of the movies.

Netflix-Full. We also fit our models on the whole Netflix dataset: 225K users, 14K movies and
6.9M observations over 14 time slices (with the duration of each time slice as 6 months) with the
metadata: the ‘year of release’ of the movies. This data challenges inference and analysis since
its ratings distribution is extremely long-tailed and the users are very inactive. It tests the effect
of modeling sparse items/users when a large number of items are associated with only few (or no)
ratings from users.

Yelp-Active. A subset of the Yelp Academic Challenge data is obtained similarly to [34]: 0.9K
active customers and 6.7K business units between 2008 and 2015 over 12 time slices (with the
duration of each time slice as 6 months). It includes user metadata ‘year join’ and ‘average star’, and
the item metadata ‘location’, ‘star’, ’take out’ (0 or 1), and ‘parking’ (0 or 1).

LFM-Tracks. It contains the number of times a user listened to a song during a given time period
[12]: 16 time slices of 0.9K users and 1M tracks (i.e., songs), similar to [34]; user metadata includes
‘age’ (partitioned to ranges: 1 : “Under 18”, 18 : “18 − 24”, 25 : “25 − 34”, 35 : “35 − 44”, 45 :
“45 − 49”, 50 : “50 − 55”, and 56 : “56 + ”), ‘gender’, ‘country’ and ‘sign up year’; and item
metadata includes ‘genre’ of the music derived from the ‘tag’ of each track (e.g., “rock”, “pop” or
“alternative”).

LFM-Bands. We consider bands instead of tracks as items in LFM-Tracks: 0.9K users and 107K
bands with the same metadata as LFM-Tracks.
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5.2 Baseline Methods

We compare mGDMF with both state-of-the-art static and dynamic PF models in handling dynamic
data. The mGDMF without metadata integration is a Gamma-Poisson Dynamic Matrix Factorization
(GDMF) model to test the effect of metadata integration. GDMF replaces the rate of Gamma
distribution of latent user preference ξu by hyper-parameter a and the item’s latent attractiveness ηi
by hyper-parameter c instead of the product of the user/item attribute’s weights.

Static Models. As shown in [25], HPF outperforms baselines including Non-negative Matrix
Factorization [5], LDA [6], PMF [39], and basic PF [8, 21, 13], where HCPF [3] is the latest static
model in the PF family. We thus compare mGDMF with two different versions of HPF and HCPF to
demonstrate the mGDMF benefits in modeling the time-evolving effect. Similar to [16], HPF-all and
HCPF-all are trained on all training ratings while HPF-last and HCPF-last are trained by using the
last time slice in the training set as the observations.

Dynamic Models. The two most recently reported PF models for recommendation are dPF [16] and
DCPF [34]. dPF was shown to outperform state-of-the-art dynamic collaborative filtering algorithms,
specifically, BPTF [44] and TimeSVD++ [36]. Therefore, we show the advantage of mGDMF with
the metadata integration and Gamma-Poisson structure by comparing it with dPF and DCPF.

5.3 Experiment Settings and Evaluation

Initialization. For the static portions, we set a = b = c = d = 0.3 in the same way as in HPF. The
metadata hyper-parameters a′, b′, c′ and d′ are set to a small value: 0.1, so that the user/item attribute
weights automatically grow over time. We also set aθ = aγ = aθ = bθ = bβ = aι = 1 to keep the
chains small at the beginning. We test a wide range of latent components K from 10 to 200 and
choose the best K = 50 for mGDMF/GDMF. For SVI hyper-parameters, we assign 10, 000 as the
learning rate delay iter0 and 0.7 as the learning rate power ε, similar to [34] and [3].

Evaluation Metrics. We hold out the last time slice for testing and keep the previous slices for
training, i.e., at each slice t, the observations are the data before t (i.e., 1 ... t− 1) and the test set
includes the ratings at t. The results are the average of all slices t from 2 to the maximal slice T . We
then randomly sample and assign 5% of the test set for validation, similar to [16, 34]. The top-N
recommendations are obtained in training w.r.t. the highest prediction score. In testing, we compute
the precision@N , which measures the fraction of relevant items in a user’s top-N recommendations,
and recall@N , which is the fraction of the testing items that present in the top-N recommendations.
We also calculate the same evaluation metrics as DCPF: Normalized Discounted Cumulative Gain
(NDCG) [33] and the Area Under the ROC Curve (AUC) [28].

Prediction. We test a practical scenario with given past ratings to predict the ratings at the current
time slice t, which is ranked by their posterior-expected Poisson parameters as follows.

scoreui,t =
∑
k

Eposterior[(θuk,t + θuk)(βik,t + βik)] (6)

Convergence. Convergence is measured by computing the prediction accuracy on the validation set.
mGDMF stops when the change of prediction accuracy w.r.t. log likelihood is less than 0.0001%.

5.4 Results

Effect of metadata and dynamic data modeling.

Figure 1 reports the results w.r.t. Precision@50 and Recall@50 of mGDMF together with GDMF
without metadata integration, compared to DCPF, dPF and four static models: HCPF-all, HCPF-last,
HPF-all and HPF-last. It is clear that dynamic models (mGDMF, GDMF, DCPF and dPF) are more
effective than the static ones (HCPF-all, HCPF-last, HPF-all and HPF-last) on all datasets. Our
models both with or without metadata perform the best of the dynamic models. mGDMF gains as
much as 10% improvement on Netflix-Full which has an extremely long-tailed rating distribution (i.e.,
many sparse items/users). mGDMF and GDMF make a large performance difference on Yelp-Active
which has the richest metadata. GDMF efficiently models dynamic data by gaining an average 5%
over DCPF and 4.6% over dPF w.r.t. Precision@50 on five datasets. mGDMF effectively integrates
metadata by further gaining an average 1.2% on top of our GDMF. The results are consistent with this
w.r.t. NDCG/AUC as shown in Table 2, where mGDMF gains maximally 240.69% and minimally
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38.38% NDCG improvement and maximally 27.12% and minimally 2.76% AUC improvement over
baselines on Yelp-Active.

(a) Precision@50 (b) Recall@50

Figure 1: Top-50 Recommendations Compared with Baselines.

Table 2: Predictive Performance on Five Datasets w.r.t. NDCG and AUC.

Netflix-Time Netflix-Full Yelp-Active LFM-Tracks LFM-Bands

NDCG AUC NDCG AUC NDCG AUC NDCG AUC NDCG AUC

mGDMF 0.389 0.9145 0.403 0.9321 0.494 0.8650 0.310 0.8245 0.367 0.8217
GDMF 0.367 0.9121 0.398 0.9320 0.416 0.8512 0.275 0.8101 0.354 0.8139

DCPF 0.293 0.9023 0.315 0.8991 0.357 0.8418 0.231 0.8098 0.275 0.8011
dPF 0.257 0.9012 0.301 0.8901 0.332 0.8321 0.210 0.8019 0.298 0.8122

HCPF-all 0.241 0.8012 0.245 0.8370 0.243 0.8032 0.209 0.7010 0.213 0.7121
HCPF-last 0.183 0.7423 0.201 0.7600 0.172 0.7312 0.132 0.5893 0.160 0.6101

HPF-all 0.231 0.8035 0.250 0.8124 0.248 0.8130 0.179 0.7084 0.184 0.7013
HPF-last 0.162 0.7213 0.198 0.7540 0.145 0.6810 0.143 0.6050 0.141 0.5982

δmin(%) 32.76 1.35 27.94 3.67 38.38 2.76 34.20 1.82 23.15 1.70
δmax(%) 140.12 26.78 103.54 23.62 240.69 27.12 134.85 44.83 160.28 37.36

Effect of handling sparse users/items and the ‘cold-start’ problem. We report 10 users with the
most precisely recommended items and the percentage of precisely recommended sparse items in
the top-100 recommendations to compare mGDMF and GDMF with DCPF on LFM-Tracks which
has the most dynamic and richest metadata. The sparse item is calculated as the fraction of the
non-missing ratings for that in the total number of users (rows). For those items with < 6% ratings
(i.e., sparse items), Figure 2 shows that mGDMF recommends more (on average 7.6% items per user)
than DCPF (on average 3.1%) of these sparse items to the 10 users. For those items with sparsity
< 1%, mGDMF recommends on average 1.6% items per user compared to 0.2% by DCPF, attributed
to the richer priors and the mGDMF models with metadata integration and aggregating static and
dynamic portions. Further, while DCPF cannot recommend any items when sparsity = 0% (i.e.,
cold-start items), mGDMF has recommended on average 0.5% items. In addition, Figure 2 shows that
GDMF recommends more sparse items than DCPF and is also more efficient, since the static portions
aggregate the dynamic portions. However, GDMF recommends less than our mGDMF especially on
items with sparsity = 0% (i.e., cold-start items). This shows our model’s advantage in incorporating
metadata.

Case study of mGDMF-based recommendation. We illustrate the contributions of mGDMF w.r.t.
making recommendations on data Last.fm, shown in Figure 3, where two users ‘U270’ and ‘U437’
have the same metadata (‘age’, ‘gender’, ‘country’ and ‘sign up year’), hence they have similar
hobbies as shown on the right of Figure 3. From the dynamic perspective, since two users change
their interest from ‘pop’ to ‘rock’ music, it is unreasonable to continue to recommend pop music to
user U270. However, the static models continue to recommend pop music as the number of times
the users listened to pop and rock are similar, as shown on the right of Figure 3. mGDMF makes
better recommendations (8 out of 10 are in the ‘rock’ category and no ‘pop’ track recommended).
Further, U270 has not listened to ‘Zombie’ in the past but we can still precisely recommend ‘Zombie’
because it is in the list of tracks listened to by users with similar metadata to U437.
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(a) mGDMF (b) GDMF (c) DCPF

Figure 2: Percentage (%) of Sparse Items Recommended Precisely for 10 Users by mGDMF, GDMF
and DCPF.

Figure 3: Analysis on two users ‘U270’ and ‘U437’ with the same metadata in Last.fm. The number
of times that users listened to two ‘rock’ and ‘pop’ tracks with 16 time slices is shown in (a). The
number of times listened to ‘Zombie’ track by two users ‘U270’ and ‘U437’ through 16 time slices
is shown in (b). The top10 precise recommendations by mGDMF are shown in (c). The distribution
of the number of times that U270 and U437 listened to top 10 ‘rock’ and ‘pop’ tracks are shown in
(d) and (e).

6 Conclusions

We proposed a novel dynamic PF model: Gamma-Poisson Dynamic Matrix Factorization with
Metadata Influence (mGDMF) to effectively and efficiently model three major challenges in real-life
massive recommendations: massive data with sparse and evolving ratings. mGDMF significantly
outperforms the state-of-the-art static and dynamic models on five large datasets. mGDMF can
further tackle massive, sparse and evolving data by involving time-dependent metadata for scalable
recommendation and tackling challenges in other applications such as context-aware chatbot by
involving textual and sequential information.
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