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Abstract

Zero-Shot Learning (ZSL) is generally achieved via aligning the semantic relation-
ships between the visual features and the corresponding class semantic descriptions.
However, using the global features to represent fine-grained images may lead
to sub-optimal results since they neglect the discriminative differences of local
regions. Besides, different regions contain distinct discriminative information.
The important regions should contribute more to the prediction. To this end, we
propose a novel stacked semantics-guided attention (S2GA) model to obtain seman-
tic relevant features by using individual class semantic features to progressively
guide the visual features to generate an attention map for weighting the importance
of different local regions. Feeding both the integrated visual features and the
class semantic features into a multi-class classification architecture, the proposed
framework can be trained end-to-end. Extensive experimental results on CUB and
NABird datasets show that the proposed approach has a consistent improvement
on both fine-grained zero-shot classification and retrieval tasks.

1 Introduction

Traditional object classification tasks require the test classes to be identical or a subset of the training
classes. However, the categories in the reality have a long-tailed distribution, which means that
no classification model could cover all the categories in the real world. Targeting on extending
conventional classification models to unseen classes, Zero-Shot Learning (ZSL) [7, 8, 18, 29, 30] has
attracted a lot of interests in the machine learning and computer vision communities.

The current approaches formulate ZSL as a visual-semantic alignment problem. In these approaches,
an image is represented with its global features. Despite good performances on coarse-grained
datasets (e.g., Animal with Attribute dataset [10]), the global features have limitations on fine-grained
datasets since more local discriminative information is required to distinguish classes. As illustrated in
Fig. 1, the global features only capture some holistic information, on the contrary, the region features
capture more local information that is relevant to the class semantic descriptions. Consequently, the
global image representations may fail in fine-grained ZSL.
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When trying to recognize an image from unseen categories, humans tend to focus on the informative
regions based on the key class semantic descriptions. Besides, humans achieve the semantic alignment
by ruling out the irrelevant visual regions, and locating the most relevant ones in a gradual way.
Motivated by the above observations and the attention mechanisms that can highlight important local
information and neglect irrelevant information of an image, we propose a novel stacked attention-
based network to integrate both the global and discriminative local features to represent an image via
progressively allocating different weights to different local visual regions based on their relevances to
the class semantic descriptions.

(a) Original image (b) Heatmap of the global 
features

(c) Heatmap of the region 
features

Figure 1: An example of the activation mappings of
both the global and region features.

As shown in Fig. 2, the proposed approach
contains an image featurization part, an at-
tention extraction part, and a visual-semantic
matching part. For the image featurization
part, we extract the local features that retain
the crucial spatial information of an image
for the subsequent attention part. It should
be noted that the region features can also be
compressed into a global one by concatenat-
ing or averaging all the local region features.
The attention extraction part is the core of
the proposed framework, which progressive-
ly allocates the importance weights to differ-
ent visual regions based on their relevance
to the class semantic features. The visual-
semantic matching part is a two-layer neural
network to embed both the class semantic
features and the integrated visual features of both the global and local weighted visual features into a
multi-class classification framework.

In summary, the contributions of this work are three-fold:

1. We apply the attention mechanism for ZSL to address the issue of irrelevant or noisy
information brought by the global features using the local region features of an image. To
the best of our knowledge, this is the first work to apply attention mechanism for ZSL.

2. To effectively obtain the attention map to distribute weights for local region features, we
propose a stacked attention network guided by the class semantic features for ZSL. It
integrates both the global visual features and the weighted local discriminant features to
represent an image by allocating different weights for different local regions based on their
relevances to the class semantic features.

3. The whole proposed framework can be trained end-to-end by feeding both the visual
representations and the class semantic features into a multi-class classification architecture.

In the experiments, we evaluate the proposed S2GA framework for fine-grained ZSL on two bird
datasets: Caltech UCSD Birds-2011 (CUB) [22], and North America Birds (NABird) [21]. The
experimental results show that our approach significantly outperforms the state-of-the-art methods
with large margins on both zero-shot classification and retrieval tasks.

2 Related Work

2.1 Region features-based Zero-Shot approaches

A limitation of most existing ZSL approaches for fine-grained datasets is to use global features to
represent the visual images. This may feed irrelevant or noisy information to the prediction stage.
Recently, [1, 6, 33] adopt local region features to represent images that are more relevant to the class
semantic descriptions. Specifically, [6] proposed to learn region-specific classifier to connect text
terms to its relevant regions and suppress connections to non-visual text terms without any part-text
annotations. By concatenating the feature vectors of each visual region as the visual representations
of an image, Zhu et al. [33] proposed a simple generative method to generate synthesised visual
features using the text descriptions about an unseen class. Inspired by the effectiveness of region
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Figure 2: The framework of the proposed S2GA approach. The green box denotes the image
featurization part; the blue box is two-layer Semantics-Guided Attention (SGA) part to distribute
different weights to different relevant visual features based on the class semantic descriptions; the red
box denotes the visual-semantic matching part to jointly embed both the class semantic features and
the integrated features of both the global and local weighted features into a multi-class classification
framework.

features for ZSL, we also use the region features in this work. Different from [1, 6, 33], we argue
that important regions should contribute more to the prediction and design an attention method to
distribute different weights for different regions according to their relevance with class semantic
features, and integrate both the global visual features and the weighted region features into more
semantics-relevant features to represent images.

2.2 Attention Model

The aim of the attention mechanisms is to either highlight important local information or alleviate
the issue of irrelevant or noisy information brought by the global features. Due to their validity and
generality, the attention mechanisms have been widely adopted in various computer vision tasks,
e.g., object classification [4], machine translation [9], image caption [13, 27], and visual question
answering [24, 28].

To the best of our knowledge, there is no work to apply the attention mechanism to ZSL task. In
this work, we design a stacked attention network to assign different importance weights to features
of different local regions to obtain a more semantics-relevant feature representation. One of the
most closely related work, Yang et al. [26] proposed a stacked attention network for visual question
answering, which directly uses the question to search for the related regions to the answer. However,
for ZSL task, since no corresponding class semantic descriptions are provided for testing images, the
current attention mechanism could not be applied to it directly. To this end, we propose to indirectly
learn the attention maps to weight different regions guided by the class semantic descriptions during
training. This is the novelty of the proposed attention method. Besides, we also integrate both the
weighted region features and the global features to represent image features since the corresponding
class semantic descriptions contain both global and local information. In summary, our stacking
based attention learning enables learning a hierarchical representation of the attention from both the
global and local features, which was ignored by the existing studies in the attention learning literature
and is also significantly different from the method at [23] that does not use stacking mechanism.

3 Semantics-guided Attention Networks

The visual-semantic matching that measures similarities between the visual and class semantic
features is a key to address ZSL. However, the visual features extracted from the original images
and the class semantic features are located in different structural spaces, a simple matching method
may not align the semantics well. To narrow the semantic gap between the visual and the class
semantic modalities, we propose a semantic-guided attention approach to use the class semantic
descriptions to guide the local region features to obtain more semantic-relevant visual features for
the subsequent visual-semantic matching. The semantic-guided attention mechanism pinpoints the
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regions that are highly relevant to the class semantic descriptions and filters out the noisy regions.
The overall architecture of the proposed semantics-guided attention networks is shown in Fig. 2. In
this section, we first describe the proposed S2GA model and the visual-semantic matching model,
and then apply it to fine-grained ZSL.

3.1 Stacked semantics-guided attention networks

Given the local features of an image and its corresponding class semantic vector, the attention
networks distribute different weights for each visual region vector via multi-step attention layers, and
integrate both the global and weighted local features to obtain more semantics-relevant representations
for images. Specifically, we propose an attention approach using the local region features to gradually
filter out noises and weight the regions that are highly relevant to the class semantic descriptions via
multiple (stacked) attention layers. It consists of multi-step attention layers to generate the distribution
weights for relevant regions. Each attention map is obtained to measure the relevance between the
region features and the class semantic features under the guidance of the class semantic features, so
we call our approach stacked semantics-guided attention(S2GA) model.
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Figure 3: An illustration of a semantics-guided atten-
tion (SGA) layer.

Fig. 3 shows the illustration of a semantic
guided-attention layer. Given the image lo-
cal feature representations VI and its corre-
sponding class semantic vector s, the atten-
tion map is obtained with two separated net-
works. The first network is denoted as local
embedding network, which feeds the local
feature representations into a latent space
through a simple two-layer neural network.
The second network is named as semantic-
guided network. It first compresses all the
visual region features to an integrate vector
vG and then feeds it into the same laten-
t space with a three-layer neural network.
Specifically, the output of the mid-layer is
forced to be close to the corresponding class semantic feature. In this way, the class semantic
information is embedded into the network, which guides to obtain the attention map. Then, a softmax
function is used to generate the attention distribution over the regions of the image:

hA = tanh(f(VI)⊕ g(vG)), (1)

pI = softmax(WPhA + bP ), (2)
where VI ∈ Rp×m, p is the feature dimensionality of each region and m is the number of the image
regions, vG ∈ Rp is the fused visual image vector that is the uniform average of all the image region
vectors VI , ⊕ denotes the multiplication between each column of the matrix and the vector, which
is performed by element-wise multiplying each column of the matrix by the vector. hA ∈ Rd×m is
the fused vector in the latent space, pI ∈ Rm is an m dimensional vector, which corresponds to the
attention probability of each image region, f and g are two different networks:

f(vI) = h(WI,AvI), (3)

g(vG) = h(WG,Ah(WG,SvG)), (4)
where h is a nonlinear function (we use Rectified Linear Unit (ReLU) in the experiments). WI,A ∈
Rd×p, WG,S ∈ Rq×p, WG,A ∈ Rd×q are the learned parameters, q and d are the dimensionalities of
the class semantic space and the latent space, respectively. To embed the class semantic information
into the attention network, the output of the second-layer of g is forced to be close to the corresponding
class semantic features, which is formulated as:

min LossG = ‖h(WG,SvG)− s‖2. (5)

Based on the attention distribution, we obtain the weighted feature vector of each image region,
ṽi = pivi, where vi is the feature vector of i-th region. We then combine the weighted vector ṽi

with the previous region feature vector to form a refined region vector ui = ṽi + vi. ui is regarded
as a refined vector since it encodes both visual information and the class semantic information.

4



Compared with the approaches that simply use the global image vector, the attention method con-
structs a more informative u since higher weights are put on the visual regions that are more relevant
to the class semantic descriptions. However, for some complicated cases, a single attention network
is not sufficient to locate the correct region for class semantic descriptions. Therefore, we iterate
the above semantics-guided attention process using multiple attention layers, each extracting more
fine-grained visual attention information for class semantic descriptions. Specifically, for the k-th
attention layer, we compute:

hk
A = tanh(f(Uk

I )⊕ g(uk
G)), (6)

pk
I = softmax(Wk

Ph
k
A + bkP ), (7)

where U0
I and u0

G are initialized to be VI and vG, respectively. Then the weighted image region
vector is added to the previous image region feature to form a new image vector:

ũk
i = pki u

k
i , (8)

uk
i = ũk

i + uk
i . (9)

It should be noted that in every attention layer the class semantic information is embedded into the
network. We repeat this process K times to obtain uK

G . By integrating all the region features, we
obtain the final image representations uG for the embedding network.

3.2 Visual-semantic matching model

To connect the visual features and class semantic features, we use a two-layer network to embed the
class semantic feature into the visual space:

vs = h(WEs+ bE), (10)

where WE ∈ Rp×q , bE ∈ Rq are the embedding matrix and bias, and h denotes the ReLU function.
To align the common semantic information between the visual space and the class semantic space,
the differences between the attention visual feature uG and its corresponding feature embedding vs

of class semantic descriptions should be small, and the objective function is formulated as a squared
loss:

min LossA = ‖vs − uG‖2. (11)
It should be noted that the contrastive loss is also an alternative to align the visual-semantic interac-
tions, which is specifically formulated as:

min LossA = max{0, m+ d(vs;uG)− d(vneg
s ;uG)}, (12)

where m is a margin which we fix to 0.1 in the experiments; vneg
s is the synthesized visual features

from the other class semantic features; d(i; j) is a metric function that measures the distance between
vectors i and j. While in our experiments we use a square Euclidean distance d(i; j) = ‖i− j‖2, any
other differentiable distance functions can also be used here.

Considering that the approach with the squared loss is more efficient, if not specified, S2GA is
referred to the approach with the squared loss.

A multi-class classifier with softmax activation, which is trained on the final visual attention features
as well as the class semantic features, predicts the class label of the input image. The predicted label
is the index with the maximum probability:

c∗ = arg max pc, s.t. pc = softmax(VSuG), (13)

where VS is the embedding matrix of the collection of all the seen class semantic features, which is
obtained in Eq. 10.

3.3 Apply to ZSL

Given a set of semantic features ST of candidate classes and a test instance vt, ZSL is achieved via
three steps. First, the test instance is fed into the attention network to obtain the attention feature ut.
Then, the semantic features are embedded into the visual space in Eq. 10 to obtain VT . After that,
the classification of the test instance is achieved by simply calculating its distance to the semantic
embedding features VT in the visual space:

c∗t = argmin
t
D(ut,VT ) (14)
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Method F SI Performance
MFMR-joint† [25] V A 53.6
Deep-SCoRe [12] V A 59.5
SynCstruct [5] G A 54.4
DEM [32] G A 58.3
ESZSL [15] G A 53.1
Relation-Net [19] G A 62.0
SJE [3] G A/W 55.3/28.4
MCZSL [1] GTA A/W 56.5/32.1
S2GA GTA A/W 75.3/46.9
S2GA-CL GTA A/W 76.8/48.2

Table 1: Performance evaluation on CUB in classification accuracy (%). S2GA-CL is the approach
with the contractive loss; V and G are short for VGGNet and GoogleNet feature representations. A
andW are short for attribute space and Word2Vec space, respectively. MFMR-joint† is a transductive
approach in which the testing instances are available in the training stage.

4 Experiments

In this section, we carry out several experiments to evaluate the proposed S2GA networks on both
zero-shot classification and zero-shot retrieval tasks.

4.1 Experimental setup

Datasets: Following [6], we conduct experiments on two fine-grained bird datasets, CUB [22] and
NABirds [21]. Specifically, CUB dataset contains 200 categories of bird species with a total of
11,788 images. Each category is annotated with 312 attributes. Besides, the local regions of the
bird in each image are annotated with locations by experts. Thus, we can either directly extract
the local image features using the ground-truth location annotations or indirectly extract the local
image features using the SPDA-CNN framework [31] to detect the important regions followed a
sub-network that uses a 3×3 ROI to pool each region for a 512-d feature. We call the features based
on these two different strategies as “GTA” and “DET”, respectively. Specifically, we extract the
features of 7 local regions to represent each CUB image. The dimensionality of each region is 512.
These 7 regions are “head”, “back”, “belly”, “breast”, “leg”, “wing”, and “tail”. Considering that
the class semantic descriptions are easily available for CUB dataset, we conduct experiments using
class-level attribute, Word2Vec [11] and Term Frequency-Inverse Document Frequency (TF-IDF)
[16] feature vector as class semantic features, respectively. The dimensionalities of the attribute,
Word2Vec and TF-IDF are 312, 400 and 11,083, respectively. Compared with CUB dataset, NABirds
dataset is a larger dataset. It consists of 1,011 classes with 48,562 images. As the same as that in [6],
we obtain the final 404 classes after merging the leaf node classes into their parents. The semantic
descriptions of each category is an article collected from Wikipedia, and Term Frequency-Inverse
Document Frequency (TF-IDF) [16] feature vector is then extracted to represent the class semantic
features. The dimensionality of TF-IDF for NABird dataset is 13,585. Since no “leg” annotations of
NABird dataset are available, we extract the features of the remaining six visual regions to represent
the local visual features. In order to improve the training efficiency, we use Principal Component
Analysis (PCA) to reduce the TF-IDF dimensionality of CUB and NABird datasets to 200 and 400,
respectively. All the class semantic features are scaled into [0, 1] with the standard normalization.

Implementation Details: In our system, the dimensionality d of the hidden layer and the batch size
are set to 128 and 512, respectively. We directly optimize the sum of these three objective functions
without weights as we found empirically adding weights did not improve the performances. The
whole architecture is implemented on the Tensorflow and trained end-to-end with fixed local visual
features 2. For optimization, the RMSProp method is used with a base learning rate of 10−4. The
architecture is trained for up to 3,000 iterations until the validation error has not improved in the last
30 iterations.

2https://github.com/ylytju/sga
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Method CUB NABird
SCS SCE SCS SCE

ESZSL [15] 28.5 7.4 24.3 6.3
ZSLNS [14] 29.1 7.3 24.5 6.8
SynCfast [5] 28.0 8.6 18.4 3.8
ZSLPP [6] 37.2 9.7 30.3 8.1
GAA [33] 43.7 10.3 35.6 8.6
S2GA-DET (Ours) 42.9 10.9 39.4 9.7

Table 2: The per-class average Top-1 accuracy (in %) on CUB and NABird datasets with two different
split settings using DET as visual representations and TF-IDF as class semantic features. We directly
copy the performance results of the competitors from [6] and [33].

4.2 Traditional ZSL

4.2.1 Comparison with state-of-the-art approaches

Compared with NABird dataset, CUB dataset is a well-known dataset for ZSL. Thus, we first
conduct experiments on CUB dataset for comparing with the state-of-the-art approaches. For an easy
comparison available with the existing approaches, we use the same split as in [2] with 150 classes
for training and 50 disjoint classes for testing. Eight recently published approaches are selected for
comparison. Specifically, MCZSL [1] directly uses region annotations to extract image features, and
the rest approaches employ two popular CNN architectures to extract image features, i.e., VGGNet
[17] and GoogleNet [20]. As for the class semantic representations, we use the attributes provided by
the CUB dataset and Word2Vec [11] of each class name extracted with the unsupervised language
processing technology. We report the per-class average Top-1 accuracies of different approaches in
Table 1.

Although performance results in Table 1 vary drastically with different visual representations, it is
clear that the proposed approach outperforms all the existing methods both with attribute annotations
and Word2Vec. Specifically, the proposed S2GA approach using GTA achieves impressive gains
against the state-of-the-art approaches for both semantic representations: 13.3% on the attribute and
14.8% on Word2Vec, respectively. Besides, we observe that S2GA-CL performs slightly better than
S2GA, which indicates that the contrastive loss may capture more discriminative information.

To compare with the existing methods more fairly, we select five state-of-the-art approaches that use
both the same visual representations and class semantic representations on both CUB and NABird
datasets. All the competitors use the same settings and the features as ours. Specifically, we use the
VGGNet features based on the detected regions to represent visual image and TF-IDF to represent
class semantic features. All the region vectors are concatenated in order into a long vector to represent
each image. Those features are provided in [6], which are obtained in 3. Following [6, 33], we
evaluate the approaches on two split settings: Super-Category-Shared (SCS) and Super-Category-
Exclusive (SCE). These two different splits differ in how close the seen classes are related to the
unseen ones. Specifically, in the SCS-split setting, there exists one or more seen classes belonging
to the same parent category of each unseen class. This is the traditional ZSL split setting on CUB
dataset. On the contrary, in the SCE-split setting, the parent categories of unseen classes are exclusive
to those of the seen classes. Compared with that of SCS-split, the relevance between seen and unseen
classes of SCE-split is minimized, which brings more challenges for knowledge transfer.

Table 2 shows the classification performances of each split setting on both CUB and NABird datasets.
From the results, we observe that the proposed S2GA approach beats all the competitors on both two
datasets under two different split settings except a slight 0.8% worse than GAA [33] under SCS split
setting on CUB dataset. Specifically, it obtains 3.8% and 1.1% improvements against the current best
approach [33] on NABird dataset under both SCS and SCE split settings. Besides, we observe that
the classification accuracies of SCE are dramatically smaller than those of SCS, which indicates that
the relativity between the seen classes and unseen classes impacts the classification performances a
lot. This is a reasonable phenomenon since the knowledge is easily transferred if some related classes
or parent classes of unseen classes are available for training.

3https://github.com/EthanZhu90/ZSL_PP_CVPR17
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Method CUB NABird
A W T T

baseline 62.5 38.4 38.6 31.6
one-attention layer 67.1 40.3 41.8 36.2
two-attention layer 68.9 41.8 42.9 39.4

three-attention layer 68.5 41.6 42.7 39.6
Table 3: ZSL performances (in %) of the proposed approach with different attention layers on CUB
and NABird datasets. A - attribute,W - Word2Vec, T - TF-IDF. “baseline" is the method without
attention mechanism.

Method CUB NABird
50% 100% 50% 100%

ESZSL [15] 27.3 22.7 27.8 20.9
ZSLNS [14] 29.5 23.9 27.3 22.1
ZSLPP [6] 42.0 36.3 35.7 31.3
GAA [33] 48.3 40.3 37.8 31.0
S2GA (Ours) 47.1 42.6 42.2 36.6

Table 4: Zero-shot retrieval mAP (in %) comparison on CUB and NABird datasets. The results of all
the competitors are cited from [33]. All the competitors use the same features.

4.2.2 Gains of the attention mechanism

To evaluate the effectiveness of the proposed attention mechanism, we conduct experiments on both
CUB and NABird datasets using local features based on detected regions as visual representations
under the SCS split setting. We evaluate the methods without attention mechanism and with different
layer attention mechanism. We call the method without attention layer as baseline. The comparison
results are shown in Table 3.

From the results, we find that the performances of the methods with attention mechanism are much
better than those without attention mechanism on both CUB and NABird datasets, which verifies
the effectiveness of the attention mechanism. Besides, the stacked attention mechanism can further
improve the performances. However, when the attention layer is larger than two, the performances
tend to be steady, possibly because there is no further margin of improvement.

4.3 Zero-Shot Retrieval

The task of zero-shot retrieval is to retrieve the relevant images from unseen class set related to the
specified class semantic descriptions of unseen classes. Here we use the above well trained method to
embed both all the images of unseen classes and the class semantic descriptions into the integrated
feature space spanned both the global features and the weighted local features where the semantic
similarities of the visual and class semantic representations are obtained. For comparing with the
competitors fairly, we use both the same feature representations (visual/textual) as well as the same
settings as that in [33] where 50% and 100% of the number of images for each class from the whole
dataset are ranked based on their final semantic similarity scores.

Table 4 presents the comparison results of different approaches for mean accuracy precision (mAP)
on CUB and NABird datasets. Note that except for the case of 50% of the number of images for each
class on CUB dataset, the proposed approach beats all the competitors. We argue that it benefits from
both the final powerful feature representations based on the proposed S2GA mechanism as well as
the efficient alignment between the visual modality and the class semantic modality.

We also visualize some qualitative results of our approach on two datasets, shown in Fig. 4. We
observe that the retrieval performances of different classes vary substantially. For those classes that
have good performances, their intra-class variations are subtle. Meanwhile, for those classes that
have worse performances, their inter-class variations are small. For example, the top-6 retrieval
images of class “Indigo Bunting” are all from their ground truth class since their visual features are
similar. However, the query “Black-billed Cuckoo” retrieves some instances from its affinal class
“Yellow-billed Cuckoo” since their visual features are too similar to distinguish.
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Figure 4: Zero-shot retrieval visualization samples with our approach. The first two rows are classes
from CUB dataset, and the rest are classes from NABird dataset. Correct and incorrect retrieved
instances are marked in green and red boxes, respectively.

5 Conclusion

In this paper, we have proposed a stacked semantics-guided attention approach for fine-grained
zero-shot learning. It progressively assigns weights for different region features guided by class
semantic descriptions and integrates both the local and global features to obtain semantic-relevant
representations for images. The proposed approach is trained end-to-end by feeding the final visual
features and class semantic features into a joint multi-class classification network. Experimental
results on zero-shot classification and retrieval tasks show the impressive effectiveness of the proposed
approach.
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