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Abstract

Modern Visual Question Answering (VQA) models have been shown to rely
heavily on superficial correlations between question and answer words learned
during training – e.g. overwhelmingly reporting the type of room as kitchen or
the sport being played as tennis, irrespective of the image. Most alarmingly, this
shortcoming is often not well reflected during evaluation because the same strong
priors exist in test distributions; however, a VQA system that fails to ground
questions in image content would likely perform poorly in real-world settings.

In this work, we present a novel regularization scheme for VQA that reduces
this effect. We introduce a question-only model that takes as input the question
encoding from the VQA model and must leverage language biases in order to
succeed. We then pose training as an adversarial game between the VQA model
and this question-only adversary – discouraging the VQA model from capturing
language biases in its question encoding. Further, we leverage this question-only
model to estimate the increase in model confidence after considering the image,
which we maximize explicitly to encourage visual grounding. Our approach is a
model agnostic training procedure and simple to implement. We show empirically
that it can improve performance significantly on a bias-sensitive split of the VQA
dataset for multiple base models – achieving state-of-the-art on this task. Further,
on standard VQA tasks, our approach shows significantly less drop in accuracy
compared to existing bias-reducing VQA models.

1 Introduction

The task of answering questions about visual content – called Visual Question Answering (VQA) –
presents a rich set of artificial intelligence challenges spanning computer vision and natural language
processing. Successful VQA models must understand the question posed in natural language, identify
relevant entities, object, and relationships in the image, and perform grounded reasoning to deduce the
correct answer. In response to these challenges, there has been extensive work on VQA in recent years
both in terms of dataset curation [6, 12, 2, 17, 13, 32, 3] and modeling [2, 5, 28, 14, 16, 4, 22, 20].

This widespread interest in VQA has resulted in increasingly sophisticated models achieving higher
and higher performance on increasingly large benchmark datasets; however, recent studies have
demonstrated that many models tend to have poor image grounding, instead heavily leveraging
superficial correlations between questions and answers in the training dataset to answer questions
[1, 30, 15, 12]. As a result, these models often exhibit undesirable behaviors – blindly outputting an
answer based on first few words in the question (e.g. reflexively answering ‘What sport ...’ questions
with ‘tennis’) or failing to generalize to novel attribute-noun combinations (e.g. being unable to
identify a ‘green hydrant’ despite seeing both hydrants and green objects during training). Perhaps
most dissatisfying of all, standard evaluation protocols on benchmark datasets often fail to pick up on
these trends due to the presence of the same strong language priors in their test datasets.
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Figure 1: Given an arbitrary base VQA model (A), we introduce two regularizers. First, we build
a question-only adversary (B) that takes the question embedding qi from the VQA model and is
trained to output the correct answer from this information alone. For this network to succeed, qi

must capture language biases from the dataset – the same biases that lead the base VQA model to
ignore visual content. To reduce these biases, we set the base VQA model and the question-only
adversary against each other, with the base VQA network modifying its question embedding to
reduce question-only performance (shown here as gradient negation of the question-only model loss)
Further, the question-only model allows estimation of the change in answer confidence given image
(C), which we maximize explicitly.

Recently, Agrawal et al. [2] introduced the VQA-CP (Visual Question Answering under Changing
Priors) diagnostic split of the VQA [6, 12] dataset to measure the effect of language bias. VQA-CP
is constructed such that for each question type (e.g. ‘What color ...’, ‘How many ...’, etc.), the
answer distributions vary dramatically between training and test. Consequentially, models with poor
grounding and an over-reliance on language priors from the training set fair poorly on this new split.
Despite the image still containing all the necessary information to answer the questions, multiple
existing VQA models evaluated on this split achieve dramatically deteriorated performance.

One intuitive measure of the strength of language priors in VQA is the performance of a ‘blind’
model that produces answers given only the question and not the associated image. In fact, this
question-only model has become a standard and powerful baseline presented alongside VQA datasets
[6, 12, 9, 17]. In this work, we codify this intuition, introducing a novel regularization scheme that
sets a base VQA model against a question-only adversary to reduce the impact of language biases.

More concretely, we consider unwanted language bias in VQA to be overly-specific relationships
between questions and their likely answers learned from the training dataset – i.e. those that could
enable a question-only model to achieve relatively high performance without ever seeing an image –
and we explicitly optimize the question representation within a base VQA model to be uninformative
to a question-only adversary model. In this adversarial regime, the question-only model is trained to
answer as accurately as possible given the question encoding provided by the base VQA model; and
simultaneously, the base VQA model is trained to adjust its question encoder (often implemented as a
recurrent language model) to minimize the performance of the question-only model while maintaining
its own VQA accuracy. Moreover, we leverage the question-only model to provide a differentiable
notion of image grounding – the change in model confidence after considering the image – which we
maximize explicitly for the VQA model. Thus, our objective consists of a question-only adversarial
term and a difference of entropies term.

Our approach is largely model agnostic, end-to-end trainable, and simple to implement, consisting of
a small, additional classification network built on the question representation of the base VQA model.
We experiment on the VQA-CP dataset [2] with multiple base VQA models, and find – 1) our approach
provides consistent improvements over all baseline VQA models, 2) our approach outperforms the
existing state-of-art grounded-by-design approach [2] significantly, 3) both question-only adversary
and the difference of entropies components improve performance and their combination pushes this
even further. On standard benchmarks [6, 12] where strong priors from training can be exploited
on test set, our approach shows significantly smaller drops in accuracy compared to existing bias-
reducing VQA models [2], with some settings facing only insignificant changes.

2



2 Reducing Language Bias Through Adversarial Regularization

Setting aside architectural specifics, the vast majority of VQA models operate on a set of similar
design principles – first producing vector representations for the image and question and then
combining them to predict the answer (often through complex attention mechanisms). However,
when language biases are quite strong, the question feature may already be sufficiently discriminative
and the model can learn to ignore the visual signal without facing significant losses during training
(e.g. “What color is the sky?” always mapping to “blue”). Such a model which fails to ground its
answers in the image might be passable for benchmark datasets that carry similar biases; however, in
the real-world, where brown grass and gray skies abound, its usefulness would be severely limited. In
this section, we address this problem by explicitly reducing the discriminative power of the question
feature – introducing a pair of adversarial regularizers that penalize the ability of a separate adversary
network to confidently predict the answer from the question encoding alone.

Preliminaries. Given a datasetD = {Ii, Qi, ai}Ni=1 consisting of triplets of images Ii ∈ I , questions
Qi ∈ Q and answers ai ∈ A, the VQA task is to learn a mapping F :Q×I→[0, 1]|A| which produces
an accurate distribution over the answer space given an input question-image pair.

Without loss of generality, we consider differentiable mappings that can be decomposed as an
operation f over question and image encodings g: Q→Rd and h: I→Rk (as shown in Figure 1A).
We write the prediction for instance i for this class of models as

vi = h(Ii), qi = g(Qi)

P (A | Qi, Ii) = f (vi,qi) (1)

where we denote the image and question embeddings as vi and qi respectively.

Nearly all existing VQA models follow this pattern. The image encoder h(·) is typically a fixed CNN
pretrained on either classification or detection and the question encoder g(·) is usually some form
of word or character level RNN learned during training. Typically these models are trained with
standard cross-entropy, optimizing parameters to minimize (2) over the ground truth data.

LV QA(f, g, h) = EI,Q,A [− logPf (ai|Qi, Ii)] ≈ −
1

N

N∑
i=1

log f(vi,qi)[ai] (2)

Question-Only Model. One intuitive measure of the power of language priors in VQA is the ability
of a model to make low-error answer predictions from the question alone – in fact, some form of
this ‘blind’ model has been frequently presented alongside VQA datasets for exactly this purpose
[6, 12, 9, 17]. We formalize this question-only model as a mapping fQ. As above, we assume fQ is
differentiable and operates on learned question encodings such that fQ makes predictions

PfQ(A | Qi) = fQ(qi), qi = g(Qi). (3)

We parameterize this model as a simple two-layer neural network but note that arbitrary choices can
be made in this regard. As above, this model can be trained with cross-entropy, minimizing

LQA(fQ, g) = EQ,A
[
− logPfQ(ai|Qi)

]
≈ − 1

N

N∑
i=1

log fQ(qi)[ai]. (4)

2.1 Adversarial Regularization with a Question-Only Adversary

For any model of the form presented in (1), we can now introduce a simple adversarial regularizer
that explicitly reduces the effect of language biases by modifying the question encoder to minimize
the performance of this question-only adversary. Specifically, given a VQA model decomposed as
f, g, h, we splice on the question-only model fQ such that fQ takes as input the encodings produced
by g(·) (as in Figure 1), and establish opposing losses for the two networks which we detail below.

Learning the Question-Only Adversary. The question-only model fQ is trained to minimize the
cross-entropy loss LQ in (4); however, parameters in g(·) are not updated with respect to this loss –
in effect, this forces fQ to perform as well as possible given the question encodings produced by the
question encoder g(·) from the base VQA model.
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Adversarial Regularization for VQA. As performance of the question-only model acts as a proxy
for the language biases represented in the question encodings qi = g(Qi), one approach to reduce
bias representation is to adjust g(·) such that the question-only model does poorly. As such, we can
write this adversarial relationship between the question-only (fQ) and base VQA models (f, g, h) as

min
f,g,h

max
fQ
LV QA(f, g, h)− λQLQA(fQ, g) (5)

We note that in practice, training with this adversarial regularizer can be realized with a simple
gradient negation of the question-only adversary’s loss as shown in Figure 1. Specifically, we back-
propagate the negative of the gradient of LQ(fQ, g) accumulated at qi through the question encoder –
updating the question encoder in a way that maximizes LQ(fQ, g).

The regularization coefficient λQ ≥ 0 in (5) controls the trade-off between VQA performance
and language bias reduction. For low values of λQ, little regularization occurs and the base model
continues to learn language priors. On the other hand, large values of λQ force the model to remove all
discriminative language biases, resulting in poor VQA performance for both the base VQA model and
the question-only adversary – essentially stripping the question encoding of even basic question-type
information (e.g. failing to learn that “What color ... ?” questions require color answers).

2.2 An Adversarial Difference of Entropies Regularizer

As the effect of this over-regularization for high-values of λQ highlights, the question-only adversary
does not capture the full nuance of language bias in VQA. Given the question “What color is the sky?”
it is reasonable to have a prior that the answer may be “blue”, but critically this belief should update
depending on observations – i.e. the answer distribution should sharpen after viewing the image.

To capture this intuition, we add an additional term that aims to maximize the information gained
about the answer from looking at the image. Specifically, we introduce another adversarial regularizer
corresponding to the difference in entropies between the base model prediction given the image and
the question-only model which we write as

LH(f, g, h, fQ) = EI,Q [H(A | Q)−H(A | I,Q)] (6)
= Eq∼P (Q) [H(A | q)]− Eq,v∼P (Q,I) [H(A | q, v)] (7)

≈ 1

N

N∑
i=1

( H (fQ(qi))−H (f(vi,qi)) ) (8)

We note that this regularizer resembles the conditional mutual information (CMI) between the answer
and image given the question I(A; I|Q); however, fQ(q) is not constrained to be the marginal of
f(v, q) such that estimating the CMI in this way is ill-defined.

We can then update the adversarial relationship between f and fQ from (5) with LMI , writing

min
f,g,h

max
fQ

LV QA(f, g, h)− λQLQA(fQ, g)− λHLH(f, g, h, fQ) (9)

where λH ≥ 0 controls the strength of the difference of entropies regularizer. Note that while LH is
a function of f , g, h, and fQ, we only update the parameters of the question encoding g based on this
loss. Otherwise, fQ could learn to produce sharp output distributions from arbitrary question features
to minimize LH . Likewise, f or h can easily adjust to produce arbitrarily peaky outputs, which we
observe can lead to significant over-fitting.

As before, the question-only adversary fQ in this setting must still perform as well as possible given
the question embedding from g(·), but this embedding is now additionally adjusted to maximize the
entropy of fQ’s output, while minimizing that of the VQA model. In the experiments that follow, we
show that both of these adversarial regularizers improve performance on a language bias sensitive
task. Further, we note that their benefits compound, with models combining both terms performing
better across a wider range of regularization coefficients.

3 Related Work

Essentially all real world datasets have some form of bias either due to their collection process (e.g.
reporting biases [11]) or those reflecting real-world human biases (e.g. capturing stereotypical gender
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roles). These biases are often less than subtle, with human annotators easily identifying from which
dataset specific instances originate [26] on sight. In this section, we discuss related work on bias in
VQA, how to reduce it, and on adversarial training regimes related to our approach.

Language Bias in VQA. In VQA, a significant source of bias is the strong association between
question words and answers (e.g. ‘Is there a ...’ questions predominantly being answered with
‘Yes’ in VQA v1 [6]). Building off [6], Goyal et al. [12] introduced the VQA v2 dataset which
significantly weakened language priors in the VQA v1 dataset. For each VQA v1 question, VQA v2
was constructed to also contain an image which is similar to the VQA v1 image, but has a different
answer to the same question – effectively reducing the sharpness of question-only priors. However,
even with this additional ‘balancing’ there exist significant biases in the dataset. In these works,
the extent of language biases was measured through a baseline which must predict answers from
questions alone. Deriving inspiration from this baseline, we introduce a question-only adversary to
explicitly reduce the ability of the question-only baseline to predict answers from questions alone.

Recently, Agrawal et al. [2] introduced the VQA-CP (VQA under Changing Priors) dataset, a diag-
nostic split of the VQA datasets [6, 12] that is constructed with vastly different answer distributions
between train and test. Consequentially, models that overly rely on language biases or have poor
visual grounding do poorly on this split, with [2] reporting dramatic drops in performance for state-
of-the-art VQA models. We use VQA-CP as a testbed for our adversarial regularization approach
and show consistent improvements over base models and existing work.

Overcoming Unwanted Biases. In addition to proposing the VQA-CP dataset, [2] designed a
Grounded VQA model (GVQA) that includes hand-designed architectural restrictions to prevent
the model from exploiting language correlations in training data. Specifically, GVQA disentangles
the visual concepts in the image that need to be recognized, from the space of plausible answers –
introducing separate visual concept and answer cluster classifiers. While the model performs well on
VQA-CP, it is complicated in design and requires training multiple stages in sequence. In contrast,
our approach is implemented as a simple drop-in regularizer built on top of existing VQA models and
enables end-to-end training without changing the underlying model architecture, unlike the design
principles of GVQA which require significant architecture adjustments if extended to new models.
Further, we find our approach significantly outperforms the hand-crafted network structure of GVQA.

Similarly, neural module network style architectures [5, 14, 16] introduce an explicit structure in the
model that separates the question from the reasoning on the image. These models predict the layout
of modular computational units from the question content and these modules then operate on the
image to produce an answer. Despite this explicitly compositional reasoning process, these models
also suffer a dramatic drop in performance when evaluated on VQA-CP [2]. In contrast, our proposed
approach performs well on VQA-CP and can be applied to any model architecture.

In recent work, Burns et al. [7] investigate the generation of gender-specific words in image de-
scriptions which is often skewed in captioning models (e.g. models nearly always using male words
to describe snowboarders). The proposed approach encourages the model to confidently predict
gendered words when gender information is visually present and to be unsure when it is occluded by
a mask. While effective, this model requires segmentation of the visual concept of interest.

More generally, Zhao et al. [31] address the issue of bias amplification broadly, introducing a
inference-time procedure to recalibrate the model. However, this approach requires computing
the output distribution for each element of a test set before this procedure can be performed. In
comparison, we present a training-time procedure that results in a less biased model. In principle,
[31] could also be applied to a model trained under our proposed regularizers.

Adversarial Learning. Generative Adversarial Networks (GANs) [10] have received significant
recent interest for their ability to model complex distributions – finding use in a variety of image and
language generation tasks [10, 23, 29, 8, 21]. Recently, other adversarial training schemes have been
proposed to encourage various forms of invariance in intermediate model representations [18, 19, 27].

Most related to our approach, Lample et al. [18] introduce an autoencoder framework with an
adversarial loss for attribute-based image manipulation. Given an input image and a set of attributes
(e.g. a photo of a person and their gender or age), the task is to manipulate the image such that it
has the desired attributes. Unfortunately, without multiple pairings of the same image with different
attributes, it is challenging to learn disentangled image representations that generalize to new input-
attribute combinations. An adversarial model is introduced that is trained to predict attributes from the
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input image encoding alone. In combating this adversary, the image encoder model learns to produce
attribute invariant image encodings. This improves generalization by forcing the attribute-augmented
decoder to meaningfully rely on input attributes to accurately reproduce input images.

Similarly, our question-only adversary encourages the VQA question encoder to remove answer-
discriminative features from the question representation. However, breaking the parallels with [18],
the answer themselves are not added back as inputs to controllably recondition the model on these
features. Rather, the VQA model must rely on the combination of question and image features to
recover the answer information. In this way, the language-level answer information (e.g. that most
grass is green) is removed from the question and instance-specific information from the image must
be used instead. We take this notion further by leveraging the question-only adversary to estimate
and directly maximize the change in confidence after observing the image, which we show provides
substantial benefits when paired with the question-only adversary.

4 Experiments

Implementation. Our question-only adversary model is implemented as a 2-layer multi-layer
perceptron with 256 hidden units and a ReLU activation that takes as input the question encoding
from a base VQA network. The network’s output is a distribution over the candidate answers. We
train the entire system (base VQA and question-only model) end-to-end with parameters initialized
from scratch. We set batch size to 150, learning rate to 0.001, weight decay of 0.999 and use the
Adam optimizer. The model takes ∼8 hours to train on a TITAN X for SAN (Torch, ∼60 epochs)
and < 1 hour for UpDown (PyTorch, ∼40 epochs). We use public codebases for both.

As discussed in Section 2, we update the parameters of the question encoding with respect to the
VQA loss, the difference of entropies loss, and the negative of the question-only loss. The remaining
VQA model parameters are trained with just the VQA loss. The question-only model is updated only
by its VQA loss cross entropy loss term despite contributing to the difference of entropies loss.

Models. We evaluate the effect of our proposed regularization on the following base models:

– Stacked Attention Network (SAN) [28] – SAN encodes questions with a long short-term
memory (LSTM) encoder and the image is encoded with a pretrained VGGNet [25]. The model
performs two-hop question-based image attention and the final joint feature is passed to a
1000-way answer classifier. This model is trained with standard cross-entropy.

– Bottom-Up and Top-Down Attention (UpDn) [4] – Up-Down encodes questions with a gated
recurrent unit (GRU) encoder and represents images as a set of bounding box features extracted
from Faster R-CNN [24]. Soft-attention over these regions is computed based on the question
features and the attention-pooled feature is combined with the question as input to the classification
layer. This model is trained directly on VQA score under a multi-label binary cross-entropy loss
(see [4] for more details). We also apply this loss for the question-only model in our experiments,
but compute a softmax over these outputs when computing entropies.

For both SAN1 and Up-Down2, we build on top of publicly available reimplementations. In the
following results, we indicate the addition of our question-only adversarial regularization with Q-Adv
and the difference of entropies term as DoE.

We also compare to the GVQA [2] model built atop SAN and introduced alongside the VQA-CP
dataset. GVQA explicitly separates perception from question answering by introducing a Visual
Concept Classifier (VCC) and an Answer Cluster Predictor (ACP). The VCC is a bank of pretrained
classifiers for visual entities and attributes and its output is modulated by the ACP. The ACP takes a
question and predicts one of a predefined answer clusters. The ACP masked VCC outputs are used
to predict the answer. A separate branch handles binary questions as a visual verification task. By
design, this model isolates the answering module from the input question, mitigating the effect of
language biases, but at a cost of relatively low standard VQA performance and multi-stage training.

Datasets and Evaluation. We train our models on the VQA-CP [2] train split and evaluate on the test
set using the standard VQA evaluation metric [6]. For each model, we also report results when trained

1SAN Codebase: https://github.com/abhshkdz/neural-vqa-attention
2Up-Down Codebase: https://github.com/hengyuan-hu/bottom-up-attention-vqa
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Table 1: Performance on VQA-CP v2 test and VQA v2 val. We significantly improve the accuracy
of base models and achieve state-of-the-art performance on the VQA-CP dataset.

Model VQA-CP v2 test VQA v2 val
λQ λH Overall Yes/No Number Other Overall Yes/No Number Other

GVQA [2] - - 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65

SAN [28] - - 24.96 38.35 11.14 21.74 52.41 70.06 39.28 47.84

O
ur

s SAN + Q-Adv 0.15 - 27.24 54.50 14.91 16.33 52.18 69.81 39.21 47.52
SAN + DoE - 25 25.75 42.21 12.08 20.87 52.38 70.05 39.64 47.41
SAN + Q-Adv + DoE 0.15 25 33.29 56.65 15.22 26.02 52.31 69.98 39.33 47.63

UpDn [4] - - 39.74 42.27 11.93 46.05 63.48 81.18 42.14 55.66

O
ur

s UpDn + Q-Adv 0.005 - 40.08 42.34 13.02 46.33 60.53 77.70 41.00 52.65
UpDn + DoE - 0.05 40.43 42.62 12.19 47.03 63.43 81.15 42.64 55.45
UpDn + Q-Adv + DoE 0.005 0.05 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16

and evaluated on the standard VQA train and validation splits [6, 12] with the same regularization
coefficients used for VQA-CP to compare with [2].

VQA-CP does not have a validation set and generating such a split is complicated by the need for
it to contain priors different from both the training and test sets in order to be an accurate estimate
of generalization under changing priors – an ill-defined notion for binary questions. As such, we
set initial regularizer coefficients such that gradients at the question encoding are roughly equal in
magnitude for all loss terms at the beginning of training and then explore a small region around this
point. We report the best performing coefficients alongside our results and provide further analysis of
the effect of these parameters in Section 5. Notably, we find these coefficients to be highly model
dependent but generalize well between datasets and regularizer ablations. All models are trained until
convergence as we have no validation set on which to base early-stopping.

5 Results

Table 1 presents our primary results on both the VQA-CP v2 and the VQA v2 datasets. Table 2 also
shows limited results on the much more biased VQA v1 dataset [6] and its CP counterpart – VQA-CP
v1 [2]. We make a number of observations below.

The proposed regularizers help, resulting in state-of-art performance on VQA-CP. For both
SAN and UpDn models, adding the question-only adversary (Q-Adv) improves the performance
of the respective base models (2.28% for SAN and 0.34% for UpDn) on the VQA-CP v2 dataset.
Similarly, the difference of entropies (DoE) regularizer boosts the performance of both SAN and
UpDn models, gaining improvements of 0.79% and 0.69% respectively. The combination of the
Q-Adv and DoE regularizers further boosts the performance, resulting in 8.33% improvement over
SAN and 1.43% over UpDn. Comparing our SAN + Q-Adv + DoE model to GVQA which is also
built on top of SAN, we outperform GVQA significantly (1.99%). Our UpDn + Q-Only + DoE model
also sets a new state-of-the-art on VQA-CP v2, improving over GVQA by 9.87% (although it is
important to note the more powerful base architecture already outperforms GVQA by 8.44%).

Similar trends repeat for VQA-CP v1 as well. With the question-only regularizer improving SAN by
1.14%, DoE by 0.95%, and their combination by over 16.55% – outperforming GVQA by 4.2% and
again setting state-of-the-art. We note that these larger gains are in part due to the increased language
biases present in the VQA-CP v1 dataset.

Moreover, we find the question-only network performs increasingly poorly as our models perform
better on VQA-CP – indicating that optimization is going well and that the intuition behind our
regularizers seems well-founded. For quantitative results, see the supplementary.

The proposed regularizers do not hurt significantly on VQA v2. When trained and tested on
the VQA v2 dataset (right side of Table 1), the addition of the proposed regularizers results in a
insignificant drop in the performance for SAN (0.1%) and a minor drop in performance for UpDn
(0.73%) compared to prior work. This is in contrast to GVQA, whose performance drops by 4.17%
for SAN on VQA v2 (note that GVQA is built off of SAN). For completeness we further evaluate on
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Table 2: Performance on VQA-CP v1 test and VQA v1 val.

Model VQA-CP v1 test VQA v1 val
λQ λH Overall Yes/No Number Other Overall Yes/No Number Other

GVQA [2] - - 39.23 64.72 11.87 24.86 51.12 76.90 32.79 36.43

SAN [28] - - 26.88 35.34 11.34 24.70 55.86 78.54 33.46 44.51

O
ur

s SAN + Q-Adv 0.15 - 28.02 35.70 11.70 19.99 52.01 70.68 32.39 42.91
SAN + DoE - 25 27.83 36.33 11.15 24.03 54.08 78.19 32.59 41.44
SAN + Q-Adv + DoE 0.15 25 43.43 74.16 12.44 25.32 52.15 71.06 32.59 42.91

Figure 2: Maximizing difference of entropies
(DoE) along with the question-only adversar-
ial regularization for the SAN model, not only
improves results on changing priors, but also
stabilizes training.

Figure 3: Answer distribution for SAN+Q-
Adv+DoE mimic the prior less for questions with
high language bias.

VQA v2 test-std, finding our SAN+Q-Adv+DoE model gives 52.95% overall accuracy, 2.33%
less than base SAN. Results on this split were not reported for GVQA in [2].

The more the biases, the higher the gain on VQA-CP, and the higher the loss on VQA. VQA
v1 has significantly more bias than VQA v2 and consequentially VQA-CP v1 has a sharper change
between training and test. As such, we observe the proposed regularizers improve over the base model
significantly more in VQA-CP v1 (16.55% for SAN) than in VQA-CP v2 (8.33% for SAN). For the
same reasons, the proposed regularizers hurt a bit more on VQA v1 (3.71% for SAN compared to
0.1% on VQA v2), where strong language biases can be leveraged to boost performance. However,
this drop in the performance on VQA v1 is still significantly less than that with GVQA (4.74%). We
also found that the proposed approach has strengths complementary to SAN (see supplementary).

UpDn [4] is less driven by biases than SAN. The drop in the performance of UpDn from VQA v2
to VQA-CP v2 is 23.74% which is significantly less than that of SAN (27.45%). This shows that
UpDn may be less driven by biases than SAN. And hence, the gains in UpDn (1.43%) due to the
proposed regularizers are less than those in SAN (8.33%).

Our approach results in less biased output distributions. Figure 3 shows answer frequency
distributions for VQA v2 train, SAN, our SAN+Q-Adv+DoE model (marked Ours), and VQA v2 test
for three questions:“What color is the dress she/he is wearing?”, “What sport ...?” “What color is
the fire hydrant?”. It is quite clear that while neither of the SAN based models completely match the
test distribution, the base SAN model aligns significantly more with the training distribution – even
amplifying the bias for ‘blue’ in the first question despite very few answers being ‘blue’ in test.

Difference of entropies (DoE) stabilizes training with the question-only adversary. Figure 2
shows VQA-CP v2 test performance of the SAN model, for a range of question-only regularizer
coefficients λQ. We can see that when the DoE term is not used (orange line), performance begins to
drop after approximately 0.2 and by 0.35 has deteriorated significantly. At these higher values, nearly
all discriminative information in the question encoding is lost – with the VQA model sacrificing its
own performance to lower that of the question-only model. However, we observe that for reasonable
values of λH , the strength of the question-only adversary can be varied over a much wider range with
less dramatic losses (blue curve in Figure 2). We observe a similar trend when keeping λQ constant
and sweeping over λH , wherein a dramatic improvement is observed when moving to non-zero λH
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and then a slow decay for large values of λH . Unlike the question-only adversary, the DoE regularizer
simultaneously seeks to sharpen the VQA models posterior while weakening the question-only prior.

Question-only performance: We study the performance of the question-only model after being
trained on VQA-CP v2 using our regularizers. We compare to a question-only model trained without
these regularizers, i.e. a model trained to predict the correct answer given the question-encoding
learned by the base VQA model. We find this Q-only(SAN) model achieves 24.84% on the VQA-
CP v2 training set compared to 13.85% for our SAN+Q-only+DoE model, demonstrating that our
approach has effectively restricted the discriminative information in the question encoding.

Proposed model shows complementary strengths with the base model: To study whether our
models learn complementary strengths to the base VQA models, we experiment with ensembles of
both models. First, we consider oracle ensembles where the best model output for each data point is
considered for evaluation. This is an upper bound on ensemble performance that relies on knowing
ground truth. We find that the Oracle(Ours, SAN) ensemble outperforms two separately trained
SAN models Oracle(SAN, SAN), by 1.48% for VQA v1 and by 3.46% for VQA v2– significantly
lower gains than with Oracle(GVQA, SAN) which improves by 5.28%. It is notable however that the
architecture of GVQA is significantly different from the base SAN model and hence is expected to
exhibit different error patterns and a higher Oracle accuracy. To take a more attainable view, we also
computed a standard ensemble Ensemble(Ours, SAN) and compared to an Ensemble(SAN, SAN)
model, outperforming it by 1.24% for VQA v2 but falling short by 0.15% for VQA v1. In contrast,
Ensemble(GVQA, SAN) improves VQA v2 performance by only 0.54%.

Qualitative Examples: Figure 4 shows example outputs and heatmaps for the SAN model with and
without our regularizers on VQA-CP v2. In addition to improving accuracy, our regularized approach
often results in repositioned heatmaps (surfer bottom right).

6 Conclusion

We propose a novel adversarial regularization scheme for reducing the memorization of dataset biases
in VQA based on a question-only adversary and the difference of model confidences after processing
the image. Experiments on the VQA-CP dataset, show that this technique allows existing VQA
models to significantly improve performance in the midst of changing priors. Consequently, we
achieve state-of-the-art performance on VQA-CP. Our approach can be implemented as a simple,
drop-in module on top of existing VQA models and easily trained end-to-end from scratch.

Acknowledgements This work was supported in part by NSF, AFRL, DARPA, Siemens, Google,
Amazon, ONR YIPs and ONR Grants N00014-16-1-{2713,2793}. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of any sponsor.

Figure 4: Qualitative examples of outputs and attention maps for SAN with (Our) and without (SAN)
our proposed regularizers on VQA-CP v2.
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