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Abstract

While domain adaptation has been actively researched, most algorithms focus on
the single-source-single-target adaptation setting. In this paper we propose new
generalization bounds and algorithms under both classification and regression set-
tings for unsupervised multiple source domain adaptation. Our theoretical analysis
naturally leads to an efficient learning strategy using adversarial neural networks:
we show how to interpret it as learning feature representations that are invariant
to the multiple domain shifts while still being discriminative for the learning task.
To this end, we propose multisource domain adversarial networks (MDAN) that
approach domain adaptation by optimizing task-adaptive generalization bounds.
To demonstrate the effectiveness of MDAN, we conduct extensive experiments
showing superior adaptation performance on both classification and regression
problems: sentiment analysis, digit classification, and vehicle counting.

1 Introduction

The success of machine learning has been partially attributed to rich datasets with abundant annota-
tions [40]. Unfortunately, collecting and annotating such large-scale training data is prohibitively
expensive and time-consuming. To solve these limitations, different labeled datasets can be combined
to build a larger one, or synthetic training data can be generated with explicit yet inexpensive annota-
tions [41]. However, due to the possible shift between training and test samples, learning algorithms
based on these cheaper datasets still suffer from high generalization error. Domain adaptation (DA)
focuses on such problems by establishing knowledge transfer from a labeled source domain to an un-
labeled target domain, and by exploring domain-invariant structures and representations to bridge the
gap [38]. Both theoretical results [8, 22, 32, 33, 49] and algorithms [1, 2, 6, 19, 20, 23, 25, 26, 30, 39]
for DA have been proposed. Most theoretical results and algorithms with respect to DA focus on
the single-source-single-target setting [17, 31, 42, 45, 46]. However, in many application scenarios,
the labeled data available may come from multiple domains with different distributions. As a result,
naive application of the single-source-single-target DA algorithms may lead to suboptimal solutions.
Such problem calls for an efficient technique for multiple source domain adaptation. Some existing
multisource DA methods [16, 23, 24, 43, 51] cannot lead to effective deep learning based algorithms,
leaving much space to be improved for their performance.

In this paper, we analyze the multiple source domain adaptation problem and propose an adversarial
learning strategy based on our theoretical results. Specifically, we give new generalization bounds for
both classification and regression problems under domain adaptation when there are multiple source
domains with labeled instances and one target domain with unlabeled instances. Our theoretical
results build on the seminal theoretical model for domain adaptation introduced by Blitzer et al. [9]
and Ben-David et al. [8], where a divergence measure, known as the H-divergence, was proposed
to measure the distance between two distributions based on a given hypothesis space H. Our new
result generalizes the bound [8, Thm. 2] to the case when there are multiple source domains, and
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to regression problems as well. The new bounds achieve a finite sample error rate of Õ(
p
1/km),

where k is the number of source domains and m is the number of labeled training instances from
each domain. We provide detailed comparisons with existing work in Section 3.

Interestingly, our bounds also lead to an efficient algorithm using adversarial neural networks.
This algorithm learns both domain invariant and task discriminative features under multiple do-
mains. Specifically, we propose a novel MDAN model by using neural networks as rich function
approximators to instantiate the generalization bound we derive (Fig. 1). MDAN can be viewed
as computationally efficient approximations to optimize the parameters of the networks in order to
minimize the bounds. We introduce two versions of MDAN: The hard version optimizes directly a
simple worst-case generalization bound, while the soft version leads to a more data-efficient model
and optimizes an average case and task-adaptive bound. The optimization of MDAN is a minimax
saddle point problem, which can be interpreted as a zero-sum game with two participants competing
against each other to learn invariant features. MDAN combine feature extraction, domain classifi-
cation, and task learning in one training process. We propose to use stochastic optimization with
simultaneous updates to optimize the parameters in each iteration.

Contributions. Our contributions are three-fold: 1). Theoretically, we provide average case gen-
eralization bounds for both classification and regression problems under the multisource domain
adaptation setting. 2). Inspired by our theoretical results, we also propose efficient algorithms that
tackle multisource domain adaptation problems using adversarial learning strategy. 3). Empirically, to
demonstrate the effectiveness of MDAN as well as the relevance of our theoretical results, we conduct
extensive experiments on real-world datasets, including both natural language and vision tasks,
classification and regression problems. We achieve consistently superior adaptation performances on
all the tasks, validating the effectiveness of our models.

2 Preliminary

We first introduce the notations and review a theoretical model for domain adaptation when there is
one source and one target [7–9, 27]. The key idea is the H-divergence to measure the discrepancy
between two distributions. Other theoretical models for DA exist [12, 13, 33, 35]; we choose to work
with the above model because this distance measure has a particularly natural interpretation and can
be well approximated using samples from both domains.

Notations We use domain to represent a distribution D on input space X and a labeling function
f : X ! [0, 1]. In the setting of one source one target domain adaptation, we use hDS , fSi and
hDT , fT i to denote the source and target, respectively. A hypothesis is a function h : X ! [0, 1]. The
error of a hypothesis h w.r.t. a labeling function f under distribution DS is defined as: "S(h, f) :=
Ex⇠DS [|h(x) � f(x)|]. When f and h are binary classification functions, this definition reduces
to the probability that h disagrees with f under DS : Ex⇠DS [|h(x) � f(x)|] = Ex⇠DS [I(f(x) 6=
h(x))] = Prx⇠DS (f(x) 6= h(x)).

We define the risk of hypothesis h as the error of h w.r.t. a true labeling function under domain DS ,
i.e., "S(h) := "S(h, fS). As common notation in computational learning theory, we use b"S(h) to
denote the empirical risk of h on the source domain. Similarly, we use "T (h) and b"T (h) to mean the
true risk and the empirical risk on the target domain. H-divergence is defined as follows:

Definition 1. Let H be a hypothesis class for instance space X , and AH be the collection of subsets
of X that are the support of some hypothesis in H, i.e., AH := {h

�1({1}) | h 2 H}. The distance
between two distributions D and D

0 based on H is: dH(D,D
0) := 2 supA2AH

|PrD(A)�PrD0(A)|.

When the hypothesis class H contains all the possible measurable functions over X , dH(D,D
0)

reduces to the familiar total variation. Given a hypothesis class H, we define its symmetric difference
w.r.t. itself as: H�H = {h(x) � h

0(x) | h, h0
2 H}, where � is the XOR operation. Let h⇤ be

the optimal hypothesis that achieves the minimum combined risk on both the source and the target
domains: h⇤ := argminh2H

"S(h) + "T (h), and use � to denote the combined risk of the optimal
hypothesis h⇤: � := "S(h⇤)+"T (h⇤). Ben-David et al. [7] and Blitzer et al. [9] proved the following
generalization bound on the target risk in terms of the source risk and the discrepancy between the
single source domain and the target domain:
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Theorem 1 ([9]). Let H be a hypothesis space of V C-dimension d and bDS ( bDT ) be the empirical
distribution induced by sample of size m drawn from DS (DT ). Then w.p.b. at least 1� �, 8h 2 H,

"T (h)  b"S(h) +
1

2
dH�H( bDS ,

bDT ) + �+O

 r
d log(m/d) + log(1/�)

m

!
(1)

The bound depends on �, the optimal combined risk that can be achieved by hypothesis in H. The
intuition is if � is large, we cannot hope for a successful domain adaptation. One notable feature is
that the empirical discrepancy distance between two samples can be approximated by a discriminator
to distinguish instances from two domains.

3 Generalization Bound for Multiple Source Domain Adaptation

In this section we discuss two approaches to obtain generalization guarantees for multiple source
domain adaptation in both classification and regression settings, one by a union bound argument and
one using reduction from multiple source domains to single source domain. We conclude this section
with a discussion and comparison of our bounds with existing generalization bounds for multisource
domain adaptation [8, 35]. We refer readers to appendix for proof details and we mainly focus on
discussing the interpretations and implications of the theorems.

Let {DSi}
k
i=1 and DT be k source domains and the target domain, respectively. One idea to obtain a

generalization bound for multiple source domains is to apply Thm. 1 repeatedly k times, followed
by a union bound to combine them. Following this idea, we first obtain the following bound as a
corollary of Thm. 1 in the setting of multiple source domains, serving as a baseline model:
Corollary 1 (Worst case classification bound). Let H be a hypothesis class with V Cdim(H) = d. If
bDT and { bDSi}

k
i=1 are the empirical distributions generated with m i.i.d. samples from each domain,

then, for 0 < � < 1, with probability at least 1� �, for all h 2 H, we have:

"T (h)  max
i2[k]

⇢
b"Si(h) +

1

2
dH�H( bDT ; bDSi) + �i

�
+O

 s
1

m

✓
log

k

�
+ d log

m

d

◆!
(2)

where �i is the combined risk of the optimal hypothesis on domains Si and T .

This bound is quite pessimistic, as it essentially is a worst case bound, where the generalization
on the target only depends on the worst source domain. However, in many real-world scenarios,
when the number of related source domains is large, a single irrelevant source domain may not
hurt the generalization too much. Furthermore, in the case of multiple source domains, despite the
possible discrepancy between the source domains and the target domain, effectively we have a labeled
sample of size km, while the asymptotic convergence rate in Corollary. 1 is of Õ(

p
1/m). Hence

naturally one interesting question to ask is: is it possible to have a generalization bound of finite
sample rate Õ(

p
1/km)? In what follows we present a strategy to achieve a generalization bound of

rate Õ(
p
1/km). The idea of this strategy is a reduction using convex combination from multiple

domains to single domain by combining all the labeled instances from k domains to one.
Theorem 2 (Average case classification bound). Let H be a hypothesis class with V Cdim(H) = d.
If { bDSi}

k
i=1 are the empirical distributions generated with m i.i.d. samples from each domain, and

bDT is the empirical distribution on the target domain generated from mk samples without labels,
then, 8↵ 2 Rk

+,
P

i2[k] ↵i = 1, and for 0 < � < 1, w.p.b. at least 1� �, for all h 2 H, we have:

"T (h) 
X

i2[k]

↵i

✓
b"Si(h) +

1

2
dH�H( bDT ; bDSi)

◆
+ �↵ +O

 s
1

km

✓
log

1

�
+ d log

km

d

◆!
(3)

where �↵ is the risk of the optimal hypothesis on the mixture source domain
P

i2[k] ↵iSi and T .

Different from Corollary 1, Thm. 2 requires mk unlabeled instances from the target domain. This is
a mild requirement since unlabeled data is cheap to collect. Roughly, the bound in Thm. 2 can be
understood as an average case bound if we choose ↵i = 1/k, 8i 2 [k]. Note that a simple convex
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combination by applying Thm. 1 k times can only achieve finite sample rate of Õ(
p
1/m), while

the one in (3) achieves Õ(
p

1/km). On the other hand, the constants maxi2[k] �i (in Corollary 1)
and �↵ (in Thm. 2) are generally not comparable. As a final note, although the proof works for any
convex combination ↵i, in the next section we will describe a practical method so that we do not need
to explicitly choose it. Thm. 2 upper bounds the generalization error for classification problems. Next
we also provide generalization guarantee for regression problem, where instead of VC dimension, we
use pseudo-dimension to characterize the structural complexity of the hypothesis class.
Theorem 3 (Average case regression bound). Let H be a set of real-valued functions from X to
[0, 1]2 with Pdim(H) = d. If { bDSi}

k
i=1 are the empirical distributions generated with m i.i.d.

samples from each domain, and bDT is the empirical distribution on the target domain generated from
mk samples without labels, then, 8↵ 2 Rk

+,
P

i2[k] ↵i = 1, and for 0 < � < 1, with probability at
least 1� �, for all h 2 H, we have:

"T (h) 
X

i2[k]

↵i

✓
b"Si(h) +

1

2
dH̄( bDT ; bDSi)

◆
+ �↵ +O

 s
1

km

✓
log

1

�
+ d log

km

d

◆!
(4)

where �↵ is the risk of the optimal hypothesis on the mixture source domain
P

i2[k] ↵iSi and T , and
H̄ := {I|h(x)�h0(x)|>t : h, h

0
2 H, 0  t  1} is the set of threshold functions induced from H.

Comparison with Existing Bounds. First, it is easy to see that, the bounds in both (2) and (3)
reduce to the one in Thm. 1 when there is only one source domain (k = 1). Blitzer et al. [9]
give a generalization bound for semi-supervised classification with multiple sources where, besides
labeled instances from multiple source domains, the algorithm also has access to a fraction of labeled
instances from the target domain. Although in general our bound and the one in [9, Thm. 3] are
incomparable, it is instructive to see the connections and differences between them: our bound works
in the unsupervised domain adaptation setting where we do not have any labeled data from the target.
As a comparison, their bound in [9, Thm. 3] is a bound for semi-supervised domain adaptation. As a
result, because of the access to labeled instances from the target domain, their bound is expressed
relative to the optimal error on the target, while ours is in terms of the empirical error on the source
domains, hence theirs is more informative. To the best of our knowledge, our bound in Thm. 3 is the
first one using the idea of H-divergence for regression problems. The proof of this theorem relies
on a reduction from regression to classification. Mansour et al. [34] give a generalization bound
for multisource domain adaptation under the assumption that the target distribution is a mixture of
the k sources and the target hypothesis can be represented as a convex combination of the source
hypotheses. Also, their generalized discrepancy measure can be applied for other loss functions.

4 Multisource Domain Adaptation with Adversarial Neural Networks

Motivated by the bounds given in the last section, in this section we propose our model, multisource
domain adversarial networks (MDAN), with two versions: Hard version (as a baseline) and Soft
version. Suppose we are given samples drawn from k source domains {DSi}, each of which contains
m instance-label pairs. Additionally, we also have access to unlabeled instances sampled from the
target domain DT . Once we fix our hypothesis class H, the last two terms in the generalization
bounds (2) and (3) will be fixed; hence we can only hope to minimize the bound by minimizing
the first two terms, i.e., the source training error and the discrepancy between source domains and
target domain. The idea is to train a neural network to learn a representation with the following two
properties: 1). indistinguishable between the k source domains and the target domain; 2). informative
enough for our desired task to succeed. Note that both requirements are necessary: without the
second property, a neural network can learn trivial random noise representations for all the domains,
and such representations cannot be distinguished by any discriminator; without the first property, the
learned representation does not necessarily generalize to the unseen target domain.

One key observation that leads to a practical approximation of dH�H( bDT ; bDSi) from Ben-David
et al. [7] is that computing the discrepancy measure is closely related to learning a classifier that is
able to distinguish samples from different domains. Let b"T,Si(h) be the empirical risk of hypothesis

2This is just for the simplicity of presentation, the range can easily be generalized to any bounded set.
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Figure 1: MDAN Network architecture. Feature extractor, domain classifier, and task learning are
combined in one training process. Hard version: the source that achieves the minimum domain classi-
fication error is backpropagated with gradient reversal; Smooth version: all the domain classification
risks over k source domains are combined and backpropagated adaptively with gradient reversal.

h in the domain discriminating task. Ignoring the constant terms that do not affect the upper bound,
we can minimize the worst case upper bound in (2) by solving the following optimization problem:

Hard version: minimize max
i2[k]

✓
b"Si(h)� min

h02H�H

b"T,Si(h
0)

◆
(5)

The two terms in (5) exactly correspond to the two criteria we just proposed: the first term asks for an
informative feature representation for our desired task to succeed, while the second term captures the
notion of invariant feature representations between different domains. Inspired by Ganin et al. [17],
we use the gradient reversal layer to effectively implement (5) by backpropagation. The network
architecture is shown in Figure. 1. As discussed in the last section, one notable drawback of the hard
version is that the algorithm may spend too much computational resources in optimizing the worst
source domain. Furthermore, in each iteration the algorithm only updates its parameter based on
the gradient from one of the k domains. This is data inefficient and can waste our computational
resources in the forward process.

To avoid both of the problems, we propose the MDAN Soft version that optimizes an upper
bound of the convex combination bound given in (3). To this end, define b"i(h) := b"Si(h) �
minh02H�H b"T,Si(h

0) and let � > 0 be a constant. We formulate the following optimization problem:

Soft version: minimize
1

�
log

X

i2[k]

exp

✓
�(b"Si(h)� min

h02H�H

b"T,Si(h
0))

◆
(6)

At the first glance, it may not be clear what the above objective function corresponds to. To understand
this, if we define ↵i = exp(b"i(h))/

P
j2[k] exp(b"j(h)), then the following inequality holds:

X

i2[k]

↵ib"i(h)  log
�
E↵[exp(b"i(h))]

�
= log

 P
i2[k] exp

2(b"i(h))P
i2[k] exp(b"i(h))

!
 log

X

i2[k]

exp(b"i(h))

In other words, the objective function in (6) is in fact an upper bound of the convex combination
bound given in (3), with the combination weight ↵ defined above. Compared with the one in (3), one
advantage of the objective function in (6) is that we do not need to explicitly choose the value of ↵.
Instead, it adaptively corresponds to the loss b"i(h), and the larger the loss, the heavier the weight.

Alternatively, from the algorithmic perspective, during the optimization (6) naturally provides an
adaptive weighting scheme for the k source domains depending on their relative error. Use ✓ to
denote all the model parameters:

@

@✓

1

�
log

X

i2[k]

exp

✓
�(b"Si(h)� min

h02H�H

b"T,Si(h
0))

◆
=
X

i2[k]

exp �b"i(h)P
i02[k] exp �b"i0(h)

@b"i(h)
@✓

(7)

Compared with (5), the log-sum-exp trick not only smooths the objective, but also provides a
principled and adaptive way to combine all the gradients from the k source domains. In words, (7)
says that the gradient of MDAN is a convex combination of the gradients from all the domains. The
larger the error from one domain, the larger the combination weight in the ensemble. As we will see
in Sec. 5, the optimization problem (6) often leads to better generalizations in practice, which may
partly be explained by the ensemble effect of multiple sources implied by the upper bound.
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5 Experiments

We evaluate both hard and soft MDAN and compare them with state-of-the-art methods on three
real-world datasets: the Amazon benchmark dataset [11] for sentiment analysis, a digit classification
task that includes 4 datasets: MNIST [29], MNIST-M [17], SVHN [37], and SynthDigits [17], and a
public, large-scale image dataset on vehicle counting from multiple city cameras [52]. Due to space
limit, details about network architecture and training parameters of proposed and baseline methods,
and detailed dataset description are described in appendix.

5.1 Amazon Reviews

Domains within the dataset consist of reviews on a specific kind of product (Books, DVDs, Electronics,
and Kitchen appliances). Reviews are encoded as 5000 dimensional feature vectors of unigrams and
bigrams, with binary labels indicating sentiment. We conduct 4 experiments: for each of them, we
pick one product as target domain and the rest as source domains. Each source domain has 2000
labeled examples, and the target test set has 3000 to 6000 examples. During training, we randomly
sample the same number of unlabeled target examples as the source examples in each mini-batch.
We implement both the Hard-Max and Soft-Max methods, and compare them with three baselines:
MLPNet, marginalized stacked denoising autoencoders (mSDA) [11], and DANN [17]. DANN
cannot be directly applied in multiple source domains setting. In order to make a comparison, we
use two protocols. The first one is to combine all the source domains into a single one and train
it using DANN, which we denote as C-DANN. The second protocol is to train multiple DANNs
separately, where each one corresponds to a source-target pair. Among all the DANNs, we report the
one achieving the best performance on the target domain. We denote this experiment as B-DANN.
For fair comparison, all these models are built on the same basic network structure with one input
layer (5000 units) and three hidden layers (1000, 500, 100 units).

Table 1: Sentiment classification accuracy.

Train/Test MLPNet mSDA B-DANN C-DANN
MDAN

Hard-Max Soft-Max
D+E+K/B 0.7655 0.7698 0.7650 0.7789 0.7845 0.7863

B+E+K/D 0.7588 0.7861 0.7732 0.7886 0.7797 0.8065

B+D+K/E 0.8460 0.8198 0.8381 0.8491 0.8483 0.8534

B+D+E/K 0.8545 0.8426 0.8433 0.8639 0.8580 0.8626

Results and Analysis. We show the accuracy of different methods in Table 1. Clearly, Soft-Max
significantly outperforms all other methods in most settings. When Kitchen is the target domain,
C-DANN performs slightly better than Soft-Max, and all the methods perform close to each other.
Hard-Max is typically slightly worse than Soft-Max. This is mainly due to the low data-efficiency
of the Hard-Max model (Section 4, Eq. 5, Eq. 6). We observe that with more training iterations,
the performance of Hard-Max can be further improved. These results verify the effectiveness of
MDAN for multisource domain adaptation. To validate the statistical significance of the results, we
also run a non-parametric Wilcoxon signed-ranked test for each task to compare Soft-Max with the
other competitors (see more details in appendix). From the statistical test, we see that Soft-Max is
convincingly better than other methods.

5.2 Digits Datasets

Following the setting in [17], we combine four digits datasets (MNIST, MNIST-M, SVHN, SynthDig-
its) to build the multisource domain dataset. We take each of MNIST-M, SVHN, and MNIST as
target domain in turn, and the rest as sources. Each source domain has 20, 000 labeled images and
the target test set has 9, 000 examples.

Baselines. We compare Hard-Max and Soft-Max of MDAN with 10 baselines: i). B-Source. A basic
network trained on each source domain (20, 000 images) without domain adaptation and tested on
the target domain. Among the three models, we report the one achieves the best performance on the
test set. ii). C-Source. A basic network trained on a combination of three source domains (20, 000
images for each) without domain adaptation and tested on the target domain. iii). B-DANN. We
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Table 2: Accuracy on digit classification. T: MNIST; M: MNIST-M, S: SVHN, D: SynthDigits.

Method S+M+D/T T+S+D/M M+T+D/S Method S+M+D/T T+S+D/M M+T+D/S
B-Source 0.964 0.519 0.814 C-Source 0.938 0.561 0.771
B-DANN 0.967 0.591 0.818 C-DANN 0.925 0.651 0.776
B-ADDA 0.968 0.657 0.800 C-ADDA 0.927 0.682 0.804
B-MTAE 0.862 0.534 0.703 C-MTAE 0.821 0.596 0.701

Hard-Max 0.976 0.663 0.802 Soft-Max 0.979 0.687 0.816
MDAC 0.755 0.563 0.604 Target 0.987 0.901 0.898

train DANNs [17] on each source-target domain pair (20, 000 images for each source) and test it on
target. Again, we report the best score among the three. iv). C-DANN. We train a single DANN on a
combination of three source domains (20, 000 images for each). v). B-ADDA. We train ADDA [46]
on each source-target domain pair (20, 000 images for each source) and test it on the target domain.
We report the best accuracy among the three. vi).C-ADDA. We train ADDA on a combination of three
source domains (20, 000 images for each). vii). B-MTAE. We train MTAE [19] on each source-target
domain pair (20, 000 images for each source) and test it on the target domain. We report the best
accuracy among the three. viii). C-MTAE. We train MTAE on a combination of three source domains
(20, 000 images for each). ix). MDAC. MDAC [51] is a multiple source domain adaptation algorithm
that explores causal models to represent the relationship between the features X and class label Y .
We directly train MDAC on a combination of three source domains. x). Target. It is the basic network
trained and tested on the target data. It serves as an upper bound of DA algorithms. All the MDAN
and baseline methods are built on the same basic network structure to put them on a equal footing.

Results and Analysis. The classification accuracy is shown in Table 2. The results show that MDAN
outperforms all the baselines in the first two experiments and is comparable with Best-Single-DANN
in the third experiment. For the combined sources, MDAN always perform better than the source-only
baseline (MDAN vs. Combine-Source). However, a naive combination of different training datasets
can sometimes even decrease the performance of the baseline methods. This conclusion comes from
three observations: First, directly training DANN on a combination of multiple sources leads to
worse results than the source-only baseline (Combine-DANN vs. Combine-Source); Second, The
performance of Combine-DANN can be even worse than the Best-Single-DANN (the first and third
experiments); Third, directly training DANN on a combination of multiple sources always has lower
accuracy compared with our approach (Combine-DANN vs. MDAN). We have similar observations
for ADDA and MTAE. Such observations verify that the domain adaptation methods designed for
single source lead to suboptimal solutions when applied to multiple sources. It also verifies the
necessity and superiority of MDAN for multiple source adaptation. Furthermore, we observe that
adaptation to the SVHN dataset (the third experiment) is hard. In this case, increasing the number of
source domains does not help. We conjecture this is due to the large dissimilarity between the SVHN
data to the others. Surprisingly, using a single domain (best-Single DANN) in this case achieves
the best result. This indicates that in domain adaptation the quality of data (how close to the target
data) is much more important than the quantity (how many source domains). As a conclusion, this
experiment further demonstrates the effectiveness of MDAN when there are multiple source domains
available, where a naive combination of multiple sources using DANN may hurt generalization.

5.3 WebCamT Vehicle Counting Dataset

WebCamT is a public dataset for vehicle counting from large-scale city camera videos, which has low
resolution (352⇥ 240), low frame rate (1 frame/second), and high occlusion. It has 60, 000 frames
annotated with vehicle bounding box and count, divided into training and testing sets, with 42, 200
and 17, 800 frames, respectively. Here we demonstrate the effectiveness of MDAN to count vehicles
from an unlabeled target camera by adapting from multiple labeled source cameras: we select 8
cameras located in different intersections of the city with different scenes, and each has more than
2, 000 labeled images for our evaluations. Among these 8 cameras, we randomly pick two cameras
and take each camera as the target camera, with the other 7 cameras as sources. We compute the
proxy A-distance (PAD) [7] between each source camera and the target camera to approximate the
divergence between them. We then rank the source cameras by the PAD from low to high and choose
the first k cameras to form the k source domains. Thus the proposed methods and baselines can be
evaluated on different numbers of sources (from 2 to 7). We implement the Hard-Max and Soft-Max
MDAN, based on the basic vehicle counting network FCN [52]. We compare our method with two
baselines: FCN [52], a basic network without domain adaptation, and DANN [17], implemented
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Table 3: Counting error statistics. S is the number of source cameras; T is the target camera id.

S T MDAN DANN FCN T MDAN DANN FCNHard-Max Soft-Max Hard-Max Soft-Max
2 A 1.8101 1.7140 1.9490 1.9094 B 2.5059 2.3438 2.5218 2.6528
3 A 1.3276 1.2363 1.3683 1.5545 B 1.9092 1.8680 2.0122 2.4319
4 A 1.3868 1.1965 1.5520 1.5499 B 1.7375 1.8487 2.1856 2.2351
5 A 1.4021 1.1942 1.4156 1.7925 B 1.7758 1.6016 1.7228 2.0504
6 A 1.4359 1.2877 2.0298 1.7505 B 1.5912 1.4644 1.5484 2.2832
7 A 1.4381 1.2984 1.5426 1.7646 B 1.5989 1.5126 1.5397 1.7324

on top of the same basic network. We record mean absolute error (MAE) between true count and
estimated count.

Results and Analysis. The counting error of different methods is compared in Table 3. The Hard-
Max version achieves lower error than DANN and FCN in most settings for both target cameras.
The Soft-Max approximation outperforms all the baselines and the Hard-Max in most settings,
demonstrating the effectiveness of the smooth and adaptative approximation. The lowest MAE
achieved by Soft-Max is 1.1942. Such MAE means that there is only around one vehicle miscount
for each frame (the average number of vehicles in one frame is around 20). Fig. 2 shows the counting
results of Soft-Max for the two target cameras under the 5 source cameras setting. We can see that
the proposed method accurately counts the vehicles of each target camera for long time sequences.
Does adding more source cameras always help improve the performance on the target camera? To
answer this question, we analyze the counting error when we vary the number of source cameras
as shown in Fig. 3a, where the x-axis refers to number of source cameras and the y-axis includes
both the MAE curve on the target camera as well as the PAD distance (bar chart) between the pair of
source and target cameras. From the curves, we see the counting error goes down with more source
cameras at the beginning, while it goes up when more sources are added at the end. This phenomenon
shows that the performance on the target domain also depends on the its distance to the added source
domain, i.e., it is not always beneficial to naively incorporate more source domains into training. To
illustrate this better, we also show the PAD of the newly added camera in the bar chart of Fig. 3a. By
observing the PAD and the counting error, we see the performance on the target can degrade when
the newly added source camera has large divergence from the target camera. To show that MDAN
can indeed decrease the divergences between target domain and multiple source domains, in Fig. 3b
we plot the PAD distances between the target domains and the corresponding source domains. We
can see that MDAN consistently decrease the PAD distances between all pairs of target and source
domains, for both camera A and camera B. From this experiment we conclude that our proposed
MDAN models are effective in multiple source domain adaptation.

Figure 2: Counting results for target camera A (first row) and B (second row). X-frames; Y-Counts.

6 Related Work

A number of adaptation approaches have been studied in recent years. From the theoretical aspect,
several theoretical results have been derived in the form of upper bounds on the generalization target
error by learning from the source data. A keypoint of the theoretical frameworks is estimating
the distribution shift between source and target. Kifer et al. [27] proposed the H-divergence to
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(a) Counting error and PAD over different source num-
bers. (b) PAD distance before and after training MDAN.

Figure 3: PAD distance over different source domains along with their changes before and after
training MDAN.

measure the similarity between two domains and derived a generalization bound on the target domain
using empirical error on the source domain and the H-divergence between the source and the target.
This idea has later been extended to multisource domain adaptation [9] and the corresponding
generalization bound has been developed as well. Ben-David et al. [8] provide a generalization bound
for domain adaptation on the target risk which generalizes the standard bound on the source risk.
This work formalizes a natural intuition of DA: reducing the two distributions while ensuring a low
error on the source domain and justifies many DA algorithms. Based on this work, Mansour et al.
[33] introduce a new divergence measure: discrepancy distance, whose empirical estimate is based
on the Rademacher complexity [28]. See [13, 35] for more details.

Following the theoretical developments, many DA algorithms have been proposed, such as instance-
based methods [44]; feature-based methods [6]; and parameter-based methods [15]. Recent studies
have shown that deep neural networks can learn more transferable features for DA [14, 20, 50].
Bousmalis et al. [10] develop domain separation networks to extract image representations that are
partitioned into two subspaces: domain private component and cross-domain shared component.
The partitioned representation is utilized to reconstruct the images from both domains, improving
the DA performance. Ganin et al. [17] propose a domain-adversarial neural network to learn the
domain indiscriminate but main-task discriminative features. Adversarial training techniques that
aim to build feature representations that are indistinguishable between source and target domains
have been proposed in the last few years [2, 17]. Specifically, one of the central ideas is to use neural
networks, which are powerful function approximators, to approximate a distance measure known
as the H-divergence between two domains [7, 8, 27]. The overall algorithm can be viewed as a
zero-sum two-player game: one network tries to learn feature representations that can fool the other
network, whose goal is to distinguish representations generated from the source domain between
those generated from the target domain. The goal of the algorithm is to find a Nash-equilibrium of the
game. Ideally, at such equilibrium state, feature representations from the source domain will share
the same distributions as those from the target domain. Although these works generally outperform
non-deep learning based methods, they only focus on the single-source-single-target DA problem,
and much work is rather empirical design without statistical guarantees. Hoffman et al. [23] present a
domain transform mixture model for multisource DA, which is based on non-deep architectures and
is difficult to scale up.

7 Conclusion

We theoretically analyze generalization bounds for DA under the setting of multiple source domains
with labeled instances and one target domain with unlabeled instances. Specifically, we propose
average case generalization bounds for both classification and regression problems. The new bounds
have interesting interpretations and the one for classification reduces to an existing bound when there
is only one source domain. Following our theoretical results, we propose two MDAN to learn feature
representations that are invariant under multiple domain shifts while at the same time being discrimi-
native for the learning task. Both hard and soft versions of MDAN are generalizations of the popular
DANN to the case when multiple source domains are available. Empirically, MDAN outperforms the
state-of-the-art DA methods on three real-world datasets, including a sentiment analysis task, a digit
classification task, and a visual vehicle counting task, demonstrating its effectiveness in multisource
domain adaptation for both classification and regression problems.
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