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Abstract

We study the computational tractability of PAC reinforcement learning with rich
observations. We present new provably sample-efficient algorithms for environ-
ments with deterministic hidden state dynamics and stochastic rich observations.
These methods operate in an oracle model of computation—accessing policy and
value function classes exclusively through standard optimization primitives—and
therefore represent computationally efficient alternatives to prior algorithms that
require enumeration. With stochastic hidden state dynamics, we prove that the only
known sample-efficient algorithm, OLIVE [1], cannot be implemented in the oracle
model. We also present several examples that illustrate fundamental challenges of
tractable PAC reinforcement learning in such general settings.

1 Introduction

We study episodic reinforcement learning (RL) in environments with realistically rich observations
such as images or text, which we refer to broadly as contextual decision processes. We aim for
methods that use function approximation in a provably effective manner to find the best possible
policy through strategic exploration.

While such problems are central to empirical RL research [2], most theoretical results on strategic
exploration focus on tabular MDPs with small state spaces [3—10]. Comparatively little work exists
on provably effective exploration with large observation spaces that require generalization through
function approximation. The few algorithms that do exist either have poor sample complexity
guarantees [e.g., 11-14] or require fully deterministic environments [15, 16] and are therefore
inapplicable to most real-world applications and modern empirical RL benchmarks. This scarcity of
positive results on efficient exploration with function approximation can likely be attributed to the
challenging nature of this problem rather than a lack of interest by the research community.

On the statistical side, recent important progress was made by showing that contextual decision
processes (CDPs) with rich stochastic observations and deterministic dynamics over M hidden
states can be learned with a sample complexity polynomial in M [17]. This was followed by an
algorithm called OLIVE [1] that enjoys a polynomial sample complexity guarantee for a broader
range of CDPs, including ones with stochastic hidden state transitions. While encouraging, these
efforts focused exclusively on statistical issues, ignoring computation altogether. Specifically, the
proposed algorithms exhaustively enumerate candidate value functions to eliminate the ones that
violate Bellman equations, an approach that is computationally intractable for any function class of
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practical interest. Thus, while showing that RL with rich observations can be statistically tractable,
these results leave open the question of computational feasibility.

In this paper, we focus on this difficult computational challenge. We work in an oracle model of
computation, meaning that we aim to design sample-efficient algorithms whose computation can be
reduced to common optimization primitives over function spaces, such as linear programming and
cost-sensitive classification. The oracle-based approach has produced practically effective algorithms
for active learning [18], contextual bandits [19], structured prediction [20, 21], and multi-class
classification [22], and here, we consider oracle-based algorithms for challenging RL settings.

We begin by studying the setting of Krishnamurthy et al. [17] with deterministic dynamics over
M hidden states and stochastic rich observations. In Section 4, we use cost-sensitive classification
and linear programming oracles to develop VALOR, the first algorithm that is both computationally
and statistically efficient for this setting. While deterministic hidden-state dynamics are somewhat
restrictive, the model is considerably more general than fully deterministic MDPs assumed by prior
work [15, 16], and it accurately captures modern empirical benchmarks such as visual grid-worlds in
Minecraft [23]. As such, this method represents a considerable advance toward provably efficient RL
in practically relevant scenarios.

Nevertheless, we ultimately seek efficient algorithms for more general settings, such as those with
stochastic hidden-state transitions. Working toward this goal, we study the computational aspects of
the OLIVE algorithm [1], which applies to a wide range of environments. Unfortunately, in Section 5.1,
we show that OLIVE cannot be implemented efficiently in the oracle model of computation. As
OLIVE is the only known statistically efficient approach for this general setting, our result establishes a
significant barrier to computational efficiency. In the appendix, we also describe several other barriers,
and two other oracle-based algorithms for the deterministic-dynamics setting that are considerably
different from VALOR. The negative results identify where the hardness lies while the positive results
provide a suite of new algorithmic tools. Together, these results advance our understanding of efficient
reinforcement learning with rich observations.

2 Related Work

There is abundant work on strategic exploration in the tabular setting [3—10]. The computation
in these algorithms often involves planning in optimistic models and can be solved efficiently via
dynamic programming. To extend the theory to the more practical settings of large state spaces,
typical approaches include (1) distance-based state identity test under smoothness assumptions [e.g.,
11-14], or (2) working with factored MDPs [e.g., 24]. The former approach is similar to the use of
state abstractions [25], and typically incurs exponential sample complexity in state dimension. The
latter approach does have sample-efficient results, but the factored representation assumes relatively
disentangled state variables which cannot model rich sensory inputs (such as images).

Azizzadenesheli et al. [26] have studied regret minimization in rich observation MDPs, a special case
of contextual decision processes with a small number of hidden states and reactive policies. They do
not utilize function approximation, and hence incur polynomial dependence on the number of unique
observations in both sample and computational complexity. Therefore, this approach, along with
related works [27, 28], does not scale to the rich observation settings that we focus on here.

Wen and Van Roy [15, 16] have studied exploration with function approximation in fully deterministic
MDPs, which is considerably more restrictive than our setting of deterministic hidden state dynamics
with stochastic observations and rewards. Moreover, their analysis measures representation com-
plexity using eluder dimension [29, 30], which is only known to be small for some simple function
classes. In comparison, our bounds scale with more standard complexity measures and can easily
extend to VC-type quantities, which allows our theory to apply to practical and popular function
approximators including neural networks [31].

3 Setting and Background

We consider reinforcement learning (RL) in a common special case of contextual decision pro-
cesses [17, 1], sometimes referred to as rich observation MDPs [26]. We assume an H -step process
where in each episode, a random trajectory s1,21,01,71, 82,2, ..., SH, TH, G, TH 1S generated.
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Figure 1: Graphical representation of the problem class considered by our algorithm, VALOR: The
main assumptions that enable sample-efficient learning are (1) that the small hidden state sy, is
identifiable from the rich observation x5 and (2) that the next state is a deterministic function of
the previous state and action. State and observation examples are from https://github.com/
Microsoft/malmo-challenge.

For each time step (or level) h € [H], s, € S where S is a finite hidden state space, z;, € X where X
is the rich observation (context) space, a;, € A where A is a finite action space of size K, and r, € R.
Each hidden state s € S is associated with an emission process Os € A(X), and we use z ~ s as a
shorthand for z ~ O,. We assume that each rich observation contains enough information so that s
can in principle be identified just from x ~ Os—hence x is a Markov state and the process is in fact
an MDP over X¥—but the mapping « — s is unavailable to the agent and s is never observed. The
hidden states S introduce structure into the problem, which is essential since we allow the observation
space X to be infinitely large.”> The issue of partial observability is not the focus of the paper.

LetT' : § x A — A(S) define transition dynamics over the hidden states, and let I'; € A(S)
denote an initial distribution over hidden states. R : X x A — A(R) is the reward function;
this differs from partially observable MDPs where reward depends only on s, making the problem
more challenging. With this notation, a trajectory is generated as follows: s; ~ I'y, 1 ~ sq,
r1 ~ R(x1,a1), so ~T(s1,a1), 23 ~ S92, ..., 85 ~T(sg_1,ag—_1), xg ~ sy, rg ~ R(xy,an),
with actions a1.z chosen by the agent. We emphasize that s1.; are unobservable to the agent.

To simplify notation, we assume that each observation and hidden state can only appear at a particular
level. This implies that S is partitioned into {S, }}, with size M := maxy,¢ |Sn|. For regularity,

assume rp, > 0 and Zthl rp, < 1 almost surely.

In this setting, the learning goal is to find a policy 7 : X — A that maximizes the expected return
VT o= E[Zle rh | a1.g ~ 7]. Let 7 denote the optimal policy, which maximizes V™, with
optimal value function g* defined as g*(x) := E[Zgzh Th|lxp = X, ap.g ~ 7). Asis standard, g*
satisfies the Bellman equation: Vx at level h,

9" (z) = maxBlry, + g*(@n41) |z = @, a = al,

with the understanding that g* (zz7+1) = 0. A similar equation holds for the optimal Q-value function
Q*(z,a) := E[Zﬁ:h Tz =z, an = a,apt1.p ~ 7], and 7 = argmax, . 4 Q*(z,a).’
Below are two special cases of the setting described above that will be important for later discussions.
Tabular MDPs: An MDP with a finite and small state space is a special case of this model, where
X = § and O is the identity map for each s. This setting is relevant in our discussion of oracle-
efficiency of the existing OLIVE algorithm in Section 5.1.

Deterministic dynamics over hidden states: Our algorithm, VALOR, works in this special case,
which requires I'; and I'(s, a) to be point masses. Originally proposed by Krishnamurthy et al. [17],

*Indeed, the lower bound in Proposition 6 in Jiang et al. [1] show that ignoring underlying structure precludes
provably-efficient RL, even with function approximation.

3Note that the optimal policy and value functions depend on z and not just s even if s was known, since
reward is a function of x.
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this setting can model some challenging benchmark environments in modern reinforcement learning,
including visual grid-worlds common to the deep RL literature [e.g., 23]. In such tasks, the state
records the position of each game element in a grid but the agent observes a rendered 3D view.
Figure 1 shows a visual summary of this setting. We describe VALOR in detail in Section 4.

Throughout the paper, we use Ep [-] to denote empirical expectation over samples from a data set D.

3.1 Function Classes and Optimization Oracles

As X can be rich, the agent must use function approximation to generalize across observations. To
that end, we assume a given value function class G C (X — [0, 1]) and policy class IT C (X — A).
Our algorithm is agnostic to the specific function classes used, but for the guarantees to hold, they
must be expressive enough to represent the optimal value function and policy, that is, 7* € II and
g* € G. Prior works often use 7 C (X x A — [0, 1]) to approximate Q* instead, but for example
Jiang et al. [1] point out that their OLIVE algorithm can equivalently work with G and II. This (G, IT)
representation is useful in resolving the computational difficulty in the deterministic setting, and has
also been used in practice [32].

When working with large and abstract function classes as we do here, it is natural to consider an
oracle model of computation and assume that these classes support various optimization primitives.
We adopt this oracle-based approach here, and specifically use the following oracles:

Cost-Sensitive Classification (CSC) on Policies. A cost-sensitive classification (CSC) oracle
receives as inputs a parameter eg,, and a sequence {(l‘(i), c(i))}ie[n] of observations (¥ € X and cost
vectors ¢ € R, where ¢(¥) (a) is the cost of predicting action a € A for 2(*). The oracle returns a
policy whose average cost is within €y, of the minimum average cost, minep = >0, ¢ (m(z(?)).
While CSC is NP-hard in the worst case, CSC can be further reduced to binary classification [33, 34]
for which many practical algorithms exist and actually form the core of empirical machine learning.
As further motivation, the CSC oracle has been used in practically effective algorithms for contextual
bandits [35, 19], imitation learning [20], and structured prediction [21].

Linear Programs (LP) on Value Functions. A linear program (LP) oracle considers an optimiza-
tion problem where the objective 0 : G — R and the constraints hq, . .. h,, are linear functionals of G
generated by finitely many function evaluations. That is, o and each h; have the form Y. | a;g(z;)
with coefficients {a; };c[,,) and contexts {z; };e[,]. Formally, for a program of the form

maxgeg 0(g), subjectto h;(g) <c;, Vj € [m],

with constants {c; } je[m]» an LP oracle with approximation parameters ey, €5, returns a function g
that is at most egp-suboptimal and that violates each constraint by at most €, For intuition, if the
value functions G are linear with parameter vector § € R?, i.e., g(z) = (0, x), then this reduces to a
linear program in R? for which a plethora of provably efficient solvers exist. Beyond the linear case,
such problems can be practically solved using standard continuous optimization methods. LP oracles
are also employed in prior work focusing on deterministic MDPs [15, 16].

Least-Squares (LS) Regression on Value Functions. We also consider a least-squares regression
(LS) oracle that returns the value function which minimizes a square-loss objective. Since VALOR
does not use this oracle, we defer details to the appendix.

We define the following notion of oracle-efficiency based on the optimization primitives above.
Definition 1 (Oracle-Efficient). An algorithm is oracle-efficient if it can be implemented with polyno-

mially many basic operations and calls to CSC, LP, and LS oracles.

Note that our algorithmic results continue to hold if we include additional oracles in the definition,
while our hardness results easily extend, provided that the new oracles can be efficiently implemented
in the tabular setting (i.e., they satisfy Proposition 6; see Section 5).

4 VALOR: An Oracle-Efficient Algorithm

In this section we propose and analyze a new algorithm, VALOR (Values stored Locally for RL)
shown in Algorithm 1 (with 2 & 3 as subroutines). As we will show, this algorithm is oracle-efficient



and enjoys a polynomial sample-complexity guarantee in the deterministic hidden-state dynamics
setting described earlier, which was originally introduced by Krishnamurthy et al. [17].

Algorithm 1: Main Algorithm VALOR Algorithm 2: Subroutine: Policy optimization
1 Global: D1,... Dy initialized as (; with local values
2 Function MetaAlg 1 Function polvalfun()
3 dfslearn (@) ; // Alg.3 2 V* < V of the only dataset in D;;
4 |fork=1,...,MHdo 3 |forh=1:Hdo
5 #®) V(*) « polvalfun(); // Alg.2 // CSC-oracle SV (VD)
. . s (k). 4 Tp, <— argmax D\ 5
6 7; x)sample Neval trajectories with 74%/; el (DV.{V-})eDy a
7 V™" < average return of T’;
8 itV <y £ then return #(%) ; s | return #y.p0, V*;
9 forh=1...H —1do _
10 for all a1.p, of Negpr traj. € T do
11 | dfslearn (ai.p); // Alg.3 Notation: ]
o Vp(m;{V,}) == Ep[K1 = V,
12| return failure; p(m; {Va}) p[K1{n(z) = a}(r + Va)]

Algorithm 3: Subroutine: DFS Learning of local values

1 €feas = Esub = Estat = 0(62/MH3) ; // see exact values in Table 1 in the appendix
2 ¢p = (H 41— h)(6ega + 2€5up + Efeas) // accuracy of learned values at level h

3 Function dfslearn (path p with length h — 1)
4 | fora e Ado

5 D’ < Sample ny trajectories with actions po a ;

// compute optimistic / pessimistic values using LP-oracle
6 VOPt < MaAXgegGy, Ep [g('rh-‘rl)} (and V;)es — mingegh+1 Ep [g(xh-‘rl)])

St V(D,V, ) € Dpyy s |V = Bplg(ons)ll < by ;

7 if ‘Vopt - Vpes| < 2¢h+1 + degar + 2€feas then
8 ‘ Vo  (Vopt + Vipes) /2 ; // consensus among remaining functions
9 else
10 LVG + dfslearn(poa); // no consensus, descend

u | D« Sample 7, traj. with p and aj, ~ Unif(K);

12 | V¢ maxgem, Vp(m {Va}); // CSC-oracle
13 | Add (D,V,{Vi}aea) to Dy;

14 return V;

Since hidden states can be deterministically reached by sequences of actions (or paths), from an
algorithmic perspective, the process can be thought of as an exponentially large tree where each
node is associated with a hidden state (such association is unknown to the agent). Similar to LSVEE
[17], VALOR first explores this tree (Line 3) with a form of depth first search (Algorithm 3). To
avoid visiting all of the exponentially many paths, VALOR performs a state identity test (Algorithm 3,
Lines 5-8): the data collected so far is used to (virtually) eliminate functions in G (Algorithm 3,
Line 6), and we do not descend to a child if the remaining functions agree on the value of the child
node (Algorithm 3, Line 7).

The state identity test prevents exploring the same hidden state twice but might also incorrectly
prune unvisited states if all functions happen to agree on the value. Unfortunately, with no data
from such pruned states, we are unable to learn the optimal policy on them. To address this issue,
after df slearn returns, we first use the stored data and values (Line 5) to compute a policy (see
Algorithm 2) that is near optimal on all explored states. Then, VALOR deploys the computed policy
(Line 6) and only terminates if the estimated optimal value is achieved (Line 8). If not, the policy
has good probability of visiting those accidentally pruned states (see Appendix B.5), so we invoke
dfslearn on the generated paths to complement the data sets (Line 11).



In the rest of this section we describe VALOR in more detail, and then state its statistical and
computational guarantees. VALOR follows a dynamic programming style and learns in a bottom-up
fashion. As a result, even given stationary function classes (G, II) as inputs, the algorithm can return
a non-stationary policy 71.z7 := (1, ..., 7g) € I that may use different policies at different time
steps.* To avoid ambiguity, we define ITj, := IT and Gj, := G for h € [H], to emphasize the time
point ~ under consideration. For convenience, we also define Gy 11 to be the singleton {x — 0}.
This notation also allows our algorithms to handle more general non-stationary function classes.

Details of depth-first search exploration. VALOR maintains many data sets collected at paths
visited by dfslearn. Each data set D is collected from some path p, which leads to some hidden
state s. (Due to determinism, we will refer to p and s interchangeably throughout this section.) D
consists of tuples (z,a,r) where x ~ p (i.e., z ~ Oy), a ~ Unif(K), and r is the instantaneous
reward. Associated with D, we also store a scalar V' which approximates V*(s), and {V, }aca
which approximate {V*(s o a)}4c.4, where s o a denotes the state reached when taking a in s. The
estimates {V, },e4 of the future optimal values associated with the current path p € A"~! are
either determined through a recursive call (Line 10), or through a state-identity test (Lines 5-8 in
dfslearn). To check if we already know V*(p o a), we solve constrained optimization problems to
compute optimistic and pessimistic estimates, using a small amount of data from poa. The constraints
eliminate all g € Gj,11 that make incorrect predictions for V*(s’) for any previously visited s at
level h + 1. As such, if we have learned the value of s o a on a different path, the optimistic and
pessimistic values must agree (“consensus”), so we need not descend. Once we have the future values
Vi, the value estimate V' (which approximates V*(s)) is computed (in Line 12) by maximizing the
sum of immediate reward and future values, re-weighted using importance sampling to reflect the
policy under consideration 7:

Vp(m; {Va}) := Ep[K1{m(x) = a}(r + V,)]. (1

Details of policy optimization and exploration-on-demand. polvalfun performs a sequence of
policy optimization steps using all the data sets collected so far to find a non-stationary policy that is
near-optimal at all explored states simultaneously. Note that this policy differs from that computed in
(Alg. 3, Line 12) as it is common for all datasets at a level i. And finally using this non-stationary
policy, MetaAlg estimates its suboptimality and either terminates successfully, or issues several other
calls to dfslearn to gather more data sets. This so-called exploration-on-demand scheme is due
to Krishnamurthy et al. [17], who describe the subroutine in more detail.

4.1 What is new compared to LSVEE?

The overall structure of VALOR is similar to LSVEE [17]. The main differences are in the pruning
mechanism, where we use a novel state-identity test, and the policy optimization step in Algorithm 2.

LSVEE uses a Q-value function class F C (X x A — [0,1]) and a state identity test based on
Bellman errors on data sets D consisting of (z, a, r, 2’) tuples:

. . 2
Ep [(f(x,a) — 7 —Epwomaxgca f(x’,a’)) ] .

This enables a conceptually simpler statistical analysis, but the coupling between value function and
the policy yield challenging optimization problems that do not obviously admit efficient solutions.

In contrast, VALOR uses dynamic programming to propagate optimal value estimates from future
to earlier time points. From an optimization perspective, we fix the future value and only optimize
the current policy, which can be implemented by standard oracles, as we will see. However, from a
statistical perspective, the inaccuracy of the future value estimates leads to bias that accumulates over
levels. By a careful design of the algorithm and through an intricate and novel analysis, we show
that this bias only accumulates linearly (as opposed to exponentially; see e.g., Appendix E.1), which
leads to a polynomial sample complexity guarantee.

“This is not rare in RL; see e.g., Chapter 3.4 of Ross [36].



4.2 Computational and Sample Complexity of VALOR

VALOR requires two types of nontrivial computations over the function classes. We show that they
can be reduced to CSC on II and LP on G (recall Section 3.1), respectively, and hence VALOR is
oracle-efficient.

First, Lines 4 in polvalfun and 12 in dfslearn involve optimizing Vp (m; {V,}) (Eq. (1)) over II,
which can be reduced to CSC as follows: We first form tuples (2(?), a(,4(*) from D and {V,}
on which Vp (7; {V,}) depends, where we bind zy, to 2@, ap to a®, and 7, + Va,, to y@. From
the tuples, we construct a CSC data set (z(, —[K1{a = aP}y?],c4). On this data set, the
cost-sensitive error of any policy (interpreted as a classifier) is exactly —Vp (7; {V,,}), so minimizing
error (which the oracle does) maximizes the original objective.

Second, the state identity test requires solving the following problem over the function class G:

Vopt = maéc Ep [9(zn)] (and min for Vi) 2)
ge

s.t.V — ¢h < ED[g(l'h)] < V+ (bh,V(D,V) € Dh'

The objective and the constraints are linear functionals of G, all empirical expectations involve
polynomially many samples, and the number of constraints is |Dy,| which remains polynomial
throughout the execution of the algorithm, as we will show in the sample complexity analysis.
Therefore, the LP oracle can directly handle this optimization problem.

We now formally state the main computational and statistical guarantees for VALOR.

Theorem 2 (Oracle efficiency of VALOR). Consider a contextual decision process with deterministic
dynamics over M hidden states as described in Section 3. Assume ©* € Il and g* € G. Then for any

€,6 € (0, 1), with probability at least 1 — §, VALOR makes O (MTHQ log %) CSC oracle calls and
at most O (M log %) LP oracle calls with required accuracy €foqs = €gqupp = O(GQ/MH3).

Theorem 3 (PAC bound of VALOR). Under the same setting and assumptions as in Theorem 2,
VALOR returns a policy 7t such that V* — V'™ < e with probability at least 1 — 0, after collecting at

most O (% log(|G||T1|/5) 10g3(1/5)> trajectories.’

Note that this bound assumes finite value function and policy classes for simplicity, but can be
extended to infinite function classes with bounded statistical complexity using standard tools, as in
Section 5.3 of Jiang et al. [1]. The resulting bound scales linearly with the Natarajan and Pseudo-
dimension of the function classes, which are generalizations of VC-dimension. We further expect that
one can generalize the theorems above to an approximate version of realizability as in Section 5.4
of Jiang et al. [1].

Compared to the guarantee for LSVEE [17], Theorem 3 is worse in the dependence on M, H, and e.
Yet, in Appendix B.7 we show that a version of VALOR with alternative oracle assumptions enjoys a
better PAC bound than LSVEE. Nevertheless, we emphasize that our main goal is to understand the
interplay between statistical and computational efficiency to discover new algorithmic ideas that may
lead to practical methods, rather than improve sample complexity bounds.

S Toward Oracle-Efficient PAC-RL with Stochastic Hidden State Dynamics

VALOR demonstrates that provably sample- and oracle-efficient RL with rich stochastic observations
is possible and, as such, makes progress toward reliable and practical RL in many applications. In
this section, we discuss the natural next step of allowing stochastic hidden-state transitions.

5.1 OLIVE is not Oracle-Efficient

For this more general setting with stochastic hidden state dynamics, OLIVE [1] is the only known
algorithm with polynomial sample complexity, but its computational properties remain underexplored.

5 O(-) suppresses logarithmic dependencies on M, K, H, 1/ and doubly-logarithmic dependencies on 1/4,
|G|, and |T1].



We show here that OLIVE is in fact not oracle-efficient. A brief description of the algorithm is
provided below, and in the theorem statement, we refer to a parameter ¢, which the algorithm uses as
a tolerance on deviations of empirical expectations.

Theorem 4. Assuming P # N P, even with algorithm parameter ¢ = 0 and perfect evaluation of
expectations, OLIVE is not oracle-efficient, that is, it cannot be implemented with polynomially many
basic arithmetic operations and calls to CSC, LP, and LS oracles.

The assumptions of perfect evaluation of expectations and ¢ = 0 are merely to unclutter the
constructions in the proofs. We show this result by proving that even in tabular MDPs, OLIVE solves
an NP-hard problem to determine its next exploration policy, while all oracles we consider have
polynomial runtime in the tabular setting. While we only show this for CSC, LP, and LS oracles
explicitly, we expect other practically relevant oracles to also be efficient in the tabular setting, and
therefore they could not help to implement OLIVE efficiently.

This theorem shows that there are no known oracle-efficient PAC-RL methods for this general setting
and that simply applying clever optimization tricks to implement OLIVE is not enough to achieve a
practical algorithm. Yet, this result does not preclude tractable PAC RL altogether, and we discuss
plausible directions in the subsequent section. Below we highlight the main arguments of the proof.

Proof Sketch of Theorem 4.  OLIVE is round-based and follows the optimism in the face of
uncertainty principle. At round k it selects a value function and a policy to execute (i, 7) that
promise the highest return while satisfying all average Bellman error constraints:

Jr, T = argmax EDO [g()] 3)
g€eG,mell

st. [Ep,[K1{a = n(2)}(g(z) —r — g(«'))]| < ¢, ¥ D;€D.

Here D is a data set of initial contexts x, D consists of data sets of (x, a, 7, 2’) tuples collected in
the previous rounds, and ¢ is a statistical tolerance parameter. If this optimistic policy 7, is close to
optimal, OLIVE returns it and terminates. Otherwise we add a constraint to (3) by (i) choosing a time
point h, (ii) collecting trajectories with 7, but choosing the h-th action uniformly, and (iii) storing the
tuples (xp, ap, ry, p 1) in the new data set Dy, which is added to the constraints for the next round.

The following theorem shows that OLIVE’s optimization is NP-hard even in tabular MDPs.

Theorem 5. Let Po, v denote the family of problems of the form (3), parameterized by (X, A, Env, t),
which describes the optimization problem induced by running OLIVE in the MDP Env (with states
X, actions A, and perfect evaluation of expectations) for t rounds. OLIVE is given tabular function
classes G = (X — [0,1]) and 11 = (X — A) and uses ¢ = 0. Then Poyve is NP-hard.

At the same time, oracles are implementable in polynomial time:

Proposition 6. For tabular value functions G = (X — [0, 1]) and policies I1 = (X — A), the CSC,
LP, and LS oracles can be implemented in time polynomial in |X|, K = | A| and the input size.

Both proofs are in Appendix D. Proposition 6 implies that if OLIVE could be implemented with
polynomially many CSC/LP/LS oracle calls, its total runtime would be polynomial for tabular MDPs.
Assuming P # NP, this contradicts Theorem 5 which states that determining the exploration policy of
OLIVE in tabular MDPs is NP-hard. Combining both statements therefore proves Theorem 4.

We now give brief intuition for Proposition 6. To implement the CSC oracle, for each of the
polynomially many observations x € X, we simply add the cost vectors for that observation
together and pick the action that minimizes the total cost, that is, compute the action 7 (x) as
mingea Y. i€ln]: o=z ¢ (a). Similarly, the square-loss objective of the LS-oracle decomposes
and we can compute the tabular solution one entry at a time. In both cases, the oracle runtime
is O(nK|X|). Finally, using one-hot encoding, G can be written as a linear function in RI*| for
which the LP oracle problem reduces to an LP in RI*!. The ellipsoid method [37] solves these
approximately in polynomial time.

5.2 Computational Barriers with Decoupled Learning Rules.

One factor contributing to the computational intractability of OLIVE is that (3) involves optimizing
over policies and values jointly. It is therefore promising to look for algorithms that separate



optimizations over policies and values, as in VALOR. In Appendix E, we provide a series of examples
that illustrate some limitations of such algorithms. First, we show that methods that compute optimal
values iteratively in the style of fitted value iteration [38] need additional assumptions on G and IT
besides realizability (Theorem 45). (Storing value estimates of states explicitly allows VALOR to only
require realizability.) Second, we show that with stochastic state dynamics, average value constraints,
as in Line 6 of Algorithm 3, can cause the algorithm to miss a high-value state (Proposition 46).
Finally, we show that square-loss constraints suffer from similar problems (Proposition 47).

5.3 Alternative Algorithms.

An important element of VALOR is that it explicitly stores value estimates of the hidden states,
which we call “local values.” Local values lead to statistical and computational efficiency under weak
realizability conditions, but this approach is unlikely to generalize to the stochastic setting where
the agent may not be able to consistently visit a particular hidden state. In Appendices B.7-C.2, we
therefore derive alternative algorithms which do not store local values to approximate the future
value g*(xp1). Inspired by classical RL algorithms, these algorithms approximate g*(zy,+1) by
either bootstrap targets §p+1(zn+1) (as in TD methods) or Monte-Carlo estimates of the return
using a near-optimal roll-out policy 7x41.4 (as in PSDP [39]). Using such targets can introduce
additional errors, and stronger realizability-type assumptions on II, G are necessary for polynomial
sample-complexity (see Appendix C and E). Nevertheless, these algorithms are also oracle-efficient
and while we only establish statistical efficiency with deterministic hidden state dynamics, we believe
that they considerably expand the space of plausible algorithms for the general setting.

6 Conclusion

This paper describes new RL algorithms for environments with rich stochastic observations and
deterministic hidden state dynamics. Unlike other existing approaches, these algorithms are com-
putationally efficient in an oracle model, and we emphasize that the oracle-based approach has led
to practical algorithms for many other settings. We believe this work represents an important step
toward computationally and statistically efficient RL with rich observations.

While challenging benchmark environments in modern RL (e.g. visual grid-worlds [23]) often have
the assumed deterministic hidden state dynamics, the natural goal is to develop efficient algorithms
that handle stochastic hidden-state dynamics. We show that the only known approach for this setting
is not implementable with standard oracles, and we also provide several constructions demonstrating
other concrete challenges of RL with stochastic state dynamics. This provides insights into the key
open question of whether we can design an efficient algorithm for the general setting. We hope to
resolve this question in future work.
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