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Abstract

At initialization, artificial neural networks (ANNs) are equivalent to Gaussian
processes in the infinite-width limit (12; 9), thus connecting them to kernel methods.
We prove that the evolution of an ANN during training can also be described by a
kernel: during gradient descent on the parameters of an ANN, the network function
fθ (which maps input vectors to output vectors) follows the kernel gradient of the
functional cost (which is convex, in contrast to the parameter cost) w.r.t. a new
kernel: the Neural Tangent Kernel (NTK). This kernel is central to describe the
generalization features of ANNs. While the NTK is random at initialization and
varies during training, in the infinite-width limit it converges to an explicit limiting
kernel and it stays constant during training. This makes it possible to study the
training of ANNs in function space instead of parameter space. Convergence of
the training can then be related to the positive-definiteness of the limiting NTK.
We then focus on the setting of least-squares regression and show that in the infinite-
width limit, the network function fθ follows a linear differential equation during
training. The convergence is fastest along the largest kernel principal components
of the input data with respect to the NTK, hence suggesting a theoretical motivation
for early stopping.
Finally we study the NTK numerically, observe its behavior for wide networks,
and compare it to the infinite-width limit.

1 Introduction

Artificial neural networks (ANNs) have achieved impressive results in numerous areas of machine
learning. While it has long been known that ANNs can approximate any function with sufficiently
many hidden neurons (7; 10), it is not known what the optimization of ANNs converges to. Indeed
the loss surface of neural networks optimization problems is highly non-convex: it has a high number
of saddle points which may slow down the convergence (4). A number of results (3; 13; 14) suggest
that for wide enough networks, there are very few “bad” local minima, i.e. local minima with much
higher cost than the global minimum. More recently, the investigation of the geometry of the loss
landscape at initialization has been the subject of a precise study (8). The analysis of the dynamics
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of training in the large-width limit for shallow networks has seen recent progress as well (11). To
the best of the authors knowledge, the dynamics of deep networks has however remained an open
problem until the present paper: see the contributions section below.

A particularly mysterious feature of ANNs is their good generalization properties in spite of their
usual over-parametrization (16). It seems paradoxical that a reasonably large neural network can fit
random labels, while still obtaining good test accuracy when trained on real data (19). It can be noted
that in this case, kernel methods have the same properties (1).

In the infinite-width limit, ANNs have a Gaussian distribution described by a kernel (12; 9). These
kernels are used in Bayesian inference or Support Vector Machines, yielding results comparable to
ANNs trained with gradient descent (9; 2). We will see that in the same limit, the behavior of ANNs
during training is described by a related kernel, which we call the neural tangent network (NTK).

1.1 Contribution

We study the network function fθ of an ANN, which maps an input vector to an output vector, where
θ is the vector of the parameters of the ANN. In the limit as the widths of the hidden layers tend to
infinity, the network function at initialization, fθ converges to a Gaussian distribution (12; 9).

In this paper, we investigate fully connected networks in this infinite-width limit, and describe the
dynamics of the network function fθ during training:

• During gradient descent, we show that the dynamics of fθ follows that of the so-called kernel
gradient descent in function space with respect to a limiting kernel, which only depends on
the depth of the network, the choice of nonlinearity and the initialization variance.

• The convergence properties of ANNs during training can then be related to the positive-
definiteness of the infinite-width limit NTK. The values of the network function fθ outside
the training set is described by the NTK, which is crucial to understand how ANN generalize.

• For a least-squares regression loss, the network function fθ follows a linear differential
equation in the infinite-width limit, and the eigenfunctions of the Jacobian are the kernel
principal components of the input data. This shows a direct connection to kernel methods
and motivates the use of early stopping to reduce overfitting in the training of ANNs.

• Finally we investigate these theoretical results numerically for an artificial dataset (of points
on the unit circle) and for the MNIST dataset. In particular we observe that the behavior of
wide ANNs is close to the theoretical limit.

2 Neural networks

In this article, we consider fully-connected ANNs with layers numbered from 0 (input) to L (output),
each containing n0, . . . , nL neurons, and with a Lipschitz, twice differentiable nonlinearity function
σ : R→ R, with bounded second derivative 1.

This paper focuses on the ANN realization function F (L) : RP → F , mapping parameters θ to
functions fθ in a space F . The dimension of the parameter space is P =

∑L−1
`=0 (n` + 1)n`+1: the

parameters consist of the connection matrices W (`) ∈ Rn`×n`+1 and bias vectors b(`) ∈ Rn`+1 for
` = 0, ..., L− 1. In our setup, the parameters are initialized as iid Gaussians N (0, 1).

For a fixed distribution pin on the input space Rn0 , the function space F is defined as
{f : Rn0 → RnL}. On this space, we consider the seminorm || · ||pin , defined in terms of the
bilinear form

〈f, g〉pin = Ex∼pin
[
f(x)T g(x)

]
.

In this paper, we assume that the input distribution pin is the empirical distribution on a finite dataset
x1, ..., xN , i.e the sum of Dirac measures 1

N

∑N
i=0 δxi .

1While these smoothness assumptions greatly simplify the proofs of our results, they do not seem to be
strictly needed for the results to hold true.
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We define the network function by fθ(x) := α̃(L)(x; θ), where the functions α̃(`)(·; θ) : Rn0 → Rn`
(called preactivations) and α(`)(·; θ) : Rn0 → Rn` (called activations) are defined from the 0-th to
the L-th layer by:

α(0)(x; θ) = x

α̃(`+1)(x; θ) =
1
√
n`
W (`)α(`)(x; θ) + βb(`)

α(`)(x; θ) = σ(α̃(`)(x; θ)),

where the nonlinearity σ is applied entrywise. The scalar β > 0 is a parameter which allows us to
tune the influence of the bias on the training.

Remark 1. Our definition of the realization function F (L) slightly differs from the classical one.
Usually, the factors 1√

n`
and the parameter β are absent and the parameters are initialized using

what is sometimes called LeCun initialization, taking W (`)
ij ∼ N (0, 1

n`
) and b(`)j ∼ N (0, 1) (or

sometimes b(`)j = 0) to compensate. While the set of representable functions F (L)(RP ) is the same
for both parametrizations (with or without the factors 1√

n`
and β), the derivatives of the realization

function with respect to the connections ∂
W

(`)
ij
F (L) and bias ∂

b
(`)
j
F (L) are scaled by 1√

n`
and β

respectively in comparison to the classical parametrization.

The factors 1√
n`

are key to obtaining a consistent asymptotic behavior of neural networks as the
widths of the hidden layers n1, ..., nL−1 grow to infinity. However a side-effect of these factors is
that they reduce greatly the influence of the connection weights during training when n` is large: the
factor β is introduced to balance the influence of the bias and connection weights. In our numerical
experiments, we take β = 0.1 and use a learning rate of 1.0, which is larger than usual, see Section 6.
This gives a behaviour similar to that of a classical network of width 100 with a learning rate of 0.01.

3 Kernel gradient

The training of an ANN consists in optimizing fθ in the function space F with respect to a functional
cost C : F → R, such as a regression or cross-entropy cost. Even for a convex functional cost C,
the composite cost C ◦ F (L) : RP → R is in general highly non-convex (3). We will show that
during training, the network function fθ follows a descent along the kernel gradient with respect to
the Neural Tangent Kernel (NTK) which we introduce in Section 4. This makes it possible to study
the training of ANNs in the function space F , on which the cost C is convex.

A multi-dimensional kernel K is a function Rn0 × Rn0 → RnL×nL , which maps any pair (x, x′) to
an nL×nL-matrix such thatK(x, x′) = K(x′, x)T (equivalentlyK is a symmetric tensor in F⊗F ).
Such a kernel defines a bilinear map on F , taking the expectation over independent x, x′ ∼ pin:

〈f, g〉K := Ex,x′∼pin
[
f(x)TK(x, x′)g(x′)

]
.

The kernel K is positive definite with respect to || · ||pin if ||f ||pin > 0 =⇒ ||f ||K > 0.

We denote by F∗ the dual of F with respect to pin, i.e. the set of linear forms µ : F → R of the form
µ = 〈d, ·〉pin for some d ∈ F . Two elements of F define the same linear form if and only if they
are equal on the data. The constructions in the paper do not depend on the element d ∈ F chosen in
order to represent µ as 〈d, ·〉pin . Using the fact that the partial application of the kernel Ki,·(x, ·) is
a function in F , we can define a map ΦK : F∗ → F mapping a dual element µ = 〈d, ·〉pin to the
function fµ = ΦK(µ) with values:

fµ,i(x) = µKi,·(x, ·) = 〈d,Ki,·(x, ·)〉pin .

For our setup, which is that of a finite dataset x1, . . . , xn ∈ Rn0 , the cost functional C only depends
on the values of f ∈ F at the data points. As a result, the (functional) derivative of the cost C at a
point f0 ∈ F can be viewed as an element of F∗, which we write ∂inf C|f0 . We denote by d|f0 ∈ F ,
a corresponding dual element, such that ∂inf C|f0 = 〈d|f0 , ·〉pin .
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The kernel gradient ∇KC|f0 ∈ F is defined as ΦK

(
∂inf C|f0

)
. In contrast to ∂inf C which is only

defined on the dataset, the kernel gradient generalizes to values x outside the dataset thanks to the
kernel K:

∇KC|f0(x) =
1

N

N∑
j=1

K(x, xj)d|f0(xj).

A time-dependent function f(t) follows the kernel gradient descent with respect to K if it satisfies
the differential equation

∂tf(t) = −∇KC|f(t).

During kernel gradient descent, the cost C(f(t)) evolves as

∂tC|f(t) = −
〈
d|f(t),∇KC|f(t)

〉
pin

= −
∥∥d|f(t)

∥∥2

K
.

Convergence to a critical point of C is hence guaranteed if the kernel K is positive definite with
respect to || · ||pin : the cost is then strictly decreasing except at points such that ||d|f(t)||pin = 0.
If the cost is convex and bounded from below, the function f(t) therefore converges to a global
minimum as t→∞.

3.1 Random functions approximation

As a starting point to understand the convergence of ANN gradient descent to kernel gradient descent
in the infinite-width limit, we introduce a simple model, inspired by the approach of (15).

A kernel K can be approximated by a choice of P random functions f (p) sampled independently
from any distribution on F whose (non-centered) covariance is given by the kernel K:

E[f
(p)
k (x)f

(p)
k′ (x′)] = Kkk′(x, x

′).

These functions define a random linear parametrization F lin : RP → F

θ 7→ f linθ =
1√
P

P∑
p=1

θpf
(p).

The partial derivatives of the parametrization are given by

∂θpF
lin(θ) =

1√
P
f (p).

Optimizing the cost C ◦ F lin through gradient descent, the parameters follow the ODE:

∂tθp(t) = −∂θp(C ◦ F lin)(θ(t)) = − 1√
P
∂inf C|f lin

θ(t)
f (p) = − 1√

P

〈
d|f lin

θ(t)
, f (p)

〉
pin

.

As a result the function f linθ(t) evolves according to

∂tf
lin
θ(t) =

1√
P

P∑
p=1

∂tθp(t)f
(p) = − 1

P

P∑
p=1

〈
d|f lin

θ(t)
, f (p)

〉
pin

f (p),

where the right-hand side is equal to the kernel gradient −∇K̃C with respect to the tangent kernel

K̃ =

P∑
p=1

∂θpF
lin(θ)⊗ ∂θpF lin(θ) =

1

P

P∑
p=1

f (p) ⊗ f (p).

This is a random nL-dimensional kernel with values K̃ii′(x, x
′) = 1

P

∑P
p=1 f

(p)
i (x)f

(p)
i′ (x′).

Performing gradient descent on the cost C ◦F lin is therefore equivalent to performing kernel gradient
descent with the tangent kernel K̃ in the function space. In the limit as P →∞, by the law of large
numbers, the (random) tangent kernel K̃ tends to the fixed kernel K, which makes this method an
approximation of kernel gradient descent with respect to the limiting kernel K.
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4 Neural tangent kernel

For ANNs trained using gradient descent on the composition C ◦F (L), the situation is very similar to
that studied in the Section 3.1. During training, the network function fθ evolves along the (negative)
kernel gradient

∂tfθ(t) = −∇Θ(L)C|fθ(t)
with respect to the neural tangent kernel (NTK)

Θ(L)(θ) =

P∑
p=1

∂θpF
(L)(θ)⊗ ∂θpF (L)(θ).

However, in contrast to F lin, the realization function F (L) of ANNs is not linear. As a consequence,
the derivatives ∂θpF

(L)(θ) and the neural tangent kernel depend on the parameters θ. The NTK
is therefore random at initialization and varies during training, which makes the analysis of the
convergence of fθ more delicate.

In the next subsections, we show that, in the infinite-width limit, the NTK becomes deterministic at
initialization and stays constant during training. Since fθ at initialization is Gaussian in the limit, the
asymptotic behavior of fθ during training can be explicited in the function space F .

4.1 Initialization

As observed in (12; 9), the output functions fθ,i for i = 1, ..., nL tend to iid Gaussian processes in
the infinite-width limit (a proof in our setup is given in the appendix):
Proposition 1. For a network of depth L at initialization, with a Lipschitz nonlinearity σ, and in the
limit as n1, ..., nL−1 →∞, the output functions fθ,k, for k = 1, ..., nL, tend (in law) to iid centered
Gaussian processes of covariance Σ(L), where Σ(L) is defined recursively by:

Σ(1)(x, x′) =
1

n0
xTx′ + β2

Σ(L+1)(x, x′) = Ef∼N(0,Σ(L))[σ(f(x))σ(f(x′))] + β2,

taking the expectation with respect to a centered Gaussian process f of covariance Σ(L).
Remark 2. Strictly speaking, the existence of a suitable Gaussian measure with covariance Σ(L) is
not needed: we only deal with the values of f at x, x′ (the joint measure on f(x), f(x′) is simply a
Gaussian vector in 2D). For the same reasons, in the proof of Proposition 1 and Theorem 1, we will
freely speak of Gaussian processes without discussing their existence.

The first key result of our paper (proven in the appendix) is the following: in the same limit, the
Neural Tangent Kernel (NTK) converges in probability to an explicit deterministic limit.
Theorem 1. For a network of depth L at initialization, with a Lipschitz nonlinearity σ, and in the
limit as the layers width n1, ..., nL−1 →∞, the NTK Θ(L) converges in probability to a deterministic
limiting kernel:

Θ(L) → Θ(L)
∞ ⊗ IdnL .

The scalar kernel Θ
(L)
∞ : Rn0 × Rn0 → R is defined recursively by

Θ(1)
∞ (x, x′) = Σ(1)(x, x′)

Θ(L+1)
∞ (x, x′) = Θ(L)

∞ (x, x′)Σ̇(L+1)(x, x′) + Σ(L+1)(x, x′),

where
Σ̇(L+1) (x, x′) = Ef∼N(0,Σ(L)) [σ̇ (f (x)) σ̇ (f (x′))] ,

taking the expectation with respect to a centered Gaussian process f of covariance Σ(L), and where
σ̇ denotes the derivative of σ.
Remark 3. By Rademacher’s theorem, σ̇ is defined everywhere, except perhaps on a set of zero
Lebesgue measure.

Note that the limiting Θ
(L)
∞ only depends on the choice of σ, the depth of the network and the variance

of the parameters at initialization (which is equal to 1 in our setting).

5



4.2 Training

Our second key result is that the NTK stays asymptotically constant during training. This applies
for a slightly more general definition of training: the parameters are updated according to a training
direction dt ∈ F :

∂tθp(t) =
〈
∂θpF

(L)(θ(t)), dt

〉
pin

.

In the case of gradient descent, dt = −d|fθ(t) (see Section 3), but the direction may depend on
another network, as is the case for e.g. Generative Adversarial Networks (6). We only assume that
the integral

∫ T
0
‖dt‖pindt stays stochastically bounded as the width tends to infinity, which is verified

for e.g. least-squares regression, see Section 5.
Theorem 2. Assume that σ is a Lipschitz, twice differentiable nonlinearity function, with bounded
second derivative. For any T such that the integral

∫ T
0
‖dt‖pindt stays stochastically bounded, as

n1, ..., nL−1 →∞, we have, uniformly for t ∈ [0, T ],

Θ(L)(t)→ Θ(L)
∞ ⊗ IdnL .

As a consequence, in this limit, the dynamics of fθ is described by the differential equation

∂tfθ(t) = Φ
Θ

(L)
∞ ⊗IdnL

(
〈dt, ·〉pin

)
.

Remark 4. As the proof of the theorem (in the appendix) shows, the variation during training of the
individual activations in the hidden layers shrinks as their width grows. However their collective
variation is significant, which allows the parameters of the lower layers to learn: in the formula of
the limiting NTK Θ

(L+1)
∞ (x, x′) in Theorem 1, the second summand Σ(L+1) represents the learning

due to the last layer, while the first summand represents the learning performed by the lower layers.

As discussed in Section 3, the convergence of kernel gradient descent to a critical point of the cost
C is guaranteed for positive definite kernels. The limiting NTK is positive definite if the span of
the derivatives ∂θpF

(L), p = 1, ..., P becomes dense in F w.r.t. the pin-norm as the width grows
to infinity. It seems natural to postulate that the span of the preactivations of the last layer (which
themselves appear in ∂θpF

(L), corresponding to the connection weights of the last layer) becomes
dense in F , for a large family of measures pin and nonlinearities (see e.g. (7; 10) for classical
theorems about ANNs and approximation).

5 Least-squares regression

Given a goal function f∗ and input distribution pin, the least-squares regression cost is

C(f) =
1

2
||f − f∗||2pin =

1

2
Ex∼pin

[
‖f(x)− f∗(x)‖2

]
.

Theorems 1 and 2 apply to an ANN trained on such a cost. Indeed the norm of the training direction
‖d(f)‖pin = ‖f∗ − f‖pin is strictly decreasing during training, bounding the integral. We are
therefore interested in the behavior of a function ft during kernel gradient descent with a kernel K
(we are of course especially interested in the case K = Θ

(L)
∞ ⊗ IdnL ):

∂tft = ΦK

(
〈f∗ − f, ·〉pin

)
.

The solution of this differential equation can be expressed in terms of the map Π : f 7→
ΦK

(
〈f, ·〉pin

)
:

ft = f∗ + e−tΠ(f0 − f∗)

where e−tΠ =
∑∞
k=0

(−t)k
k! Πk is the exponential of−tΠ. If Π can be diagonalized by eigenfunctions

f (i) with eigenvalues λi, the exponential e−tΠ has the same eigenfunctions with eigenvalues e−tλi .

For a finite dataset x1, ..., xN of size N , the map Π takes the form

Π(f)k(x) =
1

N

N∑
i=1

nL∑
k′=1

fk′(xi)Kkk′(xi, x).
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The map Π has at most NnL positive eigenfunctions, and they are the kernel principal components
f (1), ..., f (NnL) of the data with respect to to the kernel K (17; 18). The corresponding eigenvalues
λi is the variance captured by the component.

Decomposing the difference (f∗ − f0) = ∆0
f + ∆1

f + ...+ ∆NnL
f along the eigenspaces of Π, the

trajectory of the function ft reads

ft = f∗ + ∆0
f +

NnL∑
i=1

e−tλi∆i
f ,

where ∆0
f is in the kernel (null-space) of Π and ∆i

f ∝ f (i).

The above decomposition can be seen as a motivation for the use of early stopping. The convergence
is indeed faster along the eigenspaces corresponding to larger eigenvalues λi. Early stopping hence
focuses the convergence on the most relevant kernel principal components, while avoiding to fit
the ones in eigenspaces with lower eigenvalues (such directions are typically the ‘noisier’ ones: for
instance, in the case of the RBF kernel, lower eigenvalues correspond to high frequency functions).

Note that by the linearity of the map e−tΠ, if f0 is initialized with a Gaussian distribution (as is the
case for ANNs in the infinite-width limit), then ft is Gaussian for all times t. Assuming that the kernel
is positive definite on the data (implying that theNnL×NnL Gram marix K̃ = (Kkk′(xi, xj))ik,jk′

is invertible), as t→∞ limit, we get that f∞ = f∗ + ∆0
f = f0 −

∑
i ∆i

f takes the form

f∞,k(x) = κTx,kK̃
−1y∗ +

(
f0(x)− κTx,kK̃−1y0

)
,

with the Nnl-vectors κx,k, y∗ and y0 given by

κx,k = (Kkk′(x, xi))i,k′

y∗ = (f∗k (xi))i,k

y0 = (f0,k(xi))i,k .

The first term, the mean, has an important statistical interpretation: it is the maximum-a-posteriori
(MAP) estimate given a Gaussian prior on functions fk ∼ N (0,Θ

(L)
∞ ) and the conditions fk(xi) =

f∗k (xi) . Equivalently, it is equal to the kernel ridge regression (18) as the regularization goes to
zero (λ→ 0). The second term is a centered Gaussian whose variance vanishes on the points of the
dataset.

6 Numerical experiments

In the following numerical experiments, fully connected ANNs of various widths are compared to the
theoretical infinite-width limit. We choose the size of the hidden layers to all be equal to the same
value n := n1 = ... = nL−1 and we take the ReLU nonlinearity σ(x) = max(0, x).

In the first two experiments, we consider the case n0 = 2. Moreover, the input elements are taken on
the unit circle. This can be motivated by the structure of high-dimensional data, where the centered
data points often have roughly the same norm 2.

In all experiments, we took nL = 1 (note that by our results, a network with nL outputs behaves
asymptotically like nL networks with scalar outputs trained independently). Finally, the value of the
parameter β is chosen as 0.1, see Remark 1.

6.1 Convergence of the NTK

The first experiment illustrates the convergence of the NTK Θ(L) of a network of depth L = 4 for
two different widths n = 500, 10000. The function Θ(4)(x0, x) is plotted for a fixed x0 = (1, 0)
and x = (cos(γ), sin(γ)) on the unit circle in Figure 1. To observe the distribution of the NTK, 10
independent initializations are performed for both widths. The kernels are plotted at initialization

2The classical example is for data following a Gaussian distribution N (0, Idn0): as the dimension n0 grows,
all data points have approximately the same norm

√
n0.
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Figure 1: Convergence of the NTK to a fixed limit
for two widths n and two times t.
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Figure 2: Networks function fθ near convergence
for two widths n and 10th, 50th and 90th per-
centiles of the asymptotic Gaussian distribution.

t = 0 and then after 200 steps of gradient descent with learning rate 1.0 (i.e. at t = 200). We
approximate the function f∗(x) = x1x2 with a least-squares cost on random N (0, 1) inputs.

For the wider network, the NTK shows less variance and is smoother. It is interesting to note that
the expectation of the NTK is very close for both networks widths. After 200 steps of training, we
observe that the NTK tends to “inflate”. As expected, this effect is much less apparent for the wider
network (n = 10000) where the NTK stays almost fixed, than for the smaller network (n = 500).

6.2 Kernel regression

For a regression cost, the infinite-width limit network function fθ(t) has a Gaussian distribution for
all times t and in particular at convergence t → ∞ (see Section 5). We compared the theoretical
Gaussian distribution at t → ∞ to the distribution of the network function fθ(T ) of a finite-width
network for a large time T = 1000. For two different widths n = 50, 1000 and for 10 random
initializations each, a network is trained on a least-squares cost on 4 points of the unit circle for 1000
steps with learning rate 1.0 and then plotted in Figure 2.

We also approximated the kernels Θ
(4)
∞ and Σ(4) using a large-width network (n = 10000) and used

them to calculate and plot the 10th, 50th and 90-th percentiles of the t → ∞ limiting Gaussian
distribution.

The distributions of the network functions are very similar for both widths: their mean and variance
appear to be close to those of the limiting distribution t → ∞. Even for relatively small widths
(n = 50), the NTK gives a good indication of the distribution of fθ(t) as t→∞.

6.3 Convergence along a principal component

We now illustrate our result on the MNIST dataset of handwritten digits made up of grayscale images
of dimension 28× 28, yielding a dimension of n0 = 784.

We computed the first 3 principal components of a batch of N = 512 digits with respect to the NTK
of a high-width network n = 10000 (giving an approximation of the limiting kernel) using a power
iteration method. The respective eigenvalues are λ1 = 0.0457, λ2 = 0.00108 and λ3 = 0.00078.
The kernel PCA is non-centered, the first component is therefore almost equal to the constant function,
which explains the large gap between the first and second eigenvalues3. The next two components are
much more interesting as can be seen in Figure 3a, where the batch is plotted with x and y coordinates
corresponding to the 2nd and 3rd components.

We have seen in Section 5 how the convergence of kernel gradient descent follows the kernel principal
components. If the difference at initialization f0−f∗ is equal (or proportional) to one of the principal

3It can be observed numerically, that if we choose β = 1.0 instead of our recommended 0.1, the gap between
the first and the second principal component is about ten times bigger, which makes training more difficult.
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Figure 3

components f (i), then the function will converge along a straight line (in the function space) to f∗ at
an exponential rate e−λit.

We tested whether ANNs of various widths n = 100, 1000, 10000 behave in a similar manner. We
set the goal of the regression cost to f∗ = fθ(0) + 0.5f (2) and let the network converge. At each time
step t, we decomposed the difference fθ(t)− f∗ into a component gt proportional to f (2) and another
one ht orthogonal to f (2). In the infinite-width limit, the first component decays exponentially fast
||gt||pin = 0.5e−λ2t while the second is null (ht = 0), as the function converges along a straight line.

As expected, we see in Figure 3b that the wider the network, the less it deviates from the straight line
(for each width n we performed two independent trials). As the width grows, the trajectory along the
2nd principal component (shown in Figure 3c) converges to the theoretical limit shown in blue.

A surprising observation is that smaller networks appear to converge faster than wider ones. This may
be explained by the inflation of the NTK observed in our first experiment. Indeed, multiplying the
NTK by a factor a is equivalent to multiplying the learning rate by the same factor. However, note
that since the NTK of large-width network is more stable during training, larger learning rates can in
principle be taken. One must hence be careful when comparing the convergence speed in terms of the
number of steps (rather than in terms of the time t): both the inflation effect and the learning rate
must be taken into account.

7 Conclusion

This paper introduces a new tool to study ANNs, the Neural Tangent Kernel (NTK), which describes
the local dynamics of an ANN during gradient descent. This leads to a new connection between ANN
training and kernel methods: in the infinite-width limit, an ANN can be described in the function
space directly by the limit of the NTK, an explicit constant kernel Θ

(L)
∞ , which only depends on

its depth, nonlinearity and parameter initialization variance. More precisely, in this limit, ANN
gradient descent is shown to be equivalent to a kernel gradient descent with respect to Θ

(L)
∞ . The

limit of the NTK is hence a powerful tool to understand the generalization properties of ANNs, and
it allows one to study the influence of the depth and nonlinearity on the learning abilities of the
network. The analysis of training using NTK allows one to relate convergence of ANN training with
the positive-definiteness of the limiting NTK and leads to a characterization of the directions favored
by early stopping methods.
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