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Abstract

Despite the success of single-agent reinforcement learning, multi-agent reinforce-
ment learning (MARL) remains challenging due to complex interactions between
agents. Motivated by decentralized applications such as sensor networks, swarm
robotics, and power grids, we study policy evaluation in MARL, where agents with
jointly observed state-action pairs and private local rewards collaborate to learn the
value of a given policy.
In this paper, we propose a double averaging scheme, where each agent iteratively
performs averaging over both space and time to incorporate neighboring gradient
information and local reward information, respectively. We prove that the proposed
algorithm converges to the optimal solution at a global geometric rate. In particular,
such an algorithm is built upon a primal-dual reformulation of the mean squared
projected Bellman error minimization problem, which gives rise to a decentralized
convex-concave saddle-point problem. To the best of our knowledge, the proposed
double averaging primal-dual optimization algorithm is the first to achieve fast
finite-time convergence on decentralized convex-concave saddle-point problems.

1 Introduction

Reinforcement learning combined with deep neural networks recently achieves superhuman perfor-
mance on various challenging tasks such as video games and board games [34, 45]. In these tasks,
an agent uses deep neural networks to learn from the environment and adaptively makes optimal
decisions. Despite the success of single-agent reinforcement learning, multi-agent reinforcement
learning (MARL) remains challenging, since each agent interacts with not only the environment but
also other agents. In this paper, we study collaborative MARL with local rewards. In this setting, all
the agents share a joint state whose transition dynamics is determined together by the local actions
of individual agents. However, each agent only observes its own reward, which may differ from
that of other agents. The agents aim to collectively maximize the global sum of local rewards. To
collaboratively make globally optimal decisions, the agents need to exchange local information. Such
a setting of MARL is ubiquitous in large-scale applications such as sensor networks [42, 9], swarm
robotics [23, 8], and power grids [3, 13].
A straightforward idea is to set up a central node that collects and broadcasts the reward information,
and assigns the action of each agent. This reduces the multi-agent problem into a single-agent one.
However, the central node is often unscalable, susceptible to malicious attacks, and even infeasible
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in large-scale applications. Moreover, such a central node is a single point of failure, which is
susceptible to adversarial attacks. In addition, the agents are likely to be reluctant to reveal their local
reward information due to privacy concerns [5, 27], which makes the central node unattainable.
To make MARL more scalable and robust, we propose a decentralized scheme for exchanging local
information, where each agent only communicates with its neighbors over a network. In particular,
we study the policy evaluation problem, which aims to learn a global value function of a given policy.
We focus on minimizing a Fenchel duality-based reformulation of the mean squared Bellman error in
the model-free setting with infinite horizon, batch trajectory, and linear function approximation.
At the core of the proposed algorithm is a “double averaging" update scheme, in which the algorithm
performs one average over space (across agents to ensure consensus) and one over time (across
observations along the trajectory). In detail, each agent locally tracks an estimate of the full gradient
and incrementally updates it using two sources of information: (i) the stochastic gradient evaluated on
a new pair of joint state and action along the trajectory and the corresponding local reward, and (ii) the
local estimates of the full gradient tracked by its neighbors. Based on the updated estimate of the full
gradient, each agent then updates its local copy of the primal parameter. By iteratively propagating
the local information through the network, the agents reach global consensus and collectively attain
the desired primal parameter, which gives an optimal approximation of the global value function.

Related Work The study of MARL in the context of Markov game dates back to [28]. See also
[29, 24, 21] and recent works on collaborative MARL [51, 1]. However, most of these works consider
the tabular setting, which suffers from the curse of dimensionality. To address this issue, under the
collaborative MARL framework, [53] and [25] study actor-critic algorithms and policy evaluation
with on linear function approximation, respectively. However, their analysis is asymptotic in nature
and largely relies on two-time-scale stochastic approximation using ordinary differential equations
[2], which is tailored towards the continuous-time setting. Meanwhile, most works on collaborative
MARL impose the simplifying assumption that the local rewards are identical across agents, making
it unnecessary to exchange the local information. More recently, [17–19, 31, 37] study deep MARL
that uses deep neural networks as function approximators. However, most of these works focus on
empirical performance and lack theoretical guarantees. Also, they do not emphasize on the efficient
exchange of information across agents. In addition to MARL, another line of related works study
multi-task reinforcement learning (MTRL), in which an agent aims to solve multiple reinforcement
learning problems with shared structures [52, 39, 32, 33, 48].
The primal-dual formulation of reinforcement learning is studied in [30, 32, 33, 26, 10, 7, 50, 12, 11,
15] among others. Except for [32, 33] discussed above, most of these works study the single-agent
setting. Among them, [26, 15] are most related to our work. In specific, they develop variance
reduction-based algorithms [22, 14, 43] to achieve the geometric rate of convergence in the setting
with batch trajectory. In comparison, our algorithm is based on the aforementioned double averaging
update scheme, which updates the local estimates of the full gradient using both the estimates of
neighbors and new states, actions, and rewards. In the single-agent setting, our algorithm is closely
related to stochastic average gradient (SAG) [43] and stochastic incremental gradient (SAGA) [14],
with the difference that our objective function is a finite sum convex-concave saddle-point problem.
Our work is also related to prior work in the broader contexts of primal-dual and multi-agent
optimization. For example, [38] apply variance reduction techniques to convex-concave saddle-point
problems to achieve the geometric rate of convergence. However, their algorithm is centralized and
it is unclear whether their approach is readily applicable to the multi-agent setting. Another line
of related works study multi-agent optimization, for example, [49, 36, 6, 44, 41]. However, these
works mainly focus on the general setting where the objective function is a sum of convex local cost
functions. To the best of our knowledge, our work is the first to address decentralized convex-concave
saddle-point problems with sampled observations that arise from MARL.

Contribution Our contribution is threefold: (i) We reformulate the multi-agent policy evaluation
problem using Fenchel duality and propose a decentralized primal-dual optimization algorithm with
a double averaging update scheme. (ii) We establish the global geometric rate of convergence for
the proposed algorithm, making it the first algorithm to achieve fast linear convergence for MARL.
(iii) Our proposed algorithm and analysis is of independent interest for solving a broader class of
decentralized convex-concave saddle-point problems with sampled observations.

Organization In §2 we introduce the problem formulation of MARL. In §3 we present the proposed
algorithm and lay out the convergence analysis. In §4 we illustrate the empirical performance of the
proposed algorithm. We defer the detailed proofs to the supplementary material.
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Notation Unless otherwise specified, for a vector x, ‖x‖ denotes its Euclidean norm; for a matrix
X , ‖X‖ denotes its spectral norm, i.e., the largest singular value.

2 Problem Formulation
In this section, we introduce the background of MARL, which is modeled as a multi-agent Markov
decision process (MDP). Under this model, we formulate the policy evaluation problem as a primal-
dual convex-concave optimization problem.

Multi-agent MDP Consider a group of N agents. We are interested in the multi-agent MDP:(
S, {Ai}Ni=1,Pa, {Ri}Ni=1, γ

)
,

where S is the state space and Ai is the action space for agent i. We write s ∈ S and a :=
(a1, ..., aN ) ∈ A1× · · · ×AN as the joint state and action, respectively. The functionRi(s,a) is the
local reward received by agent i after taking joint action a at state s, and γ ∈ (0, 1) is the discount
factor. Both s and a are available to all agents, whereas the rewardRi is private for agent i.

In contrast to a single-agent MDP, the agents are coupled together by the state transition matrix
Pa ∈ R|S|×|S|, whose (s, s′)-th element is the probability of transiting from s to s′, after taking a
joint action a. This scenario arises from large-scale applications such as sensor networks [42, 9],
swarm robotics [23, 8], and power grids [3, 13], which strongly motivates the development of a
multi-agent RL strategy. Moreover, under the collaborative setting, the goal is to maximize the
collective return of all agents. Suppose there exists a central controller that collects the rewards of,
and assigns the action to each individual agent, the problem reduces to the classical MDP with action
space A and global reward function Rc(s,a) = N−1

∑N
i=1Ri(s,a). Thus, without such a central

controller, it is essential for the agents to collaborate with each other so as to solve the multi-agent
problem based solely on local information.

Furthermore, a joint policy, denoted by π, specifies the rule of making sequential decisions for the
agents. Specifically, π(a|s) is the conditional probability of taking joint action a given the current
state s. We define the reward function of joint policy π as an average of the local rewards:

Rπc (s) := 1
N

∑N
i=1R

π
i (s), where Rπi (s) := Ea∼π(·|s)

[
Ri(s,a)

]
. (1)

That is, Rπc (s) is the expected value of the average of the rewards when the agents follow policy π
at state s. Besides, any fixed policy π induces a Markov chain over S, whose transition matrix is
denoted by Pπ . The (s, s′)-th element of Pπ is given by

[Pπ]s,s′ =
∑
a∈A π(a|s) · [Pa]s,s′ .

When this Markov chain is aperiodic and irreducible, it induces a stationary distribution µπ over S.

Policy Evaluation A central problem in reinforcement learning is policy evaluation, which refers to
learning the value function of a given policy. This problem appears as a key component in both value-
based methods such as policy iteration, and policy-based methods such as actor-critic algorithms
[46]. Thus, efficient estimation of the value functions in multi-agent MDPs enables us to extend the
successful approaches in single-agent RL to the setting of MARL.

Specifically, for any given joint policy π, the value function of π, denoted by V π : S → R, is defined
as the expected value of the discounted cumulative reward when the multi-agent MDP is initialized
with a given state and the agents follows policy π afterwards. For any state s ∈ S, we define

V π(s) := E
[∑∞

p=1 γ
pRπc (sp)|s1 = s,π

]
. (2)

To simplify the notation, we define the vector V π ∈ R|S| through stacking up V π(s) in (2) for all s.
By definition, V π satisfies the Bellman equation

V π = Rπc + γPπV π , (3)

whereRπc is obtained by stacking up (1) and [Pπ]s,s′ := Eπ[Pas,s′ ] is the expected transition matrix.
Moreover, it can be shown that V π is the unique solution of (3).

When the number of states is large, it is impossible to store V π. Instead, our goal is to learn an
approximate version of the value function via function approximation. In specific, we approximate
V π(s) using the family of linear functions{

Vθ(s) := φ>(s)θ : θ ∈ Rd},
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where θ ∈ Rd is the parameter, φ(s) : S → Rd is a known dictionary consisting of d features,
e.g., a feature mapping induced by a neural network. To simplify the notation, we define Φ :=
(...;φ>(s); ...) ∈ R|S|×d and let Vθ ∈ R|S| be the vector constructed by stacking up {Vθ(s)}s∈S .

With function approximation, our problem is reduced to finding a θ ∈ Rd such that Vθ ≈ V π.
Specifically, we seek for θ such that the mean squared projected Bellman error (MSPBE)

MSPBE?(θ) :=
1

2

∥∥∥ΠΦ

(
Vθ − γPπVθ −Rπc

)∥∥∥2
D

+ ρ‖θ‖2 (4)

is minimized, where D = diag[{µπ(s)}s∈S ] ∈ R|S|×|S| is a diagonal matrix constructed using
the stationary distribution of π, ΠΦ : R|S| → R|S| is the projection onto subspace {Φθ : θ ∈ Rd},
defined as ΠΦ = Φ(Φ>DΦ)−1Φ>D, and ρ ≥ 0 is a free parameter controlling the regularization
on θ. For any positive semidefinite matrix A, we define ‖v‖A =

√
v>Av for any vector v. By

direct computation, when Φ>DΦ is invertible, the MSPBE defined in (4) can be written as

MSPBE?(θ) =
1

2

∥∥∥Φ>D(Vθ−γPπVθ−Rπc )∥∥∥2
(Φ>DΦ)−1

+ρ‖θ‖2 =
1

2

∥∥∥Aθ−b∥∥∥2
C−1

+ρ‖θ‖2,
(5)

where we define A := E
[
φ(sp)

(
φ(sp) − γφ(sp+1)

)>]
, C := E

[
φ(sp)φ

>(sp)
]
, and b :=

E
[
Rπc (sp)φ(sp)

]
. Here the expectations in A, b, and C are all taken with respect to (w.r.t. )

the stationary distribution µπ . Furthermore, whenA is full rank and C is positive definite, it can be
shown that the MSPBE in (5) has a unique minimizer.

To obtain a practical optimization problem, we replace the expectations above by their sampled
averages fromM samples. In specific, for a given policy π, a finite state-action sequence {sp,ap}Mp=1
is simulated from the multi-agent MDP using joint policy π. We also observe sM+1, the next state of
sM . Then we construct the sampled versions ofA, b, C, denoted respectively by Â, Ĉ, b̂, as

Â := 1
M

∑M
p=1Ap, Ĉ := 1

M

∑M
p=1Cp, b̂ := 1

M

∑M
p=1 bp, with

Ap := φ(sp)
(
φ(sp)− γφ(sp+1)

)>
, Cp := φ(sp)φ

>(sp), bp := Rc(sp,ap)φ(sp) ,
(6)

where Rc(sp,ap) := N−1
∑N
i=1Ri(sp,ap) is the average of the local rewards received by each

agent when taking action ap at state sp. Here we assume that M is sufficiently large such that Ĉ is
invertible and Â is full rank. Using the terms defined in (6), we obtain the empirical MSPBE

MSPBE(θ) :=
1

2

∥∥∥Âθ − b̂∥∥∥2
Ĉ−1

+ ρ‖θ‖2 , (7)

which converges to MSPBE?(θ) as M → ∞. Let θ̂ be a minimizer of the empirical MSPBE, our
estimation of V π is given by Φθ̂. Since the rewards {Ri(sp,ap)}Ni=1 are private to each agent,
it is impossible for any agent to compute Rc(sp,ap), and minimize the empirical MSPBE (7)
independently.

Multi-agent, Primal-dual, Finite-sum Optimization Recall that under the multi-agent MDP, the
agents are able to observe the states and the joint actions, but can only observe their local rewards.
Thus, each agent is able to compute Â and Ĉ defined in (6), but is unable to obtain b̂. To resolve
this issue, for any i ∈ {1, . . . , N} and any p ∈ {1, . . . ,M}, we define bp,i := Ri(sp,ap)φ(sp) and
b̂i := M−1

∑M
p=1 bp,i, which are known to agent i only. By direct computation, it is easy to verify

that minimizing MSPBE(θ) in (7) is equivalent to solving

min
θ∈Rd

1

N

N∑
i=1

MSPBEi(θ) where MSPBEi(θ) :=
1

2

∥∥∥Âθ − b̂i∥∥∥2
Ĉ−1

+ ρ‖θ‖2 . (8)

The equivalence can be seen by comparing the optimality conditions of two optimization problems.

Importantly, (8) is a multi-agent optimization problems [36] whose objective is to minimize a
summation of N local functions coupled together by the common parameter θ. Here MSPBEi(θ)
is private to agent i and the parameter θ is shared by all agents. As inspired by [35, 30, 15], using
Fenchel duality, we obtain the conjugate form of MSPBEi(θ), i.e.,

1

2

∥∥∥Âθ − b̂i∥∥∥2
Ĉ−1

+ ρ‖θ‖2 = max
wi∈Rd

(
w>i
(
Âθ − b̂i

)
− 1

2
w>i Ĉwi

)
+ ρ‖θ‖2 . (9)
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Observe that each of Â, Ĉ, b̂i can be expressed as a finite sum of matrices/vectors. By (9), problem
(8) is equivalent to a multi-agent, primal-dual and finite-sum optimization problem:

min
θ∈Rd

max
wi∈Rd,i=1,...,N

1

NM

N∑
i=1

M∑
p=1

(
w>i Apθ − b>p,iwi −

1

2
w>i Cpwi +

ρ

2
‖θ‖2

)
︸ ︷︷ ︸

:=Ji,p(θ,wi)

. (10)

Hereafter, the global objective function is denoted by J(θ, {wi}Ni=1) :=

(1/NM)
∑N
i=1

∑M
p=1 Ji,p(θ,wi), which is convex w.r.t. the primal variable θ and is concave

w.r.t. the dual variable {wi}Ni=1.

It is worth noting that the challenges in solving (10) are three-fold. First, to obtain a saddle-
point solution ({wi}Ni=1,θ), any algorithm for (10) needs to update the primal and dual variables
simultaneously, which can be difficult as objective function needs not be strongly convex with respect
to θ. In this case, it is nontrivial to compute a solution efficiently. Second, the objective function of
(10) consists of a sum of M functions, with M � 1 potentially, such that conventional primal-dual
methods [4] can no longer be applied due to the increased complexity. Lastly, since θ is shared by
all the agents, when solving (10), the N agents need to reach a consensus on θ without sharing the
local functions, e.g., Ji,p(·) has to remain unknown to all agents except for agent i due to privacy
concerns. Although finite-sum convex optimization problems with shared variables are well-studied,
new algorithms and theory are needed for convex-concave saddle-point problems. Next, we propose a
novel decentralized first-order algorithm that tackles these difficulties and converges to a saddle-point
solution of (10) with linear rate.

3 Primal-dual Distributed Incremental Aggregated Gradient Method

We are ready to introduce our algorithm for solving the optimization problem in (10). Since θ is shared
by all the N agents, the agents need to exchange information so as to reach a consensual solution.
Let us first specify the communication model. We assume that the N agents communicate over a
network specified by a connected and undirected graph G = (V,E), with V = [N ] = {1, ..., N}
and E ⊆ V × V being its vertex set and edge set, respectively. Over G, it is possible to define
a doubly stochastic matrix W such that Wij = 0 if (i, j) /∈ E and W1 = W>1 = 1, note
λ := λmax(W −N−111>) < 1 since G is connected. Notice that the edges in G may be formed
independently of the coupling between agents in the MDP induced by the stochastic policy π.

We handle problem (10) by judiciously combining the techniques of dynamic consensus [41, 54]
and stochastic (or incremental) average gradient (SAG) [20, 43], which have been developed
independently in the control and machine learning communities, respectively. From a high level
viewpoint, our method utilizes a gradient estimator which tracks the gradient over space (across
N agents) and time (across M samples). To proceed with our development while explaining the
intuitions, we first investigate a centralized and batch algorithm for solving (10).

Centralized Primal-dual Optimization Consider the primal-dual gradient updates. For any t ≥ 1,
at the t-th iteration, we update the primal and dual variables by

θt+1 = θt − γ1∇θJ(θt, {wt
i}Ni=1), wt+1

i = wt
i + γ2∇wi

J(θt, {wt
i}Ni=1), i ∈ [N ] , (11)

where γ1, γ2 > 0 are step sizes, which is a simple application of a gradient descent/ascent update to
the primal/dual variables. As shown by Du et al. [15], when Â is full rank and Ĉ is invertible, the
Jacobian matrix of the primal-dual optimal condition is full rank. Thus, within a certain range of step
size (γ1, γ2), recursion (11) converges linearly to the optimal solution of (10).

Proposed Method The primal-dual gradient method in (11) serves as a reasonable template for
developing an efficient decentralized algorithm for (10). Let us focus on the update of the primal
variable θ in (11), which is a more challenging part since θ is shared by all N agents. To evaluate the
gradient w.r.t. θ, we observe that – (a) agent i does not have access to the functions, {Jj,p(·), j 6= i},
of the other agents; (b) computing the gradient requires summing up the contributions from M
samples. As M � 1, doing so is undesirable since the computation complexity would be O(Md).

We circumvent the above issues by utilizing a double gradient tracking scheme for the primal
θ-update and an incremental update scheme for the local dual wi-update in the following primal-
dual distributed incremental aggregated gradient (PD-DistIAG) method. Here each agent i ∈ [N ]
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Algorithm 1 PD-DistIAG Method for Multi-agent, Primal-dual, Finite-sum Optimization

Input: Initial estimators {θ1i ,w1
i }i∈[N ], initial gradient estimators s0i = d0i = 0, ∀ i ∈ [N ], initial

counter τ0p = 0, ∀ p ∈ [M ], and stepsizes γ1, γ2 > 0.
for t ≥ 1 do

The agents pick a common sample indexed by pt ∈ {1, ...,M}.
Update the counter variable as:

τ tpt = t, τ tp = τ t−1p , ∀ p 6= pt . (12)

for each agent i ∈ {1, . . . , N} do
Update the gradient surrogates by

sti =
∑N
j=1Wijs

t−1
j + 1

M

[
∇θJi,pt(θti ,wt

i)−∇θJi,pt(θ
τt−1
pt
i ,w

τt−1
pt
i )

]
, (13)

dti = dt−1i + 1
M

[
∇wi

Ji,pt(θ
t
i ,w

t
i)−∇wi

Ji,pt(θ
τt−1
pt
i ,w

τt−1
pt
i )

]
, (14)

where ∇θJi,p(θ0i ,w0
i ) = 0 and∇wi

Ji,p(θ
0
i ,w

0
i ) = 0 for all p ∈ [M ] for initialization.

Perform primal-dual updates using sti,d
t
i as surrogates for the gradients w.r.t. θ and wi:

θt+1
i =

∑N
j=1Wijθ

t
j − γ1sti, w

t+1
i = wt

i + γ2d
t
i . (15)

end for
end for

maintains a local copy of the primal parameter {θti}t≥1. We construct sequences {sti}t≥1 and
{dti}t≥1 to track the gradients with respect to θ and wi, respectively. Similar to (11), in the t-th
iteration, we update the dual variable via gradient update using dti. As for the primal variable, to
achieve consensus, each θt+1

i is obtained by first combining {θti}i∈[N ] using the weight matrixW ,
and then update in the direction of sti. The details of our method are presented in Algorithm 1.

Let us explain the intuition behind the PD-DistIAG method through studying the update (13). Recall
that the global gradient desired at iteration t is given by ∇θJ(θt, {wt

i}Ni=1), which represents a
double average – one over space (across agents) and one over time (across samples). Now in the
case of (13), the first summand on the right hand side computes a local average among the neighbors
of agent i, and thereby tracking the global gradient over space. This is in fact akin to the gradient
tracking technique in the context of distributed optimization [41]. The remaining terms on the right
hand side of (13) utilize an incremental update rule akin to the SAG method [43], involving a swap-in
swap-out operation for the gradients. This achieves tracking of the global gradient over time.

To gain insights on why the scheme works, we note that sti and dti represent some surrogate functions
for the primal and dual gradients. Moreover, for the counter variable, using (12) we can alternatively
represent it as τ tp = max{` ≥ 0 : ` ≤ t, p` = p}. In other words, τ tp is the iteration index where
the p-th sample is last visited by the agents prior to iteration t, and if the p-th sample has never been
visited, we have τ tp = 0. For any t ≥ 1, define gθ(t) := (1/N)

∑N
i=1 s

t
i. The following lemma

shows that gθ(t) is a double average of the primal gradient – it averages over the local gradients
across the agents, and for each local gradient; it also averages over the past gradients for all the
samples evaluated up till iteration t+ 1. This shows that the average over network for {sti}Ni=1 can
always track the double average of the local and past gradients, i.e., the gradient estimate gθ(t) is
‘unbiased’ with respect to the network-wide average.

Lemma 1 For all t ≥ 1 and consider Algorithm 1, it holds that

gθ(t) = 1
NM

∑N
i=1

∑M
p=1∇θJi,p(θ

τt
p

i ,w
τt
p

i ) . (16)

Proof. We shall prove the statement using induction. For the base case with t = 1, using (13) and the
update rule specified in the algorithm, we have

gθ(1) =
1

N

N∑
i=1

1

M
∇θJi,p1(θ1i ,w

1
i ) =

1

NM

N∑
i=1

M∑
p=1

∇θJi,pt(θ
τ1
p

i ,w
τ1
p

i ) , (17)
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where we use the fact∇θJi,p(θ
τ1
p

i ,w
τ1
p

i ) = ∇θJi,p(θ0i ,w0
i ) = 0 for all p 6= p1 in the above. For the

induction step, suppose (16) holds up to iteration t. SinceW is doubly stochastic, (13) implies

gθ(t+ 1) =
1

N

N∑
i=1

{ N∑
j=1

Wijs
t
j +

1

M

[
∇θJi,pt+1

(θt+1
i ,wt+1

i )−∇θJi,pt+1
(θ
τt
pt+1

i ,w
τt
pt+1

i )
]}

= gθ(t) +
1

NM

N∑
i=1

[
∇θJi,pt+1

(θt+1
i ,wt+1

i )−∇θJi,pt+1
(θ
τt
pt+1

i ,w
τt
pt+1

i )
]
.

(18)

Notice that we have τ t+1
pt+1

= t+ 1 and τ t+1
p = τ tp for all p 6= pt+1. The induction assumption in (16)

can be written as

gθ(t) =
1

NM

N∑
i=1

[ ∑
p 6=pt+1

∇θJi,p(θ
τt+1
p

i ,w
τt+1
p

i )

]
+

1

NM

N∑
i=1

∇θJi,pt+1(θ
τt
pt+1

i ,w
τt
pt+1

i ) . (19)

Finally, combining (18) and (19), we obtain the desired result that (16) holds for the t+ 1th iteration.
This, together with (17), establishes Lemma 1. Q.E.D.

As for the dual update (14), we observe the variable wi is local to agent i. Therefore its gradient
surrogate, dti, involves only the tracking step over time [cf. (14)], i.e., it only averages the gradient
over samples. Combining with Lemma 1 shows that the PD-DistIAG method uses gradient surrogates
that are averages over samples despite the disparities across agents. Since the average over samples
are done in a similar spirit as the SAG method, the proposed method is expected to converge linearly.

Storage and Computation Complexities Let us comment on the computational and storage com-
plexity of PD-DistIAG method. First of all, since the method requires accessing the previously
evaluated gradients, each agent has to store 2M such vectors in the memory to avoid re-evaluating
these gradients. Each agent needs to store a total of 2Md real numbers. On the other hand, the
per-iteration computation complexity for each agent is only O(d) as each iteration only requires to
evaluate the gradient over one sample, as delineated in (14)–(15).

Communication Overhead The PD-DistIAG method described in Algorithm 1 requires an infor-
mation exchange round [of sti and θti ] among the agents at every iteration. From an implementation
stand point, this may incur significant communication overhead when d � 1, and it is especially
ineffective when the progress made in successive updates of the algorithm is not significant. A
natural remedy is to perform multiple local updates at the agent using different samples without
exchanging information with the neighbors. In this way, the communication overhead can be reduced.
Actually, this modification to the PD-DistIAG method can be generally described using a time varying
weight matrix W (t), such that we have W (t) = I for most of the iteration. The convergence of
PD-DistIAG method in this scenario is part of the future work.

3.1 Convergence Analysis

The PD-DistIAG method is built using the techniques of (a) primal-dual batch gradient descent,
(b) gradient tracking for distributed optimization and (c) stochastic average gradient, where each
of them has been independently shown to attain linear convergence under certain conditions; see
[41, 43, 20, 15]. Naturally, the PD-DistIAG method is also anticipated to converge at a linear rate.

To see this, let us consider the condition for the sample selection rule of PD-DistIAG:

A1 A sample is selected at least once for every M iterations, |t− τ tp| ≤M for all p ∈ [M ], t ≥ 1.

The assumption requires that every samples are visited infinitely often. For example, this can be
enforced by using a cyclical selection rule, i.e., pt = (t mod M) + 1; or a random sampling scheme
without replacement (i.e., random shuffling) from the pool of M samples. Finally, it is possible
to relax the assumption such that a sample can be selected once for every K iterations only, with
K ≥M . The present assumption is made solely for the purpose of ease of presentation. Moreover,
to ensure that the solution to (10) is unique, we consider:

A2 The sampled correlation matrix Â is full rank, and the sampled covariance Ĉ is non-singular.

The following theorem confirms the linear convergence of PD-DistIAG:
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Theorem 1 Under A1 and A2, we denote by (θ?, {w?
i }Ni=1) the primal-dual optimal solution

to the optimization problem in (10). Set the step sizes as γ2 = βγ1 with β := 8(ρ +

λmax(Â
>Ĉ−1Â))/λmin(Ĉ). Define θ(t) := 1

N

∑N
i=1 θ

t
i as the average of parameters. If the

primal step size γ1 is sufficiently small, then there exists a constant 0 < σ < 1 that∥∥θ(t)− θ?
∥∥2 + (1/βN)

∑N
i=1

∥∥wt
i −w?

i

∥∥2 = O(σt), (1/N)
∑N
i=1

∥∥θti − θ(t)
∥∥ = O(σt) .

If N,M � 1 and the graph is geometric, a sufficient condition for convergence is to set γ =
O(1/max{N2,M2}) and the resultant rate is σ = 1−O(1/max{MN2,M3}).

The result above shows the desirable convergence properties for PD-DistIAG method – the primal
dual solution (θ(t), {wt

i}Ni=1) converges to (θ?, {w?
i }Ni=1) at a linear rate; also, the consensual error

of the local parameters θ̄ti converges to zero linearly. A distinguishing feature of our analysis is that
it handles the worst case convergence of the proposed method, rather than the expected convergence
rate popular for stochastic / incremental gradient methods.

Proof Sketch Our proof is divided into three steps. The first step studies the progress made by the
algorithm in one iteration, taking into account the non-idealities due to imperfect tracking of the
gradient over space and time. This leads to the characterization of a Lyapunov vector. The second step
analyzes the coupled system of one iteration progress made by the Lyapunov vector. An interesting
feature of it is that it consists of a series of independently delayed terms in the Lyapunov vector. The
latter is resulted from the incremental update schemes employed in the method. Here, we study a
sufficient condition for the coupled and delayed system to converge linearly. The last step is to derive
condition on the step size γ1 where the sufficient convergence condition is satisfied.

Specifically, we study the progress of the Lyapunov functions:

‖v̂(t)‖2 := Θ
(∥∥θ(t)− θ?

∥∥2 + (1/βN)
∑N
i=1

∥∥wt
i −w?

i

∥∥2), Ec(t) := 1
N

√∑N
i=1 ‖θti − θ(t)‖2,

Eg(t) := 1
N

√∑N
i=1

∥∥sti − 1
NM

∑N
j=1

∑M
p=1∇θJj,p(θ

τt
p

j ,w
τt
p

j )
∥∥2 .

That is, v̂(t) is a vector whose squared norm is equivalent to a weighted distance to the optimal
primal-dual solution, Ec(t) and Eg(t) are respectively the consensus errors of the primal parameter
and of the primal aggregated gradient. These functions form a non-negative vector which evolves as: ‖v̂(t+ 1)‖

Ec(t+ 1)

Eg(t+ 1)

 ≤ Q(γ1)

 max(t−2M)+≤q≤t ‖v̂(q)‖
max(t−2M)+≤q≤t Ec(q)
max(t−2M)+≤q≤t Eg(q)

 , (20)

where the matrixQ(γ1) ∈ R3×3 is defined by (exact form given in the supplementary material)

Q(γ1) =

 1− γ1a0 + γ21a1 γ1a2 0
0 λ γ1

γ1a3 a4 + γ1a5 λ+ γ1a6

 . (21)

In the above, λ := λmax(W − (1/N)11>) < 1, and a0, ..., a6 are some non-negative constants
that depends on the problem parameters N , M , the spectral properties ofA, C, etc., with a0 being
positive. If we focus only on the first row of the inequality system, we obtain

‖v̂(t+ 1)‖ ≤
(
1− γ1a0 + γ21a1) max

(t−2M)+≤q≤t
‖v̂(q)‖+ γ1a2 max

(t−2M)+≤q≤t
Ec(q) .

In fact, when the contribution from Ec(q) can be ignored, then applying [16, Lemma 3] shows that
‖v̂(t+ 1)‖ converges linearly if −γ1a0 + γ21a1 < 0, which is possible as a0 > 0. Therefore, if Ec(t)
also converges linearly, then it is anticipated that Eg(t) would do so as well. In other words, the linear
convergence of ‖v̂(t)‖, Ec(t) and Eg(t) are all coupled in the inequality system (20).

Formalizing the above observations, Lemma 1 in the supplementary material shows a sufficient
condition on γ1 for linear convergence. Specifically, if there exists γ1 > 0 such that the spectral
radius ofQ(γ1) in (21) is strictly less than one, then each of the Lyapunov functions, ‖v̂(t)‖, Ec(t),
Eg(t), would enjoy linear convergence. Furthermore, Lemma 2 in the supplementary material gives
an existence proof for such an γ1 to exist. This concludes the proof.
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Remark While delayed inequality system has been studied in [16, 20] for optimization algorithms,
the coupled system in (20) is a non-trivial generalization of the above. Importantly, the challenge
here is due to the asymmetry of the system matrixQ and the maximum over the past sequences on
the right hand side are taken independently. To the best of our knowledge, our result is the first to
characterize the (linear) convergence of such coupled and delayed system of inequalities.

Extension Our analysis and algorithm may in fact be applied to solve general problems that involves
multi-agent and finite-sum optimization, e.g.,

minθ∈Rd J(θ) := 1
NM

∑N
i=1

∑M
p=1 Ji,p(θ) . (22)

For instance, these problems may arise in multi-agent empirical risk minimization, where data
samples are kept independently by agents. Our analysis, especially with convergence for inequality
systems of the form (20), can be applied to study a similar double averaging algorithm with just the
primal variable. In particular, we only require the sum function J(θ) to be strongly convex, and the
objective functions Ji,p(·) to be smooth in order to achieve linear convergence. We believe that such
extension is of independent interest to the community. At the time of submission, a recent work [40]
applied a related double averaging distributed algorithm to a stochastic version of (22). However,
their convergence rate is sub-linear as they considered a stochastic optimization setting.

4 Numerical Experiments

To verify the performance of our proposed method, we conduct an experiment on the mountaincar
dataset [46] under a setting similar to [15] – to collect the dataset, we ran Sarsa with d = 300 features
to obtain the policy, then we generate the trajectories of actions and states according to the policy with
M samples. For each sample p, we generate the local reward, Ri(sp,i, ap,i) by assigning a random
portion for the reward to each agent such that the average of the local rewards equalsRc(sp,ap).

We compare our method to several centralized methods – PDBG is the primal-dual gradient descent
method in (11), GTD2 [47], and SAGA [15]. Notably, SAGA has linear convergence while only
requiring an incremental update step of low complexity. For PD-DistIAG, we simulate a communica-
tion network with N = 10 agents, connected on an Erdos-Renyi graph generated with connectivity
of 0.2; for the step sizes, we set γ1 = 0.005/λmax(Â), γ2 = 5× 10−3.

0 100 200 300 400 500

Epoch

10
-8

10
-6

10
-4

10
-2

O
p
ti
m

a
lit

y
 G

a
p
 o

f 
M

S
P

B
E

PDBG

GTD2

SAGA

PD-DistIAG

0 1000 2000 3000 4000 5000

Epoch

10
-6

10
-4

10
-2

10
0

O
p
ti
m

a
lit

y
 G

a
p
 o

f 
M

S
P

B
E

PDBG

GTD2

SAGA

PD-DistIAG

Figure 1: Experiment with mountaincar dataset. For this problem, we have d = 300, M = 5000
samples, and there are N = 10 agents. (Left) Graph Topology. (Middle) ρ = 0.01. (Right) ρ = 0.

Figure 1 compares the optimality gap in terms of MSPBE of different algorithms against the epoch
number, defined as (t/M). For PD-DistIAG, we compare its optimality gap in MSPBE as the average
objective, i.e., it is (1/N)

∑N
i=1 MSPBE(θti) −MSPBE(θ?). As seen in the left panel, when the

regularization factor is high with ρ > 0, the convergence speed of PD-DistIAG is comparable to
that of SAGA; meanwhile with ρ = 0, the PD-DistIAG converges at a slower speed than SAGA.
Nevertheless, in both cases, the PD-DistIAG method converges faster than the other methods except
for SAGA. Additional experiments are presented in the supplementary materials to compare the
performance at different topology and regularization parameter.

Conclusion In this paper, we have studied the policy evaluation problem in multi-agent rein-
forcement learning. Utilizing Fenchel duality, a double averaging scheme is proposed to tackle the
primal-dual, multi-agent, and finite-sum optimization arises. The proposed PD-DistIAG method
demonstrates linear convergence under reasonable assumptions.
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