Causal Discovery from Discrete Data using Hidden
Compact Representation

Ruichu Cai 1, Jie Qiaol, Kun Zhangz, Zhenjie Zhang3, Zhifeng Hao"*
" School of Computer Science, Guangdong University of Technology, China
: Department of philosophy, Carnegie Mellon University
} Singapore R&D, Yitu Technology Ltd.

* School of Mathematics and Big Data, Foshan University, China
cairuichu@gdut.edu.cn, giaojie.chn@gmail.com, kunz1 @andrew.cmu.edu,
zhenjie.zhang @yitu-inc.com, zfhao @gdut.edu.cn

Abstract

Causal discovery from a set of observations is one of the fundamental problems
across several disciplines. For continuous variables, recently a number of causal
discovery methods have demonstrated their effectiveness in distinguishing the cause
from effect by exploring certain properties of the conditional distribution, but causal
discovery on categorical data still remains to be a challenging problem, because it
is generally not easy to find a compact description of the causal mechanism for the
true causal direction. In this paper we make an attempt to find a way to solve this
problem by assuming a two-stage causal process: the first stage maps the cause to
a hidden variable of a lower cardinality, and the second stage generates the effect
from the hidden representation. In this way, the causal mechanism admits a simple
yet compact representation. We show that under this model, the causal direction is
identifiable under some weak conditions on the true causal mechanism. We also
provide an effective solution to recover the above hidden compact representation
within the likelihood framework. Empirical studies verify the effectiveness of the
proposed approach on both synthetic and real-world data.

1 Introduction

Because randomized controlled experiments are usually infeasible and generally too expensive,
observational data-based causal discovery, has been a focus of recent research in this area [Spirtes et
al.,|2000; Pearl, 2009]). Various observational-based causal discovery methods have been proposed by
exploring certain properties of the conditional distribution. For example, constraint-based methods
exploit conditional independence relations between the variables in order to estimate the Markov
equivalence class of the underlying causal graph [Spirtes et al.,|2000; |Pear] and Verma, [1995[. On
linear non-Gaussian acyclic data, the Linear, Non-Gaussian, Acyclic Model (LINGAM) [Shimizu e?
al.,[2006,[2011]] has been used to reconstruct the causal network by maximizing the independence
among the noises. On nonlinear data, additive noise model [Hoyer e7 al.,|2009] and post-nonlinear
model [Zhang and Chan| 2006} Zhang and Hyvirinen, 2009] can be used to distinguish the cause from
effect by considering the independence between the noise and the cause. Recently, the likelihood
embedded with various constraints and models among the variables are conducted for score-based
methods [Cai et al., 2018|].

Though the additive noise model (Y = g(X) + E, X Il E) has been extended to handle discrete data
[Peters et al.l 2010]], causal discovery on categorical data still remains to be a challenging problem.
Note that it is usually hard to justify the additive noise assumptions for discrete data, especially for
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Figure 1: Food Poisoning: A Hidden Compact Representation Example in Real World.

categorical data. In fact, the additive noise model assumes that all categories of the variables are
placed in the “right” order; furthermore, if X — Y holds according to the additive noise model,
then for any observation (x,y), there exists a function g(X) such that the noise F = y — g(x) is
independent of X, i.e., it has the same distribution for different values of z. In other words, the
conditional distribution P(Y | X = z) always has the same shape for different values of z, after being
properly shifted according to g(x). But the values of a categorical variable are mutually exclusive
categories or groups, without a meaningful order of magnitude. Thus, the additive noise model may
not be a proper representation of the causal mechanism for categorical variables.

Therefore, a proper description of the causal mechanism for discrete data that helps in causal discovery
remains under explored. In this work, we make an attempt to find a way to solve this problem by
introducing a new assumption, called Hidden Compact Representation (HCR in short) as shown in
the food poisoning example given in Figure[I} the first stage maps cause to a hidden variable of a
lower cardinality, and the second stage generates the effect from the hidden representation. As shown
in the example, in the first stage, the food (X) with four different categories is mapped to the binary
compact hidden representation (V") with the key information whether it is poisonous; in the second
stage, the hidden representation (poisonous or not) determines whether the patient is diagnosed as
having food poisoning (Y'). The hidden representation (Y’) provides a compact representation of the
causes and captures key information of the causal mechanism, leaving out irrelevant information in
the cause. This way, the causal mechanism admits a simple, compact representation.

Let us have a closer look at the hidden compact representation model and see whether it is possible
to estimate it from data. First, these two stages are separated by the hidden representation, i.e.,

X1 Y|Y' holds. As a result, we can use two conditional probabilities to express the whole causal
mechanism from X to Y, as shown in the tables in Figure[I] Second, as a compact representation
of the cause, the first stage is deterministic, all stage transfer is done with probability 1. Third, as a
causal mechanism, the second stage can be represented by a probabilistic mapping from the hidden

variable Y' to the effect Y. Based on the above observations, we provide a practical method to
estimate the above HCR model under the likelihood framework. We also theoretically show that the
model is identifiable under weak conditions on the causal mechanism.

Our main contributions include 1) proposing a two-stage compact representation of the causal
mechanism in the discrete case, 2) developing a likelihood-based framework for estimating the HCR
model, and 3) conducting a theoretical analysis of the identifiability of the underlying causal direction.

2 Hidden Compact Representation Model

Without loss of generality, let X be the cause of Y in a discrete cause-effect pair, i.e., X — Y. Here,
we use the hidden compact representation, M : X — Y - Y, to model the causal mechanism
behind the discrete data, with Y' as a hidden compact representation of the cause X.

In the first stage X — Y', cause X is mapped to a low-cardinality hidden variable y' deterministically.
It can be expressed by using y' = f(X), where f : Z — Z is a noise-free arbitrary function. It



implies that the cause X can be reduced to a hidden low-cardinality space Y'. This stage extracts the
real, necessary causal factor behind the various cause states. As shown in Figure[T] there are four

different values of X, and the hidden representation Y' extracts the key information in this causal
mechanism, i.e., whether the food is poisonous or not.

In the second stage, the effect Y is generated from the hidden representation Y' by the probabilistic

mapping with conditional probability distribution P(Y = y|Y' = f(x)). For instance, as shown in
Figure ] the food poisoning may misdiagnose as stomach flu with probability 0.1, which is captured
by the conditional distribution.

In this hidden compact representation model, the deterministic mapping stage and probabilistic
mapping stage are naturally separable by the hidden representation Yie, X 1 Y|Y'. Given a
group of observations D = {(z;,y:)}ivy, the log-likelihood of the model M : X — Y' — Y is
estimated as follows.

L(M;D)
=log[ [Y P(X =,V =y, Y = ys| M)
=1y

uc 1 1 I 1 1
“tog] [ Y P(X = 2)P(Y' = i1 X = 5)P(Y = ylY" = 3) M

i=1 o)
Yi
m

=log1—[P(X =z;)P(Y = %‘lY' = f(x;))
i=1

Equation decomposes the joint probability into three components according to X 1L Y| Y'. The
middle term of the second equation, P (Y' = yl | X = x;), denotes how the compact representation
Y'is generated from X. Since this process is deterministic, we have P(Y' = y;|X =x;) = 1if
yi = f(x;) and P(Y' = y}| X = ;) = 0ify, # f(x;), where function f denotes the true mapping.
Different from the previous likelihood framework, the likelihood given in equation |(1)| contains a
hidden representation with an unknown cardinality. Thus, the Bayesian Information Criterion (BIC)
[Schwarz and others}, |1978]] is introduced to control the complexity of the model, which provides a
trade-off between the goodness of fit and model complexity. The BIC is given in equation[(2)] which

is an approximation of the marginal likelihood of the hidden compact representation model M based
on the data D:

£*(M:D) = LOM: D) - § log(m) @

where d = (| X| = 1) + |Y'|(]Y| — 1) measures the effective number of parameters in the model. In
detail, (| X| — 1) and |Y'|(|Y| = 1) are the numbers of parameters for P(X ), and the probabilistic
mapping Py [y, respectively.

To recover the causal model, we regard the model with the highest £ as the best one. The parameters
in M are decomposed into two parts, # and f, where 6 includes the parameters of P(X) and

P(Y|Y'). Maximization of above objective function, i.e., max £* = sup §maxy L*, involves two
iterative steps. First, calculate the maximum likelihood estimator (MLE) 6 = argmax, L£(6; D) while
fixing the function f. Second, fix the parameter values of 6 and find a better model by choosing the

best f to achieve sup; L*(f: D). Such an alternate maximization procedure eventually converges,
as shown in [Bezdek and Hathaway}, 2003].

In the first step, more specifically, while fixing the f, the maximization is equivalent to maxy £* =

maxg L£(0; D) and the MLE 6 of the likelihood £ can be calculated directly as described in the
following.

Letd = {4, b} where a, = P(X = z), I;ywr = P(Y = y|Y' = y') denote the MLE of the distribution

. . A ng _ong,
Py, Py |y respectively. The MLE of those parameters can be written as d, = o by y = Zyynj —
m

where n, = Y " I(z; = z), and n,y , = Y™ I(y; = y',y; = y) are the frequencies of value
X=gandY' = y', Y =y in samples respectively. Such solutions can be derived by maximizing £




with the constraints conditions ) _ a, = 1, and Zy by, =1, Vy'. Following likelihood of the model
in equation [(1)] the solution of maxy £(6; D) is given in equation

meaxﬁ(G;D)
=log[ [ P(X = 2)P(Y = 5i|Y' = f(2:)
=1
ANy 2Nyl y 3
:logl_[az l_[l_[by’,y ¥
x y’ Yy

n Ty
= Z nglog(=——) + Z Z ny ylog(=—-2—)
p 2o e v Zy Ny y

In the second and third equalities, we collect each category and perform a MLE to estimate each

parameter in the distribution. Consequently, the optimum solution 6 is given in the closed form,
which will be used in the second step of the optimization procedure.

In the second step, we propose a greedy search algorithm to search the best f with sup, L". Firstly,
f(x) is initialized with the y,y, where v is the mode of {y| < z,y >€ D}. Secondly, we perform
greedy search on the f(x) by enumerating all possible values for each .

In summary, the optimization of max £* = sup § maxg L* is given in the following algorithm.

Algorithm 1 Optimization of max £* = sup § maxg c*
Input: Data D

Output: £*

I: f(o)(x) « argmax, P(X =Y =y)

2: while £* no longer increases do

3: t=t+1

4: for each pair < x, y’ > do

5: L* « maxy E(fg(ct_)yl,), 0;D) — glog(m)
6: if £* < £” then

7 (#,9,L7) < (a,y, L")

8: end if

9: end for

10: Set f(#) tobe §' and let £* = L*
11: end while
12: return £*

where fit_j;,) denotes that the change of the value f (t=1) (x) to value y'. In each iteration, we search

the best gain pair < Z, g}' > by traversing the value of y' in f (+-1)

/. In other words, change the value
-y

f(2) to ¢ in order to achieve the highest score increase. Finally, set f(4) « ' and update the score
until £* no longer increases.

Based on the above proposed hidden compact representation and its BIC score, we can simply get the
following practical method for causal inference.

1. Estimate the model M : X » Y'Y, M : Y - X' - X by maximizing £*(M;D) ,
L* (M; D) respectively;

2. If L*(M; D) > L*(M; D), infer “X — Y™,
If £L*(M;D) < L*(M; D), infer “Y — X",
If £*(M; D) = L*(M:; D), infer “non-identifiable”.

The asymptotic correctness of this practical methods is implied by the identifiability of the model,
which is theoretically analyzed in the following section.



3 Identifiability

We shall show that under the hidden compact representation model, the causal direction is asymptoti-
cally identifiable in the general case (under some technical conditions).

We first show the following property for the reverse direction under certain conditions on the
conditional distribution P(Y | X).

Theorem 1. Assume that for the correct causal direction, the conditional distribution P(Y | X) is
random in the sense that

Al. there does not exist values y, # yo such that P(Y =y, | X') equals P(Y =y, | X) times a
constant for all possible X values. (Note that both P(Y =1y, | X) and P(Y =y, | X) are
functions of X.)

Then asymptotically, in the reverse direction there does not exist X' = f(Y) with | X'| < |Y'| such
that P(X|Y) = P(X|X'") for all possible X and Y values, i.e., the reverse direction does not admit
a low-cardinality hidden representation f(Y).

Proof. We have P(X,Y) = P(X)P(Y|X) for the correct direction. Assume that there exists such
aX' = f(Y)tosatisfy P(X|Y) = P(X|X'). We then have P(X,Y) = P(Y)P(X|X"). Hence,

P(X)P(Y]X)

P(X|X") = 0

“4)

Because | X'| < |Y|, there must exist two values y; # y» such that f(y;) = f(ys), which implies
P(X|f(y1)) = P(X|f(y2)). According to Equation we have

PX)P(Y =y |X) _ P(X)P(Y = y|X)

P(Y =y1) P(Y =ys,)
or
P(Y =y1)
P(Y =y1|X) = P(Y = yo| X) - =—F—
(¥ = 1X) = P(Y = 3] X) - =25,
which contradicts Assumption Al. Therefore, the reverse direction does not admit a low-cardinality
hidden representation. O

Note that assumption A1 may be violated, but the chance for it to be violated should be low. Roughly
speaking, this assumption states that X and Y are not “locally” independent. Suppose assumption
A1 does not hold; then there must exist ¥,y satisfying P(Y = ;| X) = ¢P(Y = y,|X) for all
possible values of X. One can derive that P(X|Y = y;) = P(X|Y = y5). This means if we ignore
all the other possible values of Y other than y; and y,, X and Y become independent. Generally
speaking, this will not hold when X and Y are dependent, especially when the cardinality of X is
not small. The experimental results also illustrate the plausibility of this assumption.

As an immediate result of Theorem [T} we have the identifiability of the causal direction under the
hidden compact representation model, as given in Theorem

Theorem 2. Assume that in the causal direction there exists the transformation y' = F(X) such
that P(Y|X) = P(Y|Y"), where |Y'| < | X|, and and assumption Al holds. Then to produce the
same distribution P(X,Y"), the reverse direction must involve more effective number of parameters
in the model than the causal direction.

Going one step further, Theorem [3]shows the BIC of the causal direction is asymptotically higher
than that of the reverse one. The proof of this theorem is provided in the supplementary material.

Theorem 3. If the reverse direction involves more parameters than the causal direction to produce
the same distribution P(X,Y"), the BIC of the causal direction is asymptotically higher than that of
the reverse one.



4 Experiments

To investigate the effectiveness of the proposed method based on the hidden compact representation
model, we compare it with baseline algorithms on both synthetic data and the real world data. On
synthetic data, we simulate the data according to the hidden compact representation model. In all the
experiments, we generate 1000 different causal pairs and 2000 samples for each pair. On real-world
data, we run the algorithm on Pittsburgh Bridges dataset and Abalone dataset. The implementation of

HCR can be found on CRAN [H

The following five algorithms are taken as the baseline: ANM [Peters e al., 2010], SA [Liu and
Chanl 20164a]], DC [Liu and Chanl 2016b]], IGCI [Janzing et al.,[2012]] and CISC [Budhathoki and
Vreeken, [2017]. The parameter settings of all the algorithms are based on their origin work.

To make a fair comparison, the decision rate is used as the metric to evaluate the models’ performance,
same as that in IGCI [Janzing ef al.,|2012] and CISC [Budhathoki and Vreeken| [2017].

4.1 Synthetic Data with Hidden Compact Representation Model

In this set of experiments, the samples are generated according to the following two-stage proce-
dure. Firstly, generate X from a multinomial distribution and its cardinality is randomly chosen
from {3,4,...,15}. Secondly, map each X to a value that uniformly samples from the interval
{1,2,...,|X|}. Finally, randomly generate a conditional probability distribution P(Y'|Y") and
sample Y according to Y' and P(Y|Y"), and |V | is generated from the interval {|Y'], ..., 15}.
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Figure 2: Results on the Hidden Compact Representation Model.

Figure [2(a)| shows the accuracy with difference decision rate. As shown in the figure 2(a)) HCR
outperforms the baseline methods across all the decision rates. HCR achieves acceptable results
even when the decision rate is 1, which shows HCR can reliably infer the causal direction for all the
cause-effect pairs. In this set of experiment, ANM fails to work because its additive noise assumption
may not hold for the current causal mechanism.

Figure [2(b)| shows the performance of the algorithms with the sample size varying from 250 to 3000.
The decision rate is 1 in this set of experiments. As shown in the figure, the performance of HCR
grows much faster than the baseline methods and converge to 1 when the sample size reaches 3000.
This shows that the hidden compact representation explores the information behind the data more
efficiently, compared with the other algorithms.

4.2 Real-World Data

To further assess the performance of our method for the discrete casual inference, we test the
algorithms on two real-world datasets, Pittsburgh Bridges dataset and Abalone dataset. Both of them
are wildly used in previous research and can be downloaded from UCI Machine Learning Repository
[Lichmanl, 2013]].

1
https://cran.r-project.org/package=HCR


https://cran.r-project.org/package=HCR

Pittsburgh Bridges dataset: There are 108 bridges in this dataset. The following 4 cause-effect
pairs are known as ground truth in this experiment. They are 1) Erected (Crafts, Emerging, Mature,
Modern) — Span (Long, Medium, Short), 2) Material (Steel, Iron, Wood) — Span (Long, Medium,
Short); 3) Material (Steel, Iron, Wood) — Lanes (1, 2, 4, 6); 4) Purpose (Walk, Aqueduct, RR,
Highway) — type (Wood, Suspen, Simple-T, Arch, Cantilev, CONT-T).

Table 1: Hidden Compact Representation on Pittsburgh Bridges Data Set.

Ground truth | f(X)-Y' \ P(Y|Y")
f{Crafts}) = 1 | Medium: 0.5, Short:0.5

Erected—Span f{Emerging, Mature, Modern}) — 2 ‘ Long: 0.37, Medium:0.59, Short:0.04
f({Steel}) - 1 Long: 0.42, Medium:0.58

Material —Span f{Iron,Wood}) - 2 Medium:0.55, Short:0.45

F({Steel}) - 1 2 Lane:0.6, 4 Lane:0.33, 6 Lane:0.06

Arch:0.18, Cantilev:0.12, CONT-T:0.12,

f({Aqueduct, Highway, Walk}) — 1 Simple-T:0.24, Suspen: 0.15, Wood:0.19

Purpose—~Type Cantilev:0.06, CONT-T:0.03,

Simple-T:0.81, NIL:0.3,wo00d:0.06

|

|

| |

| |

. | |

Material>Lanes | ¢(( 170, Wood}) — 2 | 1 Lane:0.15, 2 Lane:0.8, 4 Lane:0.04
s(rm) -2 |

Generally speaking, HCR can identify all 4 cause-effect pairs correctly. To gain an insight into the
hidden compact representation, we give the reconstructed model in Table[T] In detail, the result on
“Erected — Span” shows that {Emerging, Mature, and Modern} of erected are mapped into a hidden

compact representation Y' = 2, while Crafts is mapped to Y' = 1. This hidden representation reflects
that Crafts is the main cause of the medium and short bridge, which is compatible with common
sense. Similarly, from the results on “Material — Span” and “Material — Lanes”, we can see that
the steel belongs to modern material with high strength, while iron and wood are classic materials
with lower strength. This hidden property of the material causes the different span and lanes. Similar
results can be found in “purpose — type”. All of those results on the four cause-effect pairs reflect
that HCR is a proper representation of the causal mechanism for discrete data.

Figure [3(a)] shows the results of the algorithms on Pittsburgh Bridges dataset with different sample
sizes. Because of the space limitation, only the average result of the four pairs are reported. As shown
in the figure, HCR outperforms the baseline methods and shows competitive performance even when
the sample size is smaller than 100, while the other four baselines are all failed to find the right causal
direction with such a small sample size. This reflects HCR might be a suitable representation of the
causal mechanism in this real-world scenario.
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(a) Results on Pittsburgh Bridges Data Set.

(b) Result on Abalone Data Set.

Figure 3: Sensitivity to Sample Size.

Abalone Data Set: This dataset contains 4177 samples and each sample has 4 different properties.
The ground truth contains three cause-effect pairs, Sex — {Length, Diameter, Height}. The property
sex has three values, male, female and infant. The length, diameter, and height are measured in mm
and treated as discrete values, similar to [Peters et al., 2010].



Table 2: Hidden Compact Representation on Abalone Data Set.

Ground truth | f(X) - Y’ | P(YIY")
| f({Infant}) —» 1 | 0.43£0.1
Sex—Length ¢ ((Pemale, Male}) — 2 | 0.57 +0.96
| f({Infant}) -1 | 0.33 +0.088
Sex—Diameter | f({Female, Male}) — 2 | 0.45 £ 0.079
| f({Infant}) -1 | 0.11 +0.032

Sex—Height | f({Female, Male}) — 2 | 0.15 £ 0.037

In this dataset, HCR successfully determines the causal direction for all the three pairs, and the details
of the model are given in Table [2| Because the properties have many discrete states, column Y shows
its mean and standard variance. Although this dataset closely relates to the additive noise model,
Table 2] demonstrates that HCR still successfully identifies the causal direction and provides a fruitful
insight of the causal mechanism. In detail, the model maps Infant to y' = 1, and maps {Female,
Male} to Y' = 2. Here Y' indicates that categorizing the sex of abalones into male and female is
redundant relative to the considered effect, which is Length, Diameter, or Height. In the second stage,
the mapping shows the maturity causes the sizes.

We also compare our results with the baseline methods with different sample sizes. As shown in
Figure although this dataset follows the assumptions of the discrete additive noise model, HCR
still outperforms ANM. Note that, ICGI and CISC achieve the same performance as HCR and their
curves are covered by that of HCR. Moreover, SA and DC fail to give the correct direction on this
data set, perhaps because they are designed for the discrete data with a small number of cardinalities
while the cardinality of the variables is very large in this dataset. These results also indicate that HCR
may provide a suitable representation of the causal mechanism in various scenarios.

As a summary, HCR stably outperforms all the baseline methods on these two real-world discrete
datasets and, furthermore, shows a meaningful hidden compact representation of the causal mecha-
nism.

5 Conclusion

Finding causal direction between discrete variables is an important but challenging problem. In this
paper, we make an attempt to solve this problem by developing a low-cardinality hidden representation
model for the causal mechanism, which decomposes the mechanism into two stages. With this model
estimated by the Bayesian Information Criterion (BIC), we develop an effective causal discovery
method for discrete variables. Theoretical analysis also shows that the model is generally identifiable—
it is not identifiable when some weak technical conditions on the causal mechanism are violated.
Experimental results on both synthetic and real data verify our theoretical results and support the
validity of the proposed model, at least in a number of real situations. In future work, we plan to
extend the proposed method to discrete data with confounding factors.
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