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Abstract

Multitask reinforcement learning (MTRL) suffers from scalability issues when
the number of tasks or trajectories grows large. The main reason behind this
drawback is the reliance on centeralised solutions. Recent methods exploited the
connection between MTRL and general consensus to propose scalable solutions.
These methods, however, suffer from two drawbacks. First, they rely on predefined
objectives, and, second, exhibit linear convergence guarantees. In this paper, we
improve over state-of-the-art by deriving multitask reinforcement learning from a
variational inference perspective. We then propose a novel distributed solver for
MTRL with quadratic convergence guarantees.

1 Introduction

Reinforcement learning (RL) allows agents to solve sequential decision-making problems with limited
feedback. Applications with these characteristics are ubiquitous ranging from stock-trading [1] to
robotics control [2, 3]. Though successful, RL methods typically require substantial amounts of data
and computation for successful behaviour. Multitask and transfer learning [4–6, 2, 7] techniques have
been developed to remedy these problems by allowing for knowledge reuse between tasks to bias
initial behaviour. Unfortunately, such methods suffer from scalability constraints when the number of
tasks or policy dimensions grows large.

Two promising directions remedy these scalability problems. In the first, tasks are streamed online and
models are fit iteratively. Such an alternative has been well-explored under the name of lifelong RL [8,
9]. When considering lifelong learning, however, one comes to recognise that these improvements
in computation come hand-in-hand with a decrease in the model’s accuracy due to the usage of
approximations to the original loss (e.g., second-order expansions [10]), as well as the unavailability
of all tasks in batch. Interested readers are referred to [11] for an in-depth discussion of the limitations
of lifelong reinforcement learners.

The other direction based on decentralised optimisation remedies scalability and accuracy constraints
by distributing computation across multiple units. Though successful in supervised learning [12],
this direction is still to be well-explored in the context of MTRL. Recently, however, the authors
in [11] proposed a distributed solver for MTRL with linear convergence guarantees based on the
Alternating Direction Method of Multipliers (ADMM). Their method relied on a connection between
MTRL and distributed general consensus. However, such ADMM-based techniques suffer from the
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following drawbacks. First, these algorithms only achieve linear convergence in the order of O (1/k)
with k being the iteration count. Second, for linear convergence additional restrictive assumptions on
the penalty terms have to be imposed. Finally, they require large number of iterations to arrive at
accurate (in terms of consensus error) solutions as noted by [13] and validated in our experiments,
see Section 5.

In this paper, we remedy the above problems by proposing a distributed solver for MTRL that exhibits
quadratic convergence. Contrary to [11], our technique does not impose restrictive assumptions on
the reinforcement learning loss function and can thus be deemed more general. We achieve our results
in two-steps. First, we reformulate MTRL as variational inference. Second, we map the resultant
objective to general consensus that allows us to exploit the symmetric and diagonal dominance
property of the curvature of our dual problem. We show our novel distributed solver using Chebyshev
polynomials has quadratic convergence guarantees.

We analyse the performance of our method both theoretically and empirically. On the theory side,
we formally prove quadratic convergence. On the empirical side, we show that our new technique
outperforms state-of-the-art methods from both distributed optimisation and lifelong reinforcement
learning on a variety of graph topologies. We further show that these improvements arrive at relatively
small increases in the communication overhead between the nodes.

2 Background

Reinforcement learning (RL) [14] algorithms are successful in solving sequential decision making
(SDM) tasks. In RL, the agent’s goal is to sequentially select actions that maximise its total expected
return. We formalise such problems as a Markov decision process (MDP) Z = 〈X ,A,P,R, γ〉
where X ⊆ Rd is the set of states, A ⊆ Rm is the set of possible actions, P : X ×A×X 7→ [0, 1]
represents the state transition probability describing the task’s dynamics, R : X ×A× X 7→ R is
the reward function measuring the agent’s performance, and γ ∈ [0, 1) is the discount factor. The
dynamics of an RL problem commence as follows: at each time step h, the agent is at state xh ∈ X
and has to choose an action ah ∈ A transitioning it to a new state xh+1 ∼ p(xh+1|xh,ah) as
given by P . This transition yields a reward rh+1 = R(xh,ah,xh+1). We assume that actions are
generated by a policy π : X ×A 7→ [0, 1], which is defined as a distribution over state-action pairs,
i.e., π(ah|xh) is the probability of choosing action ah in a state xh. The goal of the agent is to find
an optimal policy π∗ that maximises its expected return given by: Eπ

[∑H
h=1 γ

hrh
]
, with H being

the horizon length.

Policy Search RL parameterises a policy by a vector of unknown parameters θ. As such, the RL
problem is transformed to a one of searching over the parameter space for θ? that maximises:

J (θ) = Epθ(τ )[R(τ )] =

∫
τ

pθ(τ )R(τ )dτ , (1)

where a trajectory τ is a sequence of accumulated state-action pairs [x0:H ,a0:H ]. Furthermore,
the probability of acquiring a certain trajectory, pθ(τ ), and the total reward R(τ ) for a trace τ are
defined as: pθ(τ ) = P0(x0)

∏H
h=1 p(xh+1|xh,ah)πθ(ah|xh), and R(τ ) = 1

H

∑H
h=0 rh+1, with

P0 : X 7→ [0, 1] being the initial state distribution.

Policy search can also be cast as variational inference by connecting RL and probabilistic infer-
ence [15–18]. In this formulation the goal is to derive the posterior distribution over trajectories
conditioned on a desired output, given a prior trajectory distribution. The desired output is denoted
as a binary random variable R̂, where R̂ = 1 indicates the optimal reward event. This is typically
related to trajectory rewards using p(R̂ = 1|τ ) ∝ exp(R(τ )). With this definition, the optimisation
objective J (θ) in Equation 1 is pθ(R̂ = 1) =

∫
τ
p(R̂ = 1|τ )pθ(τ )dτ . From the log-marginal

of the binary event, we can write the evidence lower bound (ELBO). The ELBO is derived by
introducing a variational distribution qφ(τ ) and applying Jensen’s inequality:

log pθ(R̂) ≥
∫
τ

qφ(τ )

[
log p(R̂|τ ) + log

pθ(τ )

qφ(τ )

]
dτ = Eqφ(τ )

[
log p(R̂|τ )

]
−DKL(qφ(τ )‖pθ(τ )),

with DKL (q(τ )||p(τ ))) being the Kullback Leibler divergence between q(τ ) and p(τ ).
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3 Multitask Reinforcement Learning as Variational Inference

RL algorithms require substantial amounts of trajectories and learning times for successful behaviour.
Acquiring large training samples easily leads to wear and tear on the system and thus worsens
the problem. When data is scarce, learning task policies jointly through multi-task reinforcement
learning (MTRL) rather than independently significantly improves performance [4, 19]. In MTRL,
the agent is faced with a series of T SDM tasks Z(1), ...,Z(T ). Each task is an MDP denoted by
Z(t) = 〈X (t),A(t),P(t),R(t), γ(t)〉, and the goal for the agent is to learn a set of optimal policies
Π? = {π?

θ(1) , ..., π
?
θ(T )} with corresponding parameters Θ? = {θ(1)?, ...,θ(T )?}. Rather than

defining the optimisation objective directly as done in [10, 4], we provide a probabilistic modeling
view of the problem by framing MTRL as an instance of variational inference. We define a set of
reward binary events R̂1, . . . , R̂T ∈ {0, 1}T where p(R̂k|τk) ∝ exp (Rk(τk)). Here, trajectories
are assumed to be latent, and the goal of the agent is to determine a set of policy parameters that
assign high density to trajectories with high rewards. In other words, the goal is to find a set of
policies that maximise the log-marginal of the reward events:

log pθ1:θT

(
R̂1, . . . R̂T

)
= log

∫
τ1

· · ·
∫
τT

T∏
t=1

p(R̂t|τt)pθt(τt)dτ1 . . . dτT ,

where pθt(τt) is the trajectory density for task t: pθt(τt) =

P(t)
0 (x0)

∏Ht

h=1 p
(t)
(
x
(t)
h+1|x

(t)
h ,a

(t)
h

)
πθt

(
a
(t)
h |x

(t)
h

)
. To handle the intractability in com-

puting the above integrals, we derive an ELBO using a variational distribution qφ(τ1, . . . , τT ):

log

∫
τ1

· · ·
∫
τT

T∏
t=1

p(R̂t|τt)pθt(τt)dτ1 . . . dτT ≥ Eqφ(·)

[
T∑
t=1

log p
(
R̂t|τt

)
+ log

∏T
t=1 pθt(τ )

qφ(·)

]
Using the above, the optimisation objective of multitask reinforcement learning can be written as:

max
φ,θ1:θT

Eqφ(τ1,...,τT )

[
T∑
t=1

log p
(
R̂t|τt

)]
+ Eqφ(τ1,...,τT )

[
log

∏T
t=1 pθt(τ )

qφ(τ1, . . . , τT )

]
.

We assume a mean-field variational approximation [20], i.e., qφ(τ1, . . . , τT ) =
∏T
t=1 qφt

(τt).
Furthermore, we assume that the distribution1 qφt

(τt) follows that of pθt(τt). Hence, we write:

max
φ1:φT ,θ1:θT

T∑
t=1

Eqφt (τt)

[
log p

(
R̂t|τt

)]
−

T∑
t=1

DKL (qφt(τt)||pθt(τt)) . (2)

So far, we discussed MTRL assuming independence between policy parameters θ1, . . . ,θT . To
benefit from shared knowledge between tasks, we next introduce coupling by allowing for parameter
sharing across MDPs. Inspired by stochastic variational inference [21], we decompose θt = Θshθ̃t,
where Θsh is a shared set of parameters between tasks, while θ̃t represents task-specific parameters
introduced to “specialise” shared knowledge to the peculiarities of each task t ∈ {1, . . . , T}. For
instance, if a task parameter θt ∈ Rd, our decomposition yields Θsh ∈ Rd×k, and θ̃t ∈ Rk×1 with k
representing the dimensions of the shared latent knowledge.

Solving the problem in Equation 2 amounts to determining both variational and model parameters,
i.e., φ1, . . . ,φT , and Θsh, and θ̃1, . . . , θ̃T . We propose an expectation-maximisation style algorithm
for computing each of the above free variables. Namely, in the E-step we solve for φ1, . . . ,φT
while keeping Θsh, and θ̃1, . . . , θ̃T fixed. In the M-step, on the other hand, we determine Θsh and
θ̃1, . . . , θ̃T given the updated variational parameters. In both these steps, solving for the task-specific
and variational parameters can be made efficient using parallelisation. Determining Θsh, however,
requires knowledge of all tasks making it unscalable as the number of tasks grows large. To remedy
this problem, we next propose a novel distributed Newton method with quadratic convergence
guarantees2. Applying this method to determine Θsh results in a highly scalable learner as shown in
the following sections.

1Please note that we leave exploring other forms of the variational distribution as an interesting direction for
future work.

2Contrary to stochastic variational inference, we are not restricted to exponential family distributions
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4 Scalable Multitask Reinforcement Learning

As mentioned earlier, the problem of determining Θsh can become computationally intensive with
an increasing number of tasks. In this section, we devise a distributed Newton method for Θsh to
aid in scalability. Given an updated variational (i.e., E-step) and fixed task-specific parameters, the
optimisation problem for Θsh can be written as:

max
Θsh

T∑
t=1

1

Nt

[
Nt∑
it=1

log
[
p
(
R̂(it)
t |τ

(it)
t

)
× pΘsh,θ̃t

(
τ
(it)
t

)]]
≡ max

Θsh

T∑
t=1

J (t)
MTRL

(
Θshθ̃t

)
, (3)

where it = {1, . . . , Nt} denotes the index of trajectory i for task t ∈ {1, . . . , T}. The above
equation omits functions independent of Θsh, and estimates the variational expectation by sampling
Nt trajectories for each of the tasks.

Our scaling strategy is to allow for a distributed framework generalising to any topology of connected
processors. Hence, we assume an undirected graph G = (V, E) of computational units. Here, V
denotes the set of nodes (processors) and E the set of edges. Similar to [11], we assume n nodes
connected via |E| edges. Contrary to their work, however, no specific node-ordering assumptions
are imposed. Before writing the problem above in an equivalent distributed fashion, we firstly
introduce “vec(A)” to denote the column-wise vectorisation of a matrixA. This notation allows us
to rewrite the by-product Θshθ̃t in terms of a vectorised version of the optimisation variable Θsh,
where vec(Θshθ̃t) = (θ̃>t ⊗ Id×d)vec(Θsh) ∈ Rd×1. Hence, the equivalent distributed formulation
of Equation 3 is given by:

min
Θ

(1)
sh :Θ

(n)
sh

n∑
i=1

Ti∑
t=1

−J (t)
MTRL

((
θ̃>t ⊗ Id×d

)
vec(Θ(i)

sh )
)

s.t. Θ
(1)
sh = · · · = Θ

(n)
sh , (4)

where Ti is the total number of tasks assigned to node i such that
∑n
i=1 Ti = T . Intuitively, the

above is distributing Equation 3 among n nodes, where each computes its local copy of Θsh. For the
distributed version to coincide with the centeralised one, all nodes have to arrive to a consensus (in
a fully distributed fashion) on the value of Θsh. As such, a feasible solution for the distributed and
centeralised versions coincide making the two problems equivalent.

Now, we can apply any off-the-shelf distributed optimisation algorithm. Unfortunately, current
techniques suffer from drawbacks prohibiting their direct usage for MTRL. Generally, there are two
popular classes of algorithms for distributed optimisation. The first is sub-gradient based, while
the second relies on a decomposition-coordination procedure. Sub-gradient algorithms proceed by
taking a gradient step then followed by an averaging step at each iteration. The computation of
each step is relatively cheap and can be implemented in a distributed fashion [22]. Though cheap to
compute, the best known convergence rate of sub-gradient methods is slow given by O (1/

√
K) with

K being the total number of iterations [23, 24]. The second class of algorithms solve constrained
problems by relying on dual methods. One of the well-known state-of-the-art methods from this
class is the Alternating Direction Method of Multipliers (ADMM) [13]. ADMM decomposes the
original problem to two subproblems which are then solved sequentially leading to updates of dual
variables. In [23], the authors show that ADMM can be fully distributed over a network leading
to improved convergence rates to the order of O (1/K). Recently, the authors in [11] applied the
method [23] for distributed MTRL. In our experiments, we significantly outperform [11], especially
in high-dimensional environments.

Much rate improvements can be gained from adopting second-order (Newton) methods. Though
a variety of techniques have been proposed in [25–27], less progress has been made at leveraging
ADMM’s accuracy and convergence rate issues. In a recent attempt [25], the authors propose a
distributed second-order method for general consensus by using the approach in [27] to compute the
Newton direction. As detailed in Section 6, this method suffers from two problems. First, it fails to
outperform ADMM and second, faces storage and computational deficiencies for large data sets, thus
ADMM retains state-of-the-art status.

Next, we develop a distributed solver that outperforms others both theoretically and empirically. On
the theory side, we develop the first distributed MTRL algorithm with provable quadratic convergence
guarantees. On the empirical side, we demonstrate the superiority of our method on a variety of
benchmarks.
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Figure 1: High-level depiction of our distribution framework for the shared parameters. Each of the
vectors yi holds the ith components of the shared parameters across all nodes n.

4.1 Laplacian-Based Distributed Multitask Reinforcement Learning

For maximum performance boost, we aim to have our algorithm exploit (locally) the structure of
the computational graph connecting the processing units. To consider such an effect, we rewrite
our distributed MTRL in terms of the graph Laplacian L; a matrix that reflects the graph structure.
Formally, the L is an n× n matrix such L(i, j) = degree(i) when i = j, -1 when (i, j) ∈ E , and 0
otherwise. Of course, this matrix cannot be known to all the nodes in the network. We ensure full
distribution by allowing each node to only access its local neighbourhood. To view the problem in
Equation 4 from a graph topology perspective, we introduce a set of dk vectors y1, . . . ,ydk, each
in Rn. The goal of these vectors is to hold the ith component of vec(Θ(1)

sh ), . . . , vec(Θ(n)
sh ). This

process is depicted in Figure 1, where, for instance, the first vector y1 accumulates the first component
of the shared parameters, θ(1)1,sh, . . . ,θ

(n)
1,sh, from all nodes.

We can now describe consensus on the copies of the shared parameters as consensus between
the components of y1, . . . ,ydk. Clearly, the components in yr coincide, if the rth component of
the shared parameters equate across nodes. Hence, consensus between the components (for all r)
corresponds to consensus on all dimensions of the shared parameters. This is exactly the constraint in
Equation 4. One can think of a vector with equal components as that parallel to 1, namely, yr = cr1.
Consequently, we can introduce the graph Laplacian in our constraints by having y1, . . . ,ydk to be
the solution of Ly1 = 0, . . . ,Lydk = 0. This is true since the only solution to Lv = 0 is a vector, v,
parallel to the vector of ones. Hence, a vector yr satisfying the above system has to be of the form
cr1, i.e., its components equate. Hence, we write:

min
y1:ydk

n∑
i=1

Ti∑
t=1

−J (t)
MTRL

((
θ̃>t ⊗ Id×d

)
ỹi

)
s.t. Ly1 = 0, . . . ,Lydk = 0 ⇐⇒ My = 0, (5)

with ỹi = [y1(i), . . . ,ydk(i)]
> denoting vec(Θ(i)

sh ), M = Idk×dk ⊗ L a block-diagonal matrix of
size ndk × ndk having Laplacian elements, and y ∈ Rndk a vector collecting y1, . . . ,ydk.

4.2 Solution Methodology

The problem in Equation 5 is a constrained optimisation one that can be solved by descending (in a
distributed fashion) in the dual function. Though adopting second-order techniques (e.g., Newton
iteration) can lead to improved convergence speeds, direct application of standard Newton is difficult
as we require a distributed procedure to accurately compute the direction of descent3.

In the following, we propose an accurate and scalable distributed Newton method. Our solution is
decomposed in two steps. First, we write the constraint problem as an unconstraint one by introducing
the dual functional to Equation 5. Second, we exploit the symmetric diagonally dominant (SDD)
property of the Hessian, previously proved for a broader setting in Lemma 2 of [28], by developing a
Chebyshev solver to compute the Newton direction. To formulate the dual, we introduce a vector of
Lagrange multipliers λ = [λ>1 , . . . ,λ

>
dk]
> ∈ Rndk, where λi ∈ Rn is a vector of multipliers, one

for each dimension of vec (Θsh). For fully distributed computations, we assume each node to only
store its corresponding components λ1(i), . . . ,λdk(i). After deriving the Lagrangian, we can write

3It is worth noting that some techniques for determining the Newton direction in a distributed fashion exist.
These techniques, however, are inaccurate, see Section 5.

5



the dual function q(λ) as 4:

q(λ) =

n∑
i=1

inf
y1(i):ydk(i)

(
Ti∑
t=1

−J (t)
MTRL

((
θ̃>t ⊗ Id×d

)
ỹi

)
+ y1(i)[Lλ1]i + · · ·+ ydk(i)[Lλdk]i

)
,

which is clearly separable across the computational nodes in G. Before discussing the SDD properties
of the dual Hessian, we still require a procedure that allows us to infer about the primal (i.e., y)
given updated parameters λ. We recognise that primal variables can be found as the solution to the
following system of equations:

∂fi(·)
∂y1(i)

= −[Lλ1]i, . . . ,
∂fi(·)
∂ydk(i)

= −[Lλdk]i where fi(·) =
Ti∑
t=1

−J (t)
MTRL

((
θ̃>t ⊗ Id×d

)
ỹi

)
.

(6)
It is also clear that Equation 6 is locally defined for every node i ∈ V since for each r = 1, . . . , dk, we
have: −[Lλr]i =

∑
j∈N (i) λr(j)− d(i)λr(i), where N (i) is the neighbourhood of node i. As such,

each node i can construct its own system of equations by collecting {λ1(j), . . . , λdk(j)} from its
neighbours without the need for full communication. These can then be locally solved for determining
the primal variables5.

As mentioned earlier, we update λ using a distributed Newton method. At every iteration s in the
optimisation algorithm, the descent direction is thus computed to be the solution ofH (λs)ds = −gs,
where H (λs) is the Hessian, ds the Newton direction, and gs the gradient. The Hessian and the
gradient of our objective are given by:

H(λs) = −M

[
n∑
i=1

Ti∑
t=1

−∇2J (t)
MTRL (y (λs))

]−1
M and ∇q(λs) =My (λs) .

Unfortunately, inverting H(λs) to determine the Newton direction is not possible in a distributed
setting since computing the inverse requires global information. Given the form ofM and following
the results in [28], one can show that the above Hessian exhibits the SDD property. Luckily, this
property can be exploited for a distributed solver as we show next.

The story of computing an approximation to the exact solution of an SDD system of linear equation
starts with standard splitting of symmetric matrices. Given a symmetric matrix6 H the standard
splitting is given byH =D0−A0, whereD0 is a diagonal matrix that consists of diagonal elements
inH , whileA0 is a matrix collecting the negate of the off-diagonal components inH . As the goal is
to determine a solution of the SDD system, we will be interested in inverses ofH . Generalising the
work in [29], we recognise that the inverse can be written as:

(D0 −A0)
−1 ≈D−

1
2

0

O(logm)∏
`=0

[
I +

[
D
− 1

2
0 A0D

− 1
2

0

]2`]
D
− 1

2
0 = P̂m(H),

where P̂m(H) is a polynomial of degree m ∼ κ(H) of matrix H . All computations do not need
access to the Hessian nor its inverse. We can describe these only using local Hessian vector products,
hence allowing for fast implementation using automatic differentiation. Hence, the goal of the
Newton update is to find a solution of the form d

(m)
s = Pm(H(λs))∇q(λs) such that d(m)

s is an
ε-close solution to d?s . Consequently, the differential d(m)

s − d?s can be written as:

d(m)
s − d?s = [H(λs)Pm(H(λs))− I]d?s = −Qm(H(λs))d

?
s,

where Qm(H(λs)) = −H(λs)Pm(H(λs)) + I . Therefore, instead of seeking Pm(·), one can
think of constructing polynomials Qm(·) that reduce the term d

(m)
s − d?s as fast as possible. This

can be formalised in terms of the properties of Qm(·) by requiring the polynomial to have a minimal
degree, as well as satisfying the following for a precision parameter ε: Qm(0) = 1 and |Qm(µi)| ≤ ε,

4Please notice that for a dual function we use notation q(λ) and for the variational distribution qφt(τt)
5Please note that for the case of log-concave policies, we can determine the relation between primal and dual

variables in closed form by simple algebraic manipulation.
6Please note that we useH to denoteH(λs).
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Figure 2: (a) Communication overhead in the HC case. Our method has an increase proportional to
the condition number of the graph, which is slower compared to the other techniques. (b) and (c)
Running times till convergence to a threshold of 10−5. (d) Number of iterations for a 10−5 consensus
error on the HC dynamical system on different graph topologies.

with µi being the ith smallest eigenvalue of H(λs). The first condition is a result of observing
Qm(z) = −zPm(z) + 1, while the second guarantees an ε-approximate solution:

||d(m)
k − d?k||2H(λs)

≤ max
i
|Qm(µi)|2||d?s||2H(λs)

≤ ε2||d?s||2H(λs)
.

In other words, finding Qm(z) that has minimal degree and satisfies the above two conditions
guarantees an efficient and ε-close solution to d?s . Chebyshev polynomials of the first kind satisfy
our requirements. Their form is defined as Tm(z) = cos(m arccos(z)) if z ∈ [−1, 1], and 1

2 ((z +√
z2 − 1)m + (z −

√
z2 − 1)m) otherwise. Interestingly, |Tm(z)| ≤ 1 on [−1, 1], and among all

polynomials of degreemwith a leading coefficient 1, the polynomial 1
2m−1Tm(z) acquires its minimal

and maximal values on this interval (i.e., sharpest increase outside the range [−1, 1]). We posit that
a good candidate is Q?m(z) = Tm

(
µN+µ2−2z
µN−µ2

)
/Tm

(
µN+µ2

µN−µ2

)
, with µi being the ith smallest

eigenvalue of symmetric matrixH describing the system of linear equations. First, it is easy to see
that when z = 0, these polynomials attain a value of unity (i.e., Q?m(0) = 1). Secondly, it can be
shown that for any s and z ∈ [µ2, µndk], |Q?(z)|2 is bounded as |Q?(z)|2 ≤ 4 exp (−4m/

√
κ(H) + 1).

Therefore, choosing the approximate solution as7 d
(m)
s = −H(λs)

−1 (I −Qm(H(λs))) gs guar-
antees an ε-close solution. Please note that by exploiting the recursive properties of Chebyshev
polynomials we can derive an approximate solution without the need to computeH−1 explicitly. In
addition to the time and message complexities of this new solver, other implementation details can be
found in the appendix. We now show quadratic convergence of the distributed Newton method:
Theorem 1. Distributed Newton method using the Chebyshev solver exhibits the following two
convergence phases for some constants c1 and c2:
Strict Decrease: if ||∇q(λs)||2 > c1, then ||∇q(λs)||2 − ||∇q(λs)||2 ≤ c2 µ

4
2(L)

µ3
n(L)

Quadratic Decrease: if ||∇q(λs)||2 ≤ c1, then for any l ≥ 1: ||∇q(λs+l)||2 ≤ 2c1
22l

+O(ε)

5 Experiments & Results

We conducted two sets of experiments to compare against distributed and multitask learning methods.
On the distributed side, we evaluated our algorithm against five other approaches being: 1) ADD [27],
2) ADMM [11], 3) distributed averaging [30], 4) network-newton [26, 25], and 5) sub-gradients.
We are chiefly interested in the convergence speeds of both the objective value and consensus error,
as well as the communication overhead and running times of these approaches. The comparison
against [11] (which we title as distributed ADMM in the figures) allows us to understand whether
we surpass state-of-the-art, while that against ADD and network-newton sheds the light on the
accuracy of our Newton’s direction approximation. When it comes to online methods, we compare
our performance in terms of jump-start and asymptotic performance to policy gradients [31, 32],
PG-ELLA [10], and GO-MTL [33]. Our experiments ran on five systems, simple mass (SM), double
mass (DM), cart-pole (CP), helicopter (HC), and humanoid robots (HR).

We followed the experimental protocol in [10, 33] where we generated 5000 SM, 500 DM, and 1000
CP tasks by varying the dynamical parameters of each of the above systems. These tasks were then

7Please note that the solution of this system can be split into dk linear systems that can be solved efficiently
using the distributed Chebyshev solver. Due to space constraints these details can be found in the appendix.
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Figure 3: Demonstration of jump-start and asymptotic results.

distributed over graphs with edges generated uniformly at random. Namely, a graph of 10 nodes
and 25 edges was used for both SM and DM experiments, while a one with 50 nodes and 150 edges
for the CP. To distribute our computations, we made use of MATLAB’s parallel pool running on 10
nodes. For all methods, tasks were assigned evenly across 10 agents8. An ε = 1/100 was provided to
the Chebyshev solver for determining the approximate Newton direction in all cases. Step-sizes were
determined separately for each algorithm using a grid-search-like technique over {0.01, . . . , 1} to
ensure best operating conditions. Results reporting improvements in the consensus error (i.e., the
error measuring the deviation from agreement among the nodes) can be found in the appendix due to
space constraints.

Communication Overhead & Running Times: It can be argued that our improved results arrive at
a high communication cost between processors. This may be true as our method relies on an SDD-
solver while others allow for only few messages per iteration. We conducted an experiment measuring
local communication exchange with respect to accuracy requirements. Results on the HC system,
reported in Figure 2a, demonstrate that this increase is negligible compared to other methods. Clearly,
as accuracy demands increase so does the communication overhead of all algorithms. Distributed
SDD-Newton has a growth rate proportional to the condition number of the graph being much slower
compared to the exponential growth observed by other techniques. Having shown small increase
in communication cost, now we turn our attention to assess running times to convergence on all
dynamical systems. Figures 2b and 2c report running times to convergence computed according
to a 10−5 error threshold. All these experiments were run on a small random graph of 20 nodes
and 50 edges. Clearly, our method is faster when compared with others in both cases of low and
high-dimensional policies. A final question to be answered is the effect of different graph topologies
on the performance of SDD-Newton. Taking the HC benchmark, we generated four graph topologies
representing small (S. Random), medium (M. Random), and large (L. Random) random networks,
and a bar-bell graph with nodes varying from 10 to 150 and edges from 25 to 250. The bar-bell
contained 2 cliques formed by 10 nodes each and a 10 node line graph connecting them. We then
measured the number of iterations required by all algorithms to achieve a consensus error of 10−5.
Figure 2d reports these results showing that our method is again faster than others.

Benchmarking Against RL: We finally assessed our method in comparison to current MTRL
literature, including PG-ELLA [10] and GO-MTL [33]. For the experimental procedure, we followed
the technique described in [11], where the reward function was given by −

√
xh − xref, with xref

being the reference state. As base-learners we used policy gradients as detailed in [34], which acquired
1000 trajectories with a length of 150 each. We report jump-start and asymptotic performance in
Figures 3a and 3b. These results show that our method can outperform others in terms of jump-start
and asymptotic performance while requiring fewer iterations. Moreover, it is clear that our method
outperforms streaming models, e.g., PG-ELLA.

6 Conclusions & Future Work

We proposed a distributed solver for multitask reinforcement learning with quadratic convergence.
Our next steps include developing an incremental version of our algorithm using generalised Hessians,
and conducting experiments running on true distributed architectures to quantify the trade-off between
communication and computation.

8When graphs grew larger, nodes were grouped together and provided to one processor.
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